2012中考数学第二讲三角形和全等三角形
2012年中考数学一轮复习精品讲义 三角形

第七章三角形本章小结小结1 本章概述三角形是几何知识中的重要内容,也是几何学的基础.本章从三角形出发,先学习与三角形有关的线段和角再到多边形,其中包括三角形的内角和、外角和及多边形的内角和等知识,最后到多边形的实际应用.小结2 本章学习重难点【本章重点】了解三角形的有关概念(内角、外角、中线、高、角平分线);会画出任意三角形的角平分线、中线和高.【本章难点】通过探索平面图形的镶嵌,知道任意一个三角形、四边形或六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【学习本章应注意的问题】正确理解三角形的有关概念,掌握有关性质.在学习中,要注意观察,搜集资料,多交流,注重新旧知识的联系,学会将新知识转化到已学的知识上去,再进行归纳、整理、分析,要深刻理解并掌握归纳、类比的方法.学习中,还要多注意结合图形,理解用多边形镶嵌图案的道理,欣赏丰富多彩的图案,体验数学美,提高审美情趣.小结3 中考透视本章知识在中考中所占比重较大,一方面以填空题、选择题形式出现,以考查对基本概念、基本定理的理解为主;另一方面以综合题形式出现,主要考查对知识的灵活运用及综合运用的能力,利用本章知识解决实际问题的题目也越来越多地出现在中考试题中,还有平面图形的镶嵌内容也是近年来的热点考题,备受关注.由于镶嵌问题具有较强的实用性,对知识的运用要求灵活性较高,所以要得到这类问题的分数也不是太容易的,分值占3~4分.知识网络结构图专题总结及应用一、知识性专题专题1 三角形的三条重要线段【专题解读】三角形的中线、角平分线和高是三角形的三条重要线段,它们具有十分重要的性质,三角形的高构造了垂直的条件,三角形的中线隐含线段相等,通过三角形的中线可以把三角形的面积分成相等的两部分,三角形的角平分线提供了角相等的条件.掌握这些概念,对解与三角形有关的问题十分重要.例1 如图7-64所示,D为△ABC中AC边上一点,AD=1,DC=2,AB=4,E是AB上一点,且△DEC的面积等于△ABC的面积的一半,求EB.分析已知△DEC的面积等于△ABC的面积的一半,在图形中, △DEC与△ABC既不同底也不等高,因此需寻找桥梁△AEC来建立二者之间的关系,因为△AEC既与△DEC等高也与△ABC等高.解:作EF⊥AC于F,则122132DECAECDC EFS DCS ACAC EF===,作CG⊥AB于点G,则12142AECABCAE CGS AE AES ABAB CG===,∴234DEC AECAEC ABCS S AES S=⨯,即6DECABCS AES=.又∵12DECABCSS=,∴162AE=,∴AE=3,∴BE=AB-AE=1,即BE的长为1.【解题策略】等高的两个三角形的面积比等于底边长的比,它是面积问题中常用的解题策略.专题2 多边形的内角和及外角和【专题解读】用三角形的内角和定理可以推出多边形的内角和定理及外角和定理,在推导的过程中体现了转化思想,在解有关多边形的问题时,如求多边形的内角、外角、边数及对角线等问题,这两个定理都很重要.例2 已知一个多边形的内角和与某个外角的度数的总和为1350°,求这个多边形的边数.分析应充分利用多边形每个外角在0°~180°间和等式的性质巧解此题.解:设这个多边形的这个外角为x,它的边数为n,则(n-2)·180°+x=1350°, ∴(n-2) ·180°=8×180°-(90°+x),由此可得90°+x是180°的倍数. ∵0°<x<180°,∴x=180°-90°=90°,∴(n-2) ·180°=7×180°,∴n=9.【解题策略】灵活运用多边形的内角和定理及外角和定理是解决此类问题的关键.二、规律方法专题专题3 用公式法解有关对角线的条数问题【专题解读】用n边形的对角线有(3)2n n-条来解决相关问题.例3 若一个多边形有77条对角线,求它的内角和.分析由(3)2n n-=77,求n.解:设这个多边形的边数为n,由题意,得(3)2n n-=77.解得n=14,即这个多边形是十四边形,十四边形的内角和为(14-2) ×180°=2160°,即内角和为2160°.【解题策略】根据对角线条数的公式(3)2n n -,即已知边数可求对角线的条数,反之已知对角线的条数,可求出边数.三、思想方法专题 专题4 转化思想 【专题解读】转化思想在本章中有很多的应用,主要体现在探索有关多边形的问题时经常转化为三角形的问题进行解决.例4 填表.分析 先由三角形的内角和为180°及外角和为360°逐一推广,将4,5,…,n 边形分割成若干个三角形,易得答案.解:填表如下.2011中考真题精选(2011陕西,12,3分)如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若︒=∠641, 则=∠2 .考点:平行线的性质。
(中考考点梳理)三角形及其全等-中考数学一遍过

考点14 三角形及其全等一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;学科-网(3)全等三角形对应的中线、高线、角平分线、中位线都相等.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.A.2cm B.3cmC.12cm D.15cm【答案】C【解析】设木条的长度为x cm,则9–6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选C.1.以下列各组线段为边,能组成三角形的是A.2cm,5cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.1cm,2cm,3cm考向二三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 如图,下列有四个说法,正确的个数是①∠B >∠ACD ;②∠B +∠ACB =180°–∠A ;③∠A +∠B =∠ACD ;④∠HEC >∠ B .A .1个B .2个C .3个D .4个【解答】解:①∠B <∠ACD ,故①错误; ②∠B +∠ACB =180°–∠A ,故②正确; ③∠A +∠B =∠ACD ,故③正确;④∠HEC =∠AED >∠ACD >∠B ,则∠HEC >∠B ,故④正确. 故选C .2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三 三角形中的重要线段三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.典例3 在△ABC 中,AB =3,BC =4,AC =2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是A .5B .7C .9D .11【答案】B典例4 如图,点G 为△ABC 的重心,则S △ABG ∶S △ACG ∶S △BCG 的值是A .1∶2∶3B .2∶1∶2C .1∶1∶1D .无法确定【答案】C【解析】如图,分别延长AG 、CG 、BG ,交BC 、AB 、AC 于点D 、F 、E ,根据三角形重心的定理得到AD 、BE 、CF 是△ABC 的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,ABD ACD BDG CDG S S S S ∆∆∆==,即可得ABG ACG S S ∆∆=,同理可得ABG BCG S S ∆∆=,所以=ABG BCG ACG S S S ∆∆∆=,即S △ABG ∶S △ACG ∶S △BCG =1∶1∶1,故选C .4.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考向四 全等三角形1.从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路:(1)已知两边SAS HLSSS ⎧⎪⎨⎪⎩找夹角→找直角→找第三边→ (2)已知一边、一角AAS SAS ASA AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩一边为角的对边→找另一角→找夹角的另一边→一边为角的邻边找夹角的另一角→找边的对角→ (3)已知两角ASAAAS ⎧⎨⎩找夹边→找其中一角的对边→ 2.若题中没有全等的三角形,则可根据题中条件合理地添加辅助线,如运用作高法、倍长中线法、截长补短法、分解图形法等来解决运动、拼接、旋转等探究性题目.典例5 如图,已知∠ADB =∠CBD ,下列所给条件不能证明△ABD ≌△CDB 的是A .∠A =∠CB .AD =BC C .∠ABD =∠CDB D .AB =CD【答案】D【解析】A .∵∠A =∠C ,∠ADB =∠CBD ,BD =BD ,∴△ABD ≌△CDB (AAS ),故正确;B .∵AD =BC ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (SAS ),故正确;C .∵∠ABD =∠CDB ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (ASA ),故正确;D .∵AB =CD ,BD =DB ,∠ADB =∠CBD,不符合全等三角形的判定方法,故不正确,故选D.【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论个数是A.0 B.1C.2 D.36.如图,在△BCE中,AC⊥BE,AB=AC,点A、点F分别在BE、CE上,BF、AC相交于点D,BD=CE.求证:AD=AE.1.如图所示,其中三角形的个数是A.2个B.3个C.4个D.5个2.下列图形不具有稳定性的是A.正方形B.等腰三角形C.直角三角形D.钝角三角形3.直角三角形中两锐角之差为20°,则较大锐角为A.45° B.55°C.65° D.50°4.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC__________的交点.A.角平分线B.高线C.中线D.边的中垂线5.如图所示,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠1=∠26.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是A .∠DAE =∠CBEB .△DEA 不全等于△CEBC .CE =DED .△EAB 是等腰三角形7.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________度.8.如图所示,AB ⊥BE 于点B ,DE ⊥BE 于点E .(1)若∠A =∠D ,AB =DE ,则△ABC 与△DEF 全等的理由是__________; (2)若∠A =∠D ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (3)若AB =DE ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (4)若AB =DE ,AC =DF ,则△ABC 与△DEF 全等的理由是__________.学-科网9.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是中线,AF ⊥BD ,F 为垂足,过点C 作AB 的平行线交AF 的延长线于点E .求证:(1)∠ABD =∠FAD ;(2)AB =2CE .10.如图,,,于D ,于E ,且.求证:.AB AC =90BAC ∠= BD AE ⊥CE AE ⊥BD CE >BD EC ED =+11.如图,操场上有两根旗杆CA与BD之间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M 点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?1.(2018•柳州)如图,图中直角三角形共有A.1个B.2个C.3个D.4个2.(2018•河北)下列图形具有稳定性的是A.B.C.D.3.(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是A.中线B.角平分线C.高D.中位线4.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的A.重心B.外心C.内心D.中心5.(2018•毕节市)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是A.4 B.6C.8 D.106.(2018•贵阳市)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是A.线段DE B.线段BEC.线段EF D.线段FG7.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为A.90°B.95°C.100°D.120°8.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于A.150°B.180°C.210°D.270°9.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于A.40°B.45°C.50°D.55°10.(2018•聊城市)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°–α–β11.(2018•黔西南州市)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙12.(2018•安顺市)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AEC.BD=CE D.BE=CD13.(2018•南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥A D.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+cC.a–b+c D.a+b–c14.(2018•辽阳市)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为A.5 B.24 5C.4 D.12 515.(2018•绵阳市)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=__________.16.(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.17.(2018•陇南市)已知a,b,c是△ABC的三边长,a,b满足|a–7|+(b–1)2=0,c为奇数,则c=__________.18.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△ED C.19.(2018•云南)如图,已知AC平分∠BAD,AB=A D.求证:△ABC≌△ADC.4.【答案】3【解析】由勾股定理知AD3=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,故答案为:3.5.【答案】D【解析】∵OA=OB,∠A=∠B,∠O=∠O,∴△AOD≌△BOC(ASA),故①正确;∴OD=CO,∴BD=AC,∴△ACE≌△BDE(AAS),故②正确;∴AE=BE,连接OE,∴△AOE≌△BOE(SSS),∴∠AOE =∠BOE ,∴点E 在∠O 的平分线上,故③正确, 故选D .6.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CEAB AC =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .1.【答案】D【解析】图中的三角形有:△ABC ,△BCD ,△BCE ,△ABE ,△CDE 共5个.故选D . 2.【答案】A【解析】根据三角形具有稳定性可知,只有选项A 不具有稳定性,故选A . 3.【答案】B【解析】设两个锐角分别为x 、y ,由题意得,,解得,所以最大锐角为55°.故选B . 4.【答案】A【解析】∵到角的两边的距离相等的点在角的平分线上, ∴这个点是三角形三条角平分线的交点.故选A . 5.【答案】D【解析】根据全等“SAS”判定可知,要证△ABE ≌△DBC 还需补充条件AB ,BE 与BC ,BD 的夹角相等,即∠ABE =∠CBD 或者∠1=∠2,故选D . 6.【答案】B【解析】∵∠1+∠C +∠ABC =∠2+∠D +∠DAB =180°,且∠1=∠2,∠C =∠D , ∴∠ABC =∠DAB ,∴∠ABC –∠2=∠DAB –∠1,∴∠DAE =∠CBE .故A 正确;∵∠1=∠2,∴AE =BE .在△DEA 和△CEB 中DAE CBE C D AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEA ≌△CEB (AAS ),故B 错误;由△DEA ≌△CEB 可得CE =DE .故C 正确.∵∠1=∠2,∴BE =AE ,∴△EAB 是等腰三角形故D 正确;故选B .=90=20x y x y +︒-︒⎧⎨⎩=55=35x y ︒︒⎧⎨⎩7.【答案】135 【解析】如图所示:由题意可知△ABC ≌△EDC ,∴∠3=∠BAC , 又∵∠1+∠BAC =90°,∴∠1+∠3=90°,∵DF =DC ,∴∠2=45°,∴∠1+∠2+∠3=135度, 故答案是:135.8.【答案】ASA ,AAS ,SAS ,HL【解析】(1)在△ABC 和△DEF 中,因为∠B =∠E =90°, AB =DE ,∠A =∠D ,所以△ABC ≌△DEF (ASA); (2)在△ABC 和△DEF 中,因为∠B =∠E =90°, ∠A =∠D ,BC =EF ,所以△ABC ≌△DEF (AAS); (3)在△ABC 和△DEF 中,因为AB =DE ,∠B =∠E =90°, BC =EF ,所以△ABC ≌△DEF (SAS);(4)在Rt △ABC 和Rt △DEF 中,因为AC =DF ,AB =DE , 所以Rt △ABC ≌Rt △DEF (HL). 故答案为:ASA ;AAS ;SAS ;HL.10.【解析】,,,,,, ,90BAC ∠= CE AE ⊥BD AE ⊥90ABD BAD ∠∠∴+= 90BAD DAC ∠∠+= 90ADB AEC ∠∠== ABD DAC ∠∠∴=在和中,,∴≌(AAS ),,, ,∴BD =EC +ED .11.【解析】(1)如图,∵CM 和DM 的夹角为90°,∴∠1+∠2=90°,∵∠DBA =90°,∴∠2+∠D =90°,∴∠1=∠D ,在△CAM 和△MBD 中,,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB , ∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ; (2)9÷0.5=18(s ).学_科网答:小强从M 点到达A 点还需要18秒.1.【答案】CABD CAE ABD EAC BDA E AB AC ∠=∠∠=∠=⎧⎪⎨⎪⎩ABD CAE BD AE ∴=EC AD =AE AD DE =+ 1A B D CM MD ∠=∠∠=∠=⎧⎪⎨⎪⎩【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选C.2.【答案】A【解析】三角形具有稳定性.故选A.3.【答案】A【解析】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.4.【答案】A【解析】三角形三条中线的交点是三角形的重心,故选A.5.【答案】C【解析】设第三边长为x,则8–2<x<2+8,6<x<10,故选C.6.【答案】B【解析】根据三角形中线的定义知线段BE是△ABC的中线,故选B.7.【答案】B【解析】∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B.8.【答案】C【解析】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°–∠C=30°+90°+180°–90°=210°,故选C . 9.【答案】C【解析】∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°, ∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°,故选C . 10.【答案】A【解析】由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ', ∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选.11.【答案】B【解析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等; 在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等; 不能判定甲与△ABC 全等;故选B .13.【答案】D【解析】∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠AFB =∠CED =90°,∠A +∠D =90°,∠C +∠D =90°,∴∠A =∠C ,∵AB =CD ,∴△ABF ≌△CDE ,∴AF =CE =a ,BF =DE =b , ∵EF =c ,∴AD =AF +DF =a +(b –c )=a +b –c ,故选D . 14.【答案】B【解析】由题意可得,OC 为∠MON 的平分线, ∵OA =OB ,OC 平分∠AOB ,∴OC ⊥AB , 设OC 与AB 交于点D ,作BE ⊥AC 于点E ,∵AB =6,OA =5,AC =OA ,OC ⊥AB ,∴AC =5,∠ADC =90°,AD =3, ∴CD =4,∵2AB CD ⋅=2AC BE ⋅,∴642⨯=52BE ⨯,解得,BE =245,故选B . 15【解析】∵AD 、BE 为BC ,AC 边上的中线,∴BD =12BC =2,AE =12AC =32,点O 为△ABC 的重心,∴AO =2OD ,OB =2OE , ∵BE ⊥AD ,∴BO 2+OD 2=BD 2=4,OE 2+AO 2=AE 2=94,∴BO 2+14AO 2=4,14BO 2+AO 2=94,∴54BO 2+54AO 2=254,∴BO 2+AO 2=5,∴AB. 16.【答案】5【解析】根据三角形的三边关系,得4<第三边<6. 又第三条边长为整数,则第三边是5.故答案为:5. 17.【答案】7【解析】∵a ,b 满足|a –7|+(b –1)2=0,∴a –7=0,b –1=0,解得a =7,b =1, ∵7–1=6,7+1=8,∴6<c <8,又∵c 为奇数,∴c =7,故答案是:7.18.【解析】∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ).19.【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC .A EAC EC ACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩AB AD BAC DAC AC AC =∠=∠=⎧⎪⎨⎪⎩。
初中数学全等三角形

初中数学全等三角形
目录
1. 几何基础知识
1.1 点、线、面的概念
1.2 角的概念
1.3 直线、射线、线段的区别
2. 三角形的性质
2.1 三角形的定义
2.2 三角形的内角和为180°
2.3 等边三角形、等腰三角形、直角三角形的特点
3. 三角形的分类
3.1 依据边长分类
3.2 依据角度分类
4. 三角形的全等性质
4.1 全等三角形的定义
4.2 全等三角形的性质
4.3 证明全等三角形的方法
5. 三角形全等定理
5.1 SSS全等定理
5.2 SAS全等定理
5.3 ASA全等定理
6. 全等三角形的应用
6.1 利用全等三角形证明几何定理
6.2 利用全等三角形解决实际问题
7. 总结与拓展
7.1 总结全等三角形的重要性
7.2 拓展全等三角形的相关知识
以上是目录,接下来将根据目录内容展开写作。
中考数学考点专题复习 三角形与全等三角形

剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5
.
【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )
边、角、线及三角形

《第一讲:边、角、线》知识点一:角1互为余角(互余): 两个角相加等于90°就说这两个角互余。
2互为补角(互补):两个角相加等于180°就说这两个角互补。
推论1:直角三角形的两个锐角互余。
推论2:三角形的内角和为180°3 N 多边形的内角和求法: (n-2)x 180°经典例题1.(2012南通)已知∠α=32º,则∠α的补角为【 】A .58ºB .68ºC .148ºD .168º2. (2012嘉兴)已知△ABC 中,∠B 是∠A 的2倍, ∠C 比∠A 大20° ,则∠A 等于( ) A. 40° B. 60° C. 80° D. 90°3.(2012•丽水)如图,小明在操场上从A 点出发,先沿南偏东30°方向走到B 点,再沿南偏东60°方向走到C 点.这时,∠ABC 的度数是()A .120°B .135°C .150°D .160°对应练习1. (2012•荆门)已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )1题图 2题图3题图A . 30°B . 35°C . 40°D . 45°2.(2012•中考)如图,在△ABC 中,∠C =70º,沿图中虚线截去∠C ,则∠1+∠2=【 】 A .360º B .250º C .180º D .140º3.如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为( )A . 50°B . 60°C . 70°D . 80°小结:基本的三角形知识点,大家也要熟记!ACB1 2知识点二:线1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.(3)三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 2、角平分线的性质定理:(1)角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,已知OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA 于点C ,DF ⊥OB 于点D ,则CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; (2)角是一个轴对称图形,它的对称轴是角平分线所在的直线. (3)三角形三条角平分线相交于一点,并且这一点到三边的距离相等.经典例题1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm图22.(2012嘉兴)在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为 .3.如图,在△ABC 中,AB=AC ,∠A=120°,AB 的垂直平分线 MN 分别交BC 、AB 于点M 、N. 求证:CM=2BM.m图1DABC图4CDOAB FE对应练习1、如图,在ΔABC 中,BC=5 cm ,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC,则ΔPDE 的周长是___________ cm. 2.(2012云南)如图,在△ABC 中,∠B=67°,∠C=33°,AD 是△ABC 的角平分线,则∠CAD 的度数为( )3题图A . 40°B . 45°C . 50°D . 55°3.(2012铜仁)如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .9、4.如图所示,AB=AC ,BD=CD ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:DE=DF 。
2012年中考数学精选------函数应用问题 三角形全等

2012年中考数学精选------函数应用问题 三角形全等 (最后的巩固练习)1.Rt ABC ∆的顶点A 是双曲线x ky =与直线)1(++-=k x y 在第四象项的 交点,x AB ⊥轴于B,且23=∆ABO S1) 求这两个函数的解析式2) 求直线与双曲线的两个交点A,C 的坐标和AOC ∆的面积2. A 市有化肥200吨,B 市有化肥300吨.现要把化肥运往C 、D 两农村.已知从 A 市运往C 、D 两地的运费分别为20元/吨与25元/吨,从B 市运往C 、D 两地的 运费分别为15元/吨和23元/吨.现已知C 地需要220吨,D 地需要280吨. 设总的运费为y(元),从A 市运往C 地x(吨).(1)求y 与x 的函数关系式,并求自变量x 的取值范围. (2)怎样调运,总运费最少?3. 当=m 时,函数54)3(12-++=+x x m y m 是一个一次函数. 0,21,3--=m4.有两条直线b ax y l +=11:和5:22+=cx y l ,学生甲解出它们的交点为:)2,3(-, 学生乙因把c 抄错而解出它们的交点为:)41,43(-,试写出这两条直线的函数表达式.1:11+-=x y l 537:22+-=x y l5.矩形ABCD 中,3,2==BC AB ,P 是BC 边上与B,C 不重合的生任意一点,如图设x PA =,D 到PA 的距离为y ,求y 与x 间函数关系式,并求x 的取值范围.6.一个矩形,它的宽比它的长的一半大2,1)求长y 与宽x 的函数关系式; 2)若矩形周长是34,则矩形面积是多少?7.Rt ABC ∆中,D 是三个角平分线的交点,10,8,6===AB BC AC ,则点D 到三边距离是: . ABC ∆中,D 是三个角平分线的交点,,8,6===BC AB AC ,则点D 到三边距离是: .8.如图已知︒=∠=∠90C B ,M 是BC 的中点,DM 平分ADC ∠ 求证:1)AM平分D A B∠ 2)AM DM ⊥9.两根旗杆间相距12米,某人从B 点沿BA 走向A,一定时间后他仰望旗杆的顶点C 和D,两视线的夹角不︒90,且CM=DM,已知旗杆AC 高为 3米,该人运动速 度为5.0米/秒,求这个人运动了多长时间?10. 已知:如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交 DE 于G ,∠ACB=105°,∠CAD =10°,∠D=25°.求∠EAC ,∠DFB ,∠DGB 的度数.答案:∠EAC=60°,∠DFB=85°,∠DGB=60°11.已知反比例函数)0(≠=k xky 和一次函数8+-=x y (1)若一次函数和反比例函数的图象的交于点(4,m ),求m 和k ; (2)k 满足什么条件时,这两个函数图象两个不同的交点; (3)设(2)中的两个交点A 、B ,试判断∠AOB 是锐角还是钝角?12.如图:表示长沙市2003年6月份某一天的气温随时间变化的情况,请观察此图,回答下列问题: (1)这天的最高气温是 度?(2)这天共有 小时的气温在31度以上; (3)这天有 (时间)范围内温度在上升? (4)请你预测一下,次日凌晨1点的气温是多少度? 答: 。
《全等三角形》课件
全等三角形的基本性质
1
全等三角形的所有内角相等
在全等三角形中,所有角度都是相等的。
2
全等三角形的对应边相等
在全等三角形中,对应的边都是相等的。
3
全等三角形的对应高度相等
在全等三角形中,对应的高度(垂直于底边的线段)也是相等的。
全等三角形的应用
全等三角形的概念在几何学和实际生活中具有广泛的应用。 • 在建筑设计中,全等三角形帮助确定平面图中房屋的比例。 • 在地图制作中,全等三角形用于测量和标记距离和方向。 • 在工程中,全等三角形可用于测量物体和地形的高度和间距。
全等三角形的例题
例题1
已知两个三角形的三边分别为AB, AC和BC,DE, DF 和EF。如果AB = DE, AC = DF, BC = EF,则三角形ABC 全等于三角形DEF。
角角边(ASA)判定法
当两个三角形的两个角和一个边以及它们对应 的边相等时,它们就是全等的。
直角边(HL)判定法
当两个直角三角形的一条直角边和它们对应的 斜边相等时,它们就是全等的。
全等三角形的性质
等边三角形
全等三角形的特例,三条边都相等。
等腰三角形
全等三角形的另一个特例,两条边相等。
直角三角形
全等三角形可以是直角三角形。
多边形的全等
全等的概念也可以应用到多边形上。
全等三角形的判定条件
除了通过SSS、ASA、AAS和HL判定法,我们还可以通过侧角边(SAS)和顶角和底边(VERT)来判 定全等三角形。
1 SAS判定法
当两个三角形的一条边和两个非包含边的夹角以及它们对应的边相等时,它们就是全等 的。
中考数学 三角形与全等三角形复习课件 新人教版
A.80°
C.100°
B.90°
D.110°
(3)(2010·广州)在△ABC中,D、E分别是边AB、AC的中点,若BC=5 ,则DE的长是( A.2.5 B .5 ) C.10 D.15
(4)(2010·济宁)若一个三角形三个内角度数的比为2∶3∶4,那么这 个三角形是( )
A.直角三角形
C.钝角三角形
B.锐角三角形
D.等边三角形
(5) (2011·黄冈)如图,△ABC的外角∠ACD的平分线CP与内角 ∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=______.
【点拨】本组题主要考查三角形的有关概念和性质.
【解答】(1)B 由三角形三边关系可得11<x<15,∴满足条件的正 整数x为12,13,14,∴这样的三角形有3个.
(2)一边及该边所对锐角对应相等的两个直角三角形全等;
(3)如果两个直角三角形的斜边及一条 直角边 分别对应相等,那么 这两个直角三角形全等.简记为HL. 3.证明三角形全等的思路
找夹角 (1)已知两边找直角 找另一边 (2)已知一边一角
边为角的对边时,找另一角 找夹角的另一边 边为角的邻边时找夹边的另一角 找边的对角
考点三
全等三角形的概念与性质
1.能够完全重合的两个三角形叫做全等三角形.
2.全等三角形的性质
(1)全等三角形的 对应边 、 对应角 分别相等; (2)全等三角形的对应线段(角平分线、中线、高)相等、周长相等、 面积相等.
考点四
全等三角形的判定
1.一般三角形全等的判定
(1)如果两个三角形的三条边分别对应相等 ,那么这两个三角形全等
个内角的和,三角形的外角大于任何一个和它不相邻的内角.
2012中考全等三角形复习
2012届中考数学备考复习课件
判定两个三角形全等一般可以从三个角度思考:一是看三 边;二是看两边和它们的夹角;三是看两角和一边.
·浙教版
2012届中考数学备考复习课件
► 类型之三 全等三角形开放性问题
命题角度: 1.三角形全等的条件开放性问题 2.三角形全等的结论开放性问题 3.三角形全等的策略开放性问题
·浙教版
2012届中考数学备考复习课件
考点3 三角形全等的判定方法
1.三条边对应相等的两个三角形全等(简记为____S_S_S__); 2.两个角和它们的夹边对应相等的两个三角形全等(简记为 ___A_S__A__); 3.两个角和其中一个角的对边对应相等的两个三角形全等(简 记为___A__A_S__); 4.两条边和它们的夹角对应相等的两个三角形全等(简记为 ___S_A__S__); 5.斜边和一条直角边对应相等的两个直角三角形全等(简记为 ____H_L___).
[2010·金华] 如图 20-3,在△ABC 中,点 D 是 BC 边上的点 (不与点 B,C 重合),点 F,E 分别是 AD 及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF(不再添加其他线段,不再标注或
·浙教版
2012届中考数学备考复习课件
使用其他字母),并给出证明. (1)你添加的条件是:_F_D_=_E_D___; (2)证明:
·浙教版
2012届中考数学备考复习课件
考点4 尺规作图
1.基本尺规作图:作角的平分线,作线段的垂直平分线,作 一角等于已知角.
2.按给定条件,如“边边边”、“边角边”、“角边角”作 三角形.► 类型之一 探索三角形全等的条件
命题角度: 1.利用三角形全等的判定方法探索三角形全等的条件 2.利用全等三角形性质求线段的长度 3.利用全等三角形性质证明角或线段相等
全等三角形》讲义(完整版)
全等三角形》讲义(完整版)全等三角形讲义全等三角形定义:若两个三角形形状大小相同,能够完全重合,则它们是全等形三角形。
对应顶点、对应边、对应角均重合。
全等三角形的性质是对应边相等,对应角相等。
全等三角形判定定理:1.边边边定理(SSS):若两个三角形的三条边对应相等,则它们是全等三角形。
2.边角边定理(SAS):若两个三角形的一条边和它们的夹角对应相等,且另一条边对应相等,则它们是全等三角形。
3.角边角定理(ASA):若两个三角形的两个角和它们的夹边对应相等,则它们是全等三角形。
4.角角边定理(AAS):若两个三角形的两个角和其中一个角的对边对应相等,则它们是全等三角形。
5.斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则它们是全等三角形。
角平分线的性质:在角平分线上的点到角的两边的距离相等。
角平分线的判定:到角的两边距离相等的点在角的平分线上。
三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。
典型例题举例:1.已知△ABN≌△ACM,对应角为∠B和∠C,对应边为AB和AC。
2.已知AB=AC,AD是连结点A与BC中点D的支架,求证△ABD≌△ACD。
3.已知点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF,求证△ABE≌△CDF。
4.在△ABC中,D在AB上,E在AC上,AB=AC,∠B =∠C,求证AD=AE。
5.已知∠1=∠2,∠3=∠4,求证AC=AD,其中D是线段BC上的一点,且BD=DC。
6.在图中,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,判断AB是否平行于CD,说明理由。
7.在图1中,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,判断△ABC与△AEG 面积之间的关系,并说明理由。
8.在图中,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF,求证DF=EF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4-2-5
(1)证明:∵点C是线段AB的中点 ∴AC=BC 又∵CD平分∠ACE,CE平分∠BCD ∴∠1=∠2,∠2=∠3 ∴∠1=∠3 CD=CE 在△ACD和△BCE中,∠1=∠3 AC=BC ∴△ACD≌△BCE (2)解:∵∠1+∠2+∠3=180° ∴∠1=∠2=∠3=60° ∵△ACD≌△BCE ∴∠E=∠D=50° ∴∠B=180°-∠E-∠3=70°
4.如图4-2-10,△AOB中,∠B=30°,将△AOB 绕点O顺时针旋转52°得到△A′OB′,边A′B′与OB交于点C(A′ 不在OB上),则∠A′CO的度数为( A.22° C.60° B.52° D.82° ) D
图4-2-10 解析:△AOB绕点O顺时针旋转52°得到△A′OB′,则 ∠BOB′=52°,又因为∠B=30°,所以∠B′=30°,又因 为∠A′CO为△OCB′的一个外角,则∠A′CO=∠COB′+∠B′ =52°+30°=82°,故选D.
【例4】如图4-2-8,CE⊥AB,BF⊥AC,BF交CE于 D点,且BD=CD,判断点D是否在∠BAC的平分线上,并 说明理由.
图4-2-8 思路分析:题目中CE⊥AB,BF⊥AC,所以要想证明 点D在∠BAC的平分线上,只需证明DF=DE,利用到角两 边的距离相等的点在角的平分线上即可,问题的关键就在 证明DF=DE,根据题意中的条件证明三角形全等即可.
【例2】如图4-2-6,已知△ABC中,∠A=40°,剪 去∠A后成四边形,则∠1+∠2=________. 思路分析:由三角形外角的 性质可知∠1=∠4+∠A,∠2= ∠3+∠A,所以∠1+∠2=(∠3 +∠4+∠A)+∠A,由三角形内 角和定理可知∠3+∠4+∠A= 180°,所以∠1+∠2=180°+ 40°=220°. 答案:220° 图4-2-6
2讲 第2讲 三角形和全等三角形
了 解
①三角形的有关概念,如内角、外角、边、 角平分线、高、中线;②全等三角形的定义. ①三角形的稳定性;②三角形的内心、重心、 垂心. ①三角形的三边关系;②三角形的内角和定 理及其推论. 全等三角形的判定与性质.
理 解 掌 握 熟练 掌握
Байду номын сангаас
一、概念
直角三角形 锐角三角形 1.分类:三角形(按角分) 1.分类:三角形(按角分) 斜三角形钝角三角形 不等边三角形 底边不等于腰的等腰三角形 三角形(按边分) 等腰三角形 底边等于腰的等腰 三角形(等边三角形)
5.如图4-2-11,∠ABC=50°,AD垂直平分线段B C于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠A EC的度数是________. 115°
图4-2-11
1 1 解析:∵BE 为∠ABC 的平分线,∴∠EBC=2∠ABC=2 ×50°=25°,又∵AD⊥BC,∴∠ADB=90°,∴∠AEB=∠EBC +∠ADB=115°,连接 AC,可证△ABE≌△ACE,∴∠AEC= ∠AEB=115°.
3.下列判断中错误的是 (B ) A.有两角和一边对应相等的两个三角形全等 B.有两边和一角对应相等的两个三角形全等 C.有两边和其中一边上的中线对应相等的两个三角形 全等 D.有一边对应相等的两个等边三角形全等 解析:有两边和一角对应相等包括两类:边角边和边 边角,而边边角不能判定两个三角形全等.
3.全等三角形的判定:(1)三边对应________的两个三 相等 SSS 边边边 角形全等(可以简写成“________”或“________”); 夹角 (2)两边和它们的________对应相等的两个三角形全等 (可以简写成“________”或“________”); 边角边 SAS 夹边 (3)两角和它们的________对应相等的两个三角形相等 (可以简写成“________”或“________”); 角边角 ASA 对边 (4)两个角和其中一个角的________对应相等的两个三 角形全等(可以简写成“________”或“________”); 角角边 AAS 直角边 (5)斜边和一条________对应相等的两个直角三角形全 直角边和斜边 HL 等(可以简写成“________________”或“________”).
思路分析:因为D、E、F分别是AB、BC、CA的中点, 1 1 1 所以DF= BC,EF= AB,DE= AC,即△DEF的周长是 2 2 2 △ABC的周长的一半,为5cm.
答案:5
(1)全等三角形的判定定理一般有SAS、ASA、AAS、S SS四种,对于直角三角形来讲,还有HL一种特殊情况,不 论是哪一种判定方法,必须有“至少一组对应边相等”这 一条件;另外,当只有一组对应角相等时,这组对应角必 须是“夹角”,也就是说,“SSA”是不能判定两个三角形 全等的; (2)全等三角形的对应边相等,对应角相等,对应线段 (角平分线、中线、高)相等,周长、面积相等.
2.三角形的四条重要线段: (1)角平分线:三角形的一个角的平分线与这个角的对 交点 这个角的顶点 边相交,________与______________之间的线段; 顶点 中点 (2)中线:连接三角形的一个______与它对边的______ 的线段; (3)高:从三角形的一个顶点向它的对边(或延长线)引 垂线,________和________之间的线段; 顶点 垂足 中点 (4)中位线:连接三角形两边__________的线段.
友情提示 (1)三角形的角平分线、中线、高线都是线段:一个三 角形的角平分线、中线、高线各有三条,并且各自交于一 点,分别称为内心、重心、垂心; (2)三角形的角平分线、中线都在其内部,而高线可以 在内部(锐角三角形),可以在外部(钝角三角形),也可以在 三角形的边上(直角三角形).
二、三角形的性质 大于 1.三边关系:三角形任意两边之和________第三边, 小于 两边之差________第三边. 2.内角和定理及推论:(1)三角形的内角和等于______ 180° __,外角和等于________; 360° 两个内角 (2)三角形的一个外角等于与它不相邻的________的和; (3)三角形的一个外角________任何一个与它不相邻的 内角. 大于
∠A=∠F ∠ACB=∠FEC BC=CE ∴△ABC≌△FCE ∴AB=FC
1.三角形的确定:如果已知线段a最大,只要满足b+c> a就可判定a、b、c三条线段能够构成三角形.同时如果已 知线段a最小,只要满足|b-c|<a,就能判定三条线段a、b、 c构成三角形. 2.全等三角形的运用 (1)在写两个三角形全等时,一定把对应的顶点、角、 边的顺序写一致,为找对应边、角提供方便. (2)当图中出现两个以上等边三角形时,应首先考虑用S AS找全等三角形. 3.全等三角形做题技巧一般来说考试中证明线段和角相 等需要证明三角形全等,因此我们可以采取逆向思维的方 式.想要证全等,则需要什么(AAS/ASA/SAS/SSS/HL).
友情提示 (1)判定两个三角形全等时,必须有边对应相等,若有 两边和一角对应相等,角必须是两边的夹角,“边边角” 和“三角”对应相等不能判定两个三角形全等; (2)对任意两个三角形全等判定的方法有:SAS、ASA、 AAS、SSS四种,HL只适用于直角三角形的判定.
1.设一个三角形的三边长分别是3,1-2m,8,则m的取值 范围是 ( B ) 1 A.0<m< 2 C.-2<m<-5 B.-5<m<-2 7 D.- <m<-1 2
解:点D在∠BAC的平分线上 理由如下: 在△DBE和△DCF中 ∠BED=∠CFD=90°(垂直的定义) ∠BDE=∠CDF(对顶角相等) BD=CD(已知)
∴△DBE≌△DCF(AAS), ∴DE=DF(全等三角形的对应边相等). 又∵CE⊥AB,BF⊥AC(已知), ∴点D在∠BAC的平分线上(到角的两边的距离相等的 点在角的平分线上).
思路分析:根据三角形任意两边之和大于第三边,能 组成三角形的有4cm,6cm,8cm;4cm,8cm,10cm;6cm,8cm,10 cm,故选C. 答案:C
三角形的内角和为180°,外角和为360°,三角形的 外角等于和它不相邻的两个内角的和,三角形的外角大于 任何一个与它不相邻的内角,应用时常常利用整体观点, 把所求的角集中到某一个三角形中,或与三角形的内角建 立联系来解决问题,中考常以选择题,填空题的形式出 现.
5.如图4-2-4,点D、B、C在同一直线上,∠A= 60°,∠C=50°,∠D=25°,则∠E=________度. 45
图4-2-4 解析:由三角形内角和为180°,可求得∠ABC=70°, 又由三角形的一个外角等于与它不相邻的两内角之和,可 得∠E=∠ABC-∠D=70°-25°=45°.
6.(2010·苏州)如图4-2-5,C是线段AB的中点,CD 平分∠ACE,CE平分∠BCD,CD=CE. (1)求证:△ACD≌BCE; (2)若∠D=50°,求∠B的度数.
1.下列长度的三根木棒首尾相接,不能做成三角形框 架的是 (C ) A.5cm 7cm 10cm C.5cm 7cm 13cm B.7cm 10cm 13cm D.5cm 10cm 13cm
2.(2010·福州)下面四个图形中(如图4-2-9),能判 断∠1>∠2的是 ( D )
图4-2-9 解析:A项,∠1=∠2;B项,无法判断;C项,∠2> ∠1;根据三角形外角与内角的关系知D项正确.
解析:由三角形的三边关系定理,知8-3<1-2m<8+3, 解得-5<m<-2.
2.如图4-2-1,在△ABC中,D、E分别是AB、AC的 中点,已知BC=8,则DE的长是 ( C )
图4-2-1
A.3
B.5
C.4
D.6
1 解析:由三角形中位线性质,知 DE= BC. 2
3.如图4-2-2,△ABC和△DEF中已有条件AB=DE, 还需添加两个条件才能使△ABC≌△DEF,不能添加的一组 条件是 ( D ) A.∠B=∠E,BC=EF B.BC=EF,AC=DF C.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF 图4-2-2