2012年广州普通高中毕业班综合测试(二)数学理科含答案
2012广州一模数学理试卷

数学(理科)试题A 第 1 页 共 4 页试卷类型:A.2012年 广州市 普通高中毕业班 综合测试(一)数学(理科)2012.3注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R,函数y =A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定数学(理科)试题A 第 2 页 共 4 页5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 正(主)视图侧(左)视图数学(理科)试题A 第 3 页 共 4 页(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5PACD图3数学(理科)试题A 第 4 页 共 4 页19.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).·5·2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14.15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫ ⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭ (1)分tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分2==-…4分(2)解:因为·6·3tan 3444f ααπππ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分()tan α=+π……………………………………………………………………6分tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ② 由①、②解得21cos 5α=.………………………………………………………………………………9分因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos α=,sin α=10分所以cos 4απ⎛⎫- ⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分⎛== ⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分解得3a =................................................................................................................2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =. (3)分所以乙组四名同学数学成绩的方差为·7·()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分6817164==.…………………………………………………………………………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥. 因为AB BC ==4=AC ,所以BE ===……………………………………10分3分因为PD⊥AC,所以△PCD为直角三角形.因为PD=,3CD=,所以PC===4分连接BD,在Rt△BDE中,因为BE,1DE=,所以BD===.…………5分因为PD⊥平面ABC,BD⊂平面ABC,所以PD⊥BD.在Rt△PBD中,因为PD,BD=,所以PB=6分在PBC∆中,因为BC=,PB=PC=所以222BC PB PC+=.所以P∆为直角三角形.………………………………………………………………………………7分证明2:因为平面⊥PAC平面ABC,平面PAC I平面ABC AC=,PD⊂平面PAC,ACPD⊥,所以PD⊥平面ABC.…………………………………………………………………………………1分记AC边上的中点为E,在△ABC中,因为AB BC=,所以ACBE⊥.因为AB BC==4=AC,所以BE===………………3分连接BD,在Rt△BDE中,因为90BED∠=o,BE=,1DE=,所以B D=+4分在△BCD中,因为3CD=,BC=BD=,所以222BC BD CD+=,所以BC BD⊥.……………………………………………………………5分因为PD⊥平面ABC,BC⊂平面ABC,所以BC PD⊥.…………………………………………………………………………………………BPA CDE·8··9·因为BD PD D = ,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以P ∆为直角三角形.………………………………………………………………………………7分(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,则APH ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC的面积12ABC S AC BE ∆=⨯⨯=.…………………………………………9分因为PD =,所以13P ABC ABC V S PD -∆=⨯⨯13=⨯=…………………………10分由(1)知PBC ∆为直角三角形,BC =PB =所以△PBC的面积11322PBC S BC PB ∆=⨯⨯==.……………………………………11分因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=,即1333AH ⨯⨯=所以3AH =.……………………………………………………………12分在Rt △PAD中,因为PD ,1AD =,所以2AP ==.………………………………………………………13分因为3sin 2AH APH AP ∠=== 所以直线AP 与平面PBC14分解法2:过点D 作DM AP ∥,设DM PC M = ,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………PM·10·由(1)知BC PD ⊥,BC PB ⊥,且PD PB P = , 所以BC ⊥平面PBD . 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN , 则DN ⊥平面PBC .所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt △PAD中,因为PD ,1AD =,所以2AP ==.………………………………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分由(1)知BD=,PB=PD =,所以PD BD DN PB ⨯===.……………………………………………………………13分因为2sin 332DN DMN DE ∠===, 所以直线AP 与平面PBC 14分解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG 中,PB BG BC == 所以90CPG ∠=o,即CP PG ⊥.在△PAC 中,因为PC =2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,BP ACDEGK所以CP ⊥平面PAG .…………………………………………………………………………………9分过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分由(1)知,BC PB ⊥,所以PG PC ==.在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以2AG BE ==12分在△PAG 中,2PA =,AG =PG =所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分因为sin 3AG APK PG ∠===. 所以直线AP 与平面PBC14分解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分则()0,2,0A -,)B,()0,2,0C,(0,P -.于是(AP =,PB =,(0,3,PC =设平面PBC 的法向量为(),,x y z =n ,A则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,30.y y +==⎪⎩取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n . 所以直线AP 与平面PBC所成角的正弦值为314分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,1分 则)B,()0,2,0C ,(0,P -.于是(BP =- ,()2,0BC =.因为(()0BP BC =-=,所以BP BC ⊥ .所以BP BC ⊥.所以P ∆为直角三角形.………………………………………………………………………………7分 (2)由(1)可得,()0,2,0A -.于是(AP = ,PB =,(0,3,PC =.A设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,30.y y +-==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则sin cos AP AP AP θ⋅=<>===⋅n ,n n . 所以直线AP 与平面PBC14分 19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以21122112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,=,即2b =.所以双曲线C的方程为2214y x -=.……………………………………………………………………3分(2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.…………………………………………………………6分同理可得,21244k x k+=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分 整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分(3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤ ,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--. (11)分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t t f t =--,则()()()222241t t f t t t -+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x =()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力) (1)证明:设11()()()1x x f x g x e x ϕ=-=--,所以1()x x e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥, 所以()f x 1()g x ≥.………………………………………………………………………………………3分(2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:(资料来源:中国高考吧 )①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分(3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <. 所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立. (10)分以下分别用数学归纳法和基本不等式法证明不等式(*): 方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222kk k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C 2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分方法2(基本不等式法):12n +,……………………………………………………………………………………11分12n +,……,12n +, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分。
2012年广东省广州市普通高中毕业班综合测试理科数学试题广州一测及参考答案

数学(理科)试题A 第 1 页 共 4 页试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++=.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为( )A.2-B.1-C.0D.2 2.已知全集U =R ,函数y =A ,函数()2log 2y x =+的定义域为集合B ,则集合()UA B =ð( )A.()2,1--B.(]2,1--C.(),2-∞-D.()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为( ) A.3 B.6 C.12 D.244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是( )A.相离B.相切C.相交D.不确定数学(理科)试题A 第 2 页 共 4 页5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为( )A.8-B.6-C.8D.67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为( )A.252B.216C.72D.42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n =.512122图2图1 俯视图正(主)视图侧(左)视图数学(理科)试题A 第 3 页 共 4 页(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中 的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示. 已知甲、乙两个小组的数学成绩的平均分相同. (1)求a 的值;(2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.)18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4甲组 乙组 89 7a 3 57 9 66 图5PACD图3数学(理科)试题A 第 4 页 共 4 页19.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分 2==-………………………………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分()tan α=+π……………………………………………………………………6分tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ②由①、②解得21cos 5α=.………………………………………………………………………………9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos α=,sin α=…………………………………………10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分525210⎛⎫=-+-⨯=- ⎪ ⎪⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分 解得3a =.…………………………………………………………………………………………………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分这两名同学成绩之差的绝对值X 的所有情况如下表:所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分 6817164==.…………………………………………………………………………………………12分 ……………………10分18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分 记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥.因为AB BC ==4=AC ,所以BE ===………………3分因为PD ⊥AC ,所以△PCD 为直角三角形. 因为PD =,3CD =, 所以PC ===………4分连接BD ,在Rt △BDE中,因为BE =,1DE=,所以BD ===…………5分因为PD ⊥平面ABC ,BD ⊂平面ABC ,所以PD ⊥BD . 在Rt △PBD中,因为PD=,BD =, 所以PB ===.…………………………………………………6分在PBC ∆中,因为BCPB =PC =所以222BC PB PC +=.所以PBC ∆为直角三角形.………………………………………………………………………………7分 证明2:因为平面⊥PAC 平面ABC ,平面PAC I 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥, 所以PD ⊥平面ABC .…………………………………………………………………………………1分 记AC 边上的中点为E ,在△ABC 中,因为ABBC =,所以AC BE ⊥. 因为ABBC ==4=AC ,所以BE ===………………3分连接BD ,在Rt △BDE 中,因为90BED ∠=o,BE =,1DE =,所以BD ===………………………………………………………4分在△BCD 中,因为3CD =,BC =BD =,所以222BC BD CD +=,所以BC BD ⊥.……………………………………………………………5分因为PD ⊥平面ABC ,BC ⊂平面ABC ,所以BC PD ⊥.…………………………………………………………………………………………6分 因为BD PD D =,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分BPACDE(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,则APH ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC的面积12ABC S AC BE ∆=⨯⨯=…………………………………………9分因为PD =,所以13P ABC ABC V S PD -∆=⨯⨯13=⨯=…………………………10分 由(1)知PBC ∆为直角三角形,BC =,PB =所以△PBC的面积11322PBC S BC PB ∆=⨯⨯==.……………………………………11分 因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=,即1333AH ⨯⨯=所以3AH =.……………………………………………………………12分 在Rt △PAD 中,因为PD ,1AD =,所以2AP ===.………………………………………………………13分因为3sin 2AH APH AP ∠===所以直线AP 与平面PBC …………………………………………………14分 解法2:过点D 作DM AP ∥,设DMPC M =,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,BC PB ⊥,且PD PB P =,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN ,则DN ⊥平面PBC . 所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt △PAD中,因为PD ,1AD =, 所以2AP ===.………………………………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分由(1)知BD=PB =且PD =,所以PD BD DN PB ⨯===……………………………………………………………13分 BP A CDM N因为2sin 32DN DMN DE ∠===所以直线AP 与平面PBC…………………………………………………14分 解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG 中,PB BG BC ===所以90CPG ∠=o,即CP PG ⊥.在△PAC 中,因为PC =2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,所以CP ⊥平面PAG .…………………………………………………………………………………9分 过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分 由(1)知,BC PB ⊥,所以PG PC ==.在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以2AG BE ==………………………………………………………………………………12分 在△PAG 中,2PA =,AG =PG =所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分因为sin AG APK PG ∠===. 所以直线AP 与平面PBC所成角的正弦值为3.…………………………………………………14分 解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分BPACDEGK则()0,2,0A -,)B,()0,2,0C,(0,P -.于是(AP =,(2,1,PB =,(0,3,PC =.设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.y y +==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n. 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -, (1)分则)B,()0,2,0C ,(0,P -.于是(BP =-,()2,0BC =. 因为()()2,1,32,2,00BP BC =---=,所以BP BC ⊥.所以BP BC⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分 (2)由(1)可得,()0,2,0A -. 于是(AP =,(2,1,PB =,(0,3,PC =.设平面PBC 的法向量为(),,x y z =n ,AA则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.y y +==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC所成的角为θ,则sin cos AP AP AP θ⋅=<>===⋅n ,n n. 所以直线AP 与平面PBC …………………………………………………14分19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分 所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭ 111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,=即2b =.所以双曲线C 的方程为2214y x -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.…………………………………………………………6分同理可得,21244k x k +=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分 因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =---,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t t f t =--,则()()()222241t t f t t t -+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x =,()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力) (1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.………………………………………………………………………………………3分(2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分 令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++. 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*): 方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立. ……………………………………14分方法2(基本不等式法):12n +≤,……………………………………………………………………………………11分 12n +≤, ……,12n +≤, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立. ……………………………………14分。
广东省广州市高三毕业班综合测试(二,文数,全word含答案)

图1895x 061162y 116987乙甲 试卷类型:A2012年广州市普通高中毕业班综合测试(二)数 学(文科)2012.4本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A 满足{}1,2A ⊆,则集合A 的个数为A .4B .3C .2D .1 2.已知i 为虚数单位,复数1z a =+i ,22z =-i ,且12z z =,则实数a 的值为 A .2 B .2- C .2或2- D .±2或03.已知双曲线221y x m-=的虚轴长是实轴长的2倍,则实数m 的值是 A .4 B .14 C .14- D .4- 4.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图1,其中甲班学生的 平均分是85,乙班学生成绩的中位数是83,则x +y 的值为A .7B .8C .9D .10图3BA5.已知向量()()3,4,6,3,OA OB =-=-u u u r u u u r ,(),1OC m m =+u u u r,若//AB OC u u u r u u u r ,则实数m 的值为 A .32-B .14-C .12D .326.已知函数()f x =e x -e 1x -+ (e 是自然对数的底数),若()2f a =,则()f a -的 值为A .1--eB .-eC .eD . 1+e7. 已知两条不同直线m 、l ,两个不同平面α、β,在下列条件中,可得出αβ⊥的是 A .m l ⊥,//l α,//l β B .m l ⊥,l αβ=I ,m α⊂ C .//m l ,l β⊥,m α⊂ D .//m l ,m α⊥,l β⊥ 8.下列说法正确的是 A .函数()1f x x=在其定义域上是减函数 B .两个三角形全等是这两个三角形面积相等的必要条件C .命题“x ∃∈R ,210x x ++>”的否定是“x ∀∈R ,210x x ++<D .给定命题p 、q ,若p q ∧是真命题,则p ⌝是假命题9.阅读图2的程序框图, 该程序运行后输出的k 的值为 A. 9 B. 10 C. 11 D. 12 10. 已知实数,a b 满足22430a b a +-+=,函数()sin cos 1f x a x b x =++的最大值记为(),a b ϕ, 则(),a b ϕ的最小值为A .1B .2C 1D .3二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.不等式2230x x +-<的解集是 . 12.如图3,,A B 两点之间有4条网线连接,每条网线能通过的最大信息量分别为1,2,3,4.从中任取两条网线,则这两条 网线通过的最大信息量之和为5的概率是 .图4A13.已知点P 是直角坐标平面xOy上的一个动点,OP =O 为坐标原点), 点()1,0M -,则cos OPM ∠的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,若等边三角形(ABC 顶点A ,,B C 按顺时 针方向排列)的顶点,A B 的极坐标分别为72,,2,66ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则顶点C 的极坐标 为 .15.(几何证明选讲选做题)如图4,AB 是圆O 的直径,延长AB 至C , 使2BC OB =,CD 是圆O 的切线,切点为D ,连接AD ,则ADBD的值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分)已知函数()()()cos sin cos sin f x x x x x =+-. (1)求函数()f x 的最小正周期; (2)若0,022ππαβ<<<<,且12,2323f f αβ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,求()sin αβ-的值.17.(本小题满分12分)某工厂欲将这三种食物混合成100kg 的混合食物,设所用食物甲、乙、丙的重量分别为x kg 、y kg 、z kg. (1) 试以x 、y 表示混合食物的成本P ;(2)若混合食物至少需含35000单位维生素C 及40000单位维生素D ,问x 、y 、z 取什么值时,混合食物的成本最少?图5NM DC BA B 1C 1D 1A1图6侧(左)视图正(主)视图18. (本小题满分14分)某建筑物的上半部分是多面体MN ABCD -, 下半部分是长方体1111ABCD A B C D -(如 图5). 该建筑物的正(主)视图和侧(左)视图如图6, 其中正(主)视图由正方形和等 腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成. (1)求线段AM 的长;(2)证明:平面ABNM ⊥平面CDMN ; (3)求该建筑物的体积.19.(本小题满分14分)已知对称中心为坐标原点的椭圆1C 与抛物线22:4C x y =有一个相同的焦点1F ,直线:2l y x m =+与抛物线2C 只有一个公共点. (1)求直线l 的方程;(2)若椭圆1C 经过直线l 上的点P ,当椭圆1C 的长轴长取得最小值时,求椭圆1C 的方程及点P 的坐标.20.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,对任意n ∈N *,都有0n a >且()()122n n n a a S -+=,令1ln ln n n na b a +=. (1)求数列{}n a 的通项公式;(2)使乘积12k b b b ••⋅⋅⋅•为整数的(k k ∈N *)叫“龙数”,求区间[]1,2012内的所有“龙数”之和;(3)判断n b 与1n b +的大小关系,并说明理由.21.(本小题满分14分) 已知函数()21ln 2f x x ax x =-+,a ∈R . (1)求函数()f x 的单调区间;(2)是否存在实数a ,使得函数()f x 的极值大于0?若存在,求a 的取值范围;若不存在,说明理由.2012年广州市普通高中毕业班综合测试(二)数学(文科)参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几 种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答 未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题, 每小题5分,满分20分,其中14~15题是选做题,考生只能选做一题.11.(-3,1) 12.3113.]1,22[ 14.)32,32(π 15.2 说明:第14题答案可以是))(23232(Z k k ∈+ππ,三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、二倍角的余弦、同角三角函数关系、两角差的正 弦等知识,考查化归与转化的数学思想方法和运算求解能力) (1)解:)sin )(cos sin (cos )(x x x x x f -+=Θx x 22sin cos -= ……………2分x 2cos =. ……4分∴函数f(x)的最小正周期为ππ==22T . ……………6分 (2)解:由(1)得x x f 2cos )(=.32)2(,31)2(==βαf f Θ,32cos ,31cos ==∴βα. ………8分20,20πβπα<<<<Θ。
【新结构】(广州二模)2024年广州市普通高中毕业班综合测试(二)数学试卷+答案解析

【新结构】(广州二模)2024年广州市普通高中毕业班综合测试(二)数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.已知一批沙糖桔的果实横径单位:服从正态分布,其中果实横径落在的沙糖桔为优质品,则这批沙糖桔的优质品率约为()若,则,A. B. C. D.3.某学校安排4位教师在星期一至星期五值班,每天只安排1位教师,每位教师至少值班1天,至多值班2天且这2天相连,则不同的安排方法共有()A.24种B.48种C.60种D.96种4.某次考试后,甲、乙、丙、丁四位同学讨论其中一道考题,各自陈述如下,甲说:我做错了;乙说:甲做对了;丙说:我做错了;丁说:我和乙中有人做对.已知四人中只有一位同学的解答是正确的,且只有一位同学的陈述是正确的,则解正确的同学是()A.甲B.乙C.丙D.丁5.已知,,是三个不重合的平面,且,,则下列命题正确的是()A.若,,则B.若,则C.若,,则D.若,则6.若是方程的实数解,则称是函数与的“复合稳定点”.若函数且与有且仅有两个不同的“复合稳定点”,则a的取值范围为()A. B. C. D.7.已知函数的部分图像如图所示,若将函数的图像向右平移个单位后所得曲线关于y 轴对称,则的最小值为()A.B.C.D.8.已知函数的定义域为R ,且,,则()A.1B.2C.3D.4二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知函数,则()A.的定义域为B.的图像在处的切线斜率为C. D.有两个零点,,且10.在梯形ABCD 中,,,,,,则()A. B.C.D.11.已知双曲线的左右焦点分别为,,左顶点为,点P 是C 的右支上一点,则()A.的最小值为8B.若直线与C 交于另一点Q ,则的最小值为6C.为定值D.若I 为的内心,则为定值三、填空题:本题共3小题,每小题5分,共15分。
2012年广州市普通高中毕业班综合测试(二)数学文科评分标准及参考答案

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
广东省广州市2024届普通高中毕业班综合测试(二)广州二模数学试卷

【新结构】(广州二模)2024年广州市普通高中毕业班综合测试(二)数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合{}{}0,2,4,12A B x x ==∈-≥Z ,则()A B ⋂=Zð()A.{}2 B.{}0,2 C.{}0,1,2 D.{}0,1,2,4【答案】B 【解析】【分析】求出B 中不等式的解集,找出解集中的整数解,确定出B Z ð即可得出答案.【详解】由12x -≥解得,1x ≤-或3x ≥,即{}13B x x x =∈≤-≥Z 或,{}{}130,1,2B x x =∈-<<=Z Z ð{}0,2,4A = ,(){}0,2A B ∴=Z ð.故选:B .2.已知一批沙糖桔的果实横径(单位:mm )服从正态分布()245,5N ,其中果实横径落在[]40,55的沙糖桔为优质品,则这批沙糖桔的优质品率约为()(若()2,X N μσ~,则()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈)A.0.6827B.0.8186C.0.8413D.0.9545【答案】B 【解析】【分析】根据正态分布三段区间的概率值以及正态分布的性质求解即可.【详解】因为所种植沙糖桔的果实横径(单位:mm )服从正态分布()245,5N ,其中45,5μσ==,所以果实横径在[]40,55的概率为()2P X μσμσ-≤≤+()()112222P X P X μσμσμσμσ=-≤≤++-≤≤+0.477250.341350.8186≈+=.故选:B .3.某学校安排4位教师在星期一至星期五值班,每天只安排1位教师,每位教师至少值班1天,至多值班2天且这2天相连,则不同的安排方法共有()A.24种 B.48种C.60种D.96种【答案】D 【解析】【分析】由2天相连的情况有4种,利用排列数即可求解.【详解】由题意,从星期一至星期五值,2天相连的情况有4种,则不同的安排方法共有444A 96=种.故选:D4.某次考试后,甲、乙、丙、丁四位同学讨论其中一道考题,各自陈述如下,甲说:我做错了;乙说:甲做对了;丙说:我做错了;丁说:我和乙中有人做对.已知四人中只有一位同学的解答是正确的,且只有一位同学的陈述是正确的,则解正确的同学是()A.甲 B.乙C.丙D.丁【答案】C 【解析】【分析】分别假设甲、乙、丙、丁做对,结合题意分析推理,利用矛盾律得出结论.【详解】若甲做对了,则甲说错了,乙说对,丙也说对了,2人说对了,不满足条件;若乙做对了,则甲说对了,乙说错误,丙也说对了,2人说对了,不满足条件;若丙做对了,则甲说对了,乙说错了,丙也说错了,其中只有甲1人说对了,满足条件;若丁做对了,则丁、甲、丙都说对了,不满足条件;故做对的是丙,说对的是甲.故选:C.5.已知,,αβγ是三个不重合的平面,且,l m αγβγ== ,则下列命题正确的是()A.若,αγβγ⊥⊥,则lm B.若l m ,则αβ∥C.若,αβγβ⊥⊥,则l m ⊥ D.若l m ⊥,则αβ⊥【答案】C 【解析】【分析】根据空间中线面位置关系的性质定理和判定定理可判断各选项的正误.【详解】若,αγβγ⊥⊥,则l m 或l 与m 相交,故A 错误;若lm ,则αβ∥或α与β相交,故B 错误;若,αβγβ⊥⊥,则l m ⊥,故C 正确;若l m ⊥,则α与β相交,不一定是垂直,故D 错误.故选:C .6.若0x 是方程()()()()f g x g f x =的实数解,则称0x 是函数()y f x =与()y g x =的“复合稳定点”.若函数()(0xf x a a =>且1)a ≠与()22g x x =-有且仅有两个不同的“复合稳定点”,则a 的取值范围为()A.0,2⎛⎫⎪ ⎪⎝⎭B.2,12⎛⎫⎪⎪⎝⎭C.(D.)+∞【答案】D 【解析】【分析】2222x x a a -=-即()222220xx a a a a -+=有两个不同实根,令x t a =,则222220t a t a -+=在()0,∞+上有两个不同实根,利用二次方程根的分布即可.【详解】()(0xf x a a => 且1)a ≠与()22g x x =-有且仅有两个不同的“复合稳定点”,2222x x a a -∴=-,即()222220x x a a a a -+=有两个不同实根,令x t a =,则222220t a t a -+=在()0,∞+上有两个不同实根,()22222Δ280220a a a a a ⎧=->⎪∴⇒>⇒>⎨>⎪⎩则a的取值范围为)∞+.故选:D .7.已知函数π())(0,||2f x x ωϕωϕ=+><的部分图象如图所示,若将函数()f x 的图象向右平移(0)θθ>个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A 【解析】【分析】根据给定的图象特征,结合五点法作图列式求出ω和ϕ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由π()14f =,得π2sin()42ωϕ+=,又点π(,1)4及附近点从左到右是上升的,则ππ2π,Z 44k k ωϕ+=+∈,由5π(08f =,点5π(,0)8及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5ππ2π,Z 8k k ωϕ+=+∈,联立解得2ω=,π2π,Z 4k k ϕ=-+∈,而π||2ϕ<,于是π4ϕ=-,π()2sin(2)4f x x =-,若将函数()f x 的图像向右平移(0)θθ>个单位后,得到πsin(22)4y x θ=--,则ππ2π,Z 42k k θ--=-∈,而0θ>,因此3ππ,N 82k k θ=-+∈,所以当1k =时,θ取得最小值为π8.故选:A8.已知函数()f x 的定义域为R ,且()()()()11,02f x f x f x f ++-==,则()()2024f f +=()A.1B.2C.3D.4【答案】A 【解析】【分析】根据题意分析可知()f x 为偶函数,结合偶函数可得()()210f x f x ++-=,进而可知6为()f x 的周期,赋值可知()21f =-,结合周期性运算求解.【详解】由题意可知:函数()f x 的定义域为R ,因为()()()11f x f x f x ++-=,则()()()11f x f x f x -++=-,可得()()=f x f x -,所以()f x 为偶函数,由()()()11f x f x f x ++-=可得()()()21f x f x f x ++-=+,即()()()21f x f x f x ++=+,整理得()()210f x f x ++-=,可得()()()()330f x f x f x f x ++-=++=,则()()630f x f x +++=,可得()()6f x f x +=,所以6为()f x 的周期,由()()()()11,02f x f x f x f ++-==,令0x =,可得()()()1201f f f +==,可得()11f =;令1x =,可得()()()2011f f f +==,可得()21f =-;所以()()()()202420121f f f f +=+=-+=.故选:A .【点睛】方法点睛:函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.已知函数()1ln 1x f x x x +=--,则()A.()f x 的定义域为()0,∞+B.()f x 的图像在()()22f ,处的切线斜率为52C.()01f f x x ⎛⎫+⎪⎝⎭= D.()f x 有两个零点12,x x ,且121=x x 【答案】BCD 【解析】【分析】根据题意直接求出x 的范围即可判断A ;求出导函数,进而求得()2f '即可判断B ;求得1f x ⎛⎫ ⎪⎝⎭即可判断C ;易知()f x 的单调性,结合零点存在定理及C 即可判断D .。
2012年广州市普通高中毕业班综合测试(理科)(一)
试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++=.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为( )A .2-B .1-C .0D .22.已知全集U =R ,函数y =的定义域为集合A ,函数()2log 2y x =+的定义域为集合B ,则集合()U AB =ð( )A .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为( ) A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是( )A .相离B .相切C .相交D .不确定5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为( )A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为( ) A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为( )A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 正(主)视图侧(左)视图(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5PACD图319.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =.(1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设T A B ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14. 15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分 tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分 2==-………………………………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分 ()tan α=+π……………………………………………………………………6分 tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ②由①、②解得21cos 5α=.………………………………………………………………………………9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos 5α=-,sin 5α=-.…………………………………………10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分525210⎛=-⨯+-⨯=- ⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分 解得3a =.…………………………………………………………………………………………………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分这两名同学成绩之差的绝对值的所有情况如下表:所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分 6817164==.…………………………………………………………………………………………12分 ……………………10分18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥.因为AB BC ==4=AC,所以BE ===3分因为PD ⊥AC ,所以△PCD 为直角三角形.因为PD =3CD =,所以PC ===4分连接BD ,在Rt△BDE 中,因为BE =1DE =,所以BD ===5分因为PD ⊥平面ABC ,BD ⊂平面ABC ,所以PD ⊥BD . 在Rt△PBD 中,因为PD=,BD =所以PB ===6分在PBC ∆中,因为BC =PB =PC =所以222BC PB PC +=.所以PBC ∆为直角三角形.………………………………………………………………………………7分 证明2:因为平面⊥PAC 平面ABC ,平面PAC I 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥, 所以PD ⊥平面ABC .…………………………………………………………………………………1分 记AC 边上的中点为E ,在△ABC 中,因为ABBC =,所以AC BE ⊥. 因为AB BC ==4=AC,所以BE ===3分连接BD ,在Rt △BDE 中,因为90BED ∠=o,BE =,1DE =,所以BD ===4分在△BCD 中,因为3CD =,BC =BD =所以222BC BD CD +=,所以BC BD ⊥.……………………………………………………………5分 因为PD ⊥平面ABC ,BC ⊂平面ABC ,所以BC PD ⊥.…………………………………………………………………………………………6分 因为BD PD D =,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分BPACD E(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,则APH ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC的面积12ABC S AC BE ∆=⨯⨯=.…………………………………………9分因为PD =13P ABC ABC V S PD -∆=⨯⨯133=⨯=10分 由(1)知PBC ∆为直角三角形,BC =PB =所以△PBC的面积11322PBC S BC PB ∆=⨯⨯==.……………………………………11分 因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=,即1333AH ⨯⨯=,所以3AH =.……………………………………………………………12分 在Rt △PAD中,因为PD =,1AD =,所以2AP ===.………………………………………………………13分因为3sin 23AH APH AP ∠===. 所以直线AP与平面PBC 所成角的正弦值为3.…………………………………………………14分 解法2:过点D 作DM AP ∥,设DMPC M =,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,BC PB ⊥,且PD PB P =,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN ,则DN ⊥平面PBC .所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt△PAD 中,因为PD =,1AD =, 所以2AP ===.………………………………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分 由(1)知BD=,PB =PD =所以2PD BD DN PB ⨯===.……………………………………………………………13分 BP A CDM N因为2sin 332DN DMN DE ∠===, 所以直线AP 与平面PBC所成角的正弦值为3.…………………………………………………14分 解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG中,PB BG BC ===所以90CPG ∠=o,即CP PG ⊥.在△PAC中,因为PC =2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,所以CP ⊥平面PAG .…………………………………………………………………………………9分 过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分 由(1)知,BC PB ⊥, 所以PG PC ==在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以2AG BE ==12分 在△PAG 中,2PA =,AG =PG =所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分 因为sin AG APK PG ∠===. 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分 解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分BPACD EGK则()0,2,0A -,)B,()0,2,0C,(0,P -.于是(AP =,(2,1,PB =,(0,3,PC =设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,30.y y +=-=⎪⎩ 取1y =,则z =x =所以平面PBC 的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ, 则sin cos AP AP AP θ⋅=<>===⋅n ,n n. 所以直线AP 与平面PBC 14分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………1分则)B,()0,2,0C ,(0,P -.于是(BP =-,()2,0BC =. 因为()()2,1,32,2,00BP BC =---=,所以BP BC ⊥.所以BP BC ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分 (2)由(1)可得,()0,2,0A -. 于是(AP =,(2,1,PB =,(0,3,PC =.设平面PBC 的法向量为(),,x y z =n ,AA则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.y y +-==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n. 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分 所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭ 111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232n n =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,,所以1=2b =. 所以双曲线C 的方程为2214y x -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240kxk x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.…………………………………………………………6分同理可得,21244k x k +=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分 因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分 所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =---,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t tf t =--,则()()()222241t t f t t t -+'=-+=,当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x =()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力)(1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.………………………………………………………………………………………3分(2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++. 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*): 方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立. ……………………………………14分方法2(基本不等式法):12n +≤,……………………………………………………………………………………11分 12n +≤, ……,12n +≤, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立. ……………………………………14分。
2012年广州市高三第二次模拟考试试题答案
2012年广州市普通高中毕业班综合测试(二)数学(文科)参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分..二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题, 每小题5分,满分20分,其中14~15题是选做题,考生只能选做一题.11.(-3,1) 12.3113.]1,22[ 14.)32,32(π 15.2 说明:第14题答案可以是))(23232(Z k k ∈+ππ,三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、二倍角的余弦、同角三角函数关系、两角差的正 弦等知识,考查化归与转化的数学思想方法和运算求解能力) (1)解:)sin )(cos sin (cos )(x x x x x f -+=x x 22sin cos -= ……………2分x 2cos =. ……4分∴函数f(x)的最小正周期为ππ==22T . ……………6分 (2)解:由(1)得x x f 2cos )(=.32)2(,31)2(==βαf f ,32cos ,31cos ==∴βα. ………8分20,20πβπα<<<< 。
322cos 1sin 2=-=∴αα,35cos 1sin 2=-=ββ. ……………10分βαβαβαsin cos cos sin )sin(-=-∴ …………11分353132322⨯-⨯= 9524-=……………12分 17.(本小题满分12分)(本小题主要考查线性规划等知识,考查数据处理能力、运算求解能力和应用意识)(1)解:依题意得⎩⎨⎧++==++.345,100z y x P z y x ……………2分由100=++z y x ,得y x z --=100,代入z y x P 345++=,得y x P ++=2300. ……3分(1)解:依题意知x 、y 、z 要满足的条件为⎪⎩⎪⎨⎧≥++≥++≥≥≥.40000300100700.35000300500300,0,0,0z y x z y x z y x ………6分 把y x z --=100代入方程组得⎪⎪⎩⎪⎪⎨⎧≥≥-≥--≥≥.25,502.0100,0,0y y x y x y x ……9分如图可行域(阴影部分)的一个顶点为A(37.5,25).…10分 让目标函数P y x =++3002在可行域上移动,由此可知y x P ++=2300在A(37.5,25)处取得最小值.………11分∴当)(5.37),(25),(5.37kg z kg y kg x ===时,混合食物的成本最少. ………12分18.(本小题满分14分)(本小题主要考查空间线面关系、几何体的三视图、几何体的体积等知识,考查数形结合、 化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)解:作⊥MO 平面ABCD ,垂足为O ,连接AO ,由于⊂AB 平面ABCD ,故AB MO ⊥. 作AB MP ⊥,垂足为P ,连接PO ,又M MP MO =,且⊂MO 平面MPO ,⊂MP 平面MPO ,⊥∴AB 平面MPO. ……1分由题意知MO=PO=AP=1,41=AA ,AD=2, ………… 2分 在Rt△POM 中,222=+=MO PO PM , ………3分 在Rt△APM 中,322=+=PM AP AM , ………4分∴线段AM 的长为3. ……5分(2)解:延长PO 交CD 于点Q ,连接MQ , 由(1)知AB⊥平面MPO.⊂MQ 平面MPO , MQ AB ⊥∴. AB MN // ,MQ MN ⊥∴. ……6分在△PMQ 中,2==MP MQ ,PQ=2,2224PQ MQ MP ==+ ,MQ MP ⊥∴. ……………7分M MN MP = ,⊂MP 平面ABNM ,⊂MN 平面ABNM ,⊥∴MQ 平面ABNM . ……………8分 ⊂MQ 平面CDMN ,∴平面ABNM⊥平面CDMN. ……………9分(3)解法1:作MP NP //1交AB 于点P 1,作MQ NQ //1交CD 于点Q 1, 由题意知多面体MN-ABCD 可分割为两个等体积的四棱锥M-APQD 和N-P 1BCQ 1和一个直三棱柱MPQ-NP 1Q 1.四棱锥M-APQD 的体积为3212131311=⨯⨯⨯=⋅⋅⋅=MO AD AP V , …………10分 直三棱柱MPQ-NP 1Q 1的体积为222221212=⨯⨯⨯=⋅⋅⋅=MN MQ MP V ,…11分∴多面体MN-ABCD 的体积为3102322221=+⨯=+=V V V . ……………12分长方体1111D C B A ABCD -的体积为3242413=⨯⨯=⋅⋅=AA BC AB V . ………13分 ∴建筑物的体积为31063=+V V . ………14分 解法2:如图将多面体MN-ABCD 补成一个直三棱柱ADQ-BCQ1, 依题意知211====CQ BQ DQ AQ ,11==NQ MQ ,AD=2.多面体MN-ABCD 的体积等于直三棱柱ADQ-BCQ 1的体积 减去两个等体积的三棱锥M-ADQ 和N-BCQ 1的体积.2224AD DQ AQ ==+ , 90=∠∴AQD .直三棱柱ADQ-BCQ 1的体积为21211=⋅⋅⋅=AB DQ AQ V 4422=⨯⨯⨯, …10分 三棱锥M-ADQ 的体积为3121312=⋅⋅⋅⋅=MQ DQ AQ V 3112221=⨯⨯⨯⨯.…11分∴多面体MN-ABCD 的体积为310324221=-=-=V V V . ……12分 长方体1111D C B A ABCD -的体积为3242413=⨯⨯=⋅⋅=AA BC AB V . ………13分 ∴建筑物的体积为31063=+r V . ………………14分 19. (本小题满分14分)(本小题主要考查直线、椭圆、抛物线等知识,考查数形结合、化归与转化、函数与方程 的数学思想方法,以及推理论证能力和运算求解能力) (1)解法1:由⎩⎨⎧=+=yx m x y 4,22消去y ,得0482=--m x x . ……1分∵直线l 与抛物线C 2只有一个公共点,04482=⨯+=∆∴m ,解得m=-4. ……3分∴直线l 的方程为y=2x-4. ……4分 解法2:设直线l 与抛物线C 2的公共点坐标为),(00y x . 由241x y =,得x y 21'=, ∴直线l 的斜率021|'0x y k x x ===. ……1分 依题意得2210=x ,解得40=x . ……2分 把40=x 代入抛物线C 2的方程,得40=y . ∵点),(00y x 在直线l 上,m +⨯=∴424,解得m=-4. ……3分∴直线l 的方程为y=2x-4. …………4分 (2)解法1:∵抛物线C 2的焦点为)1,0(1F ,依题意知椭圆C 1的两个焦点的坐标为)1,0(),1,0(21-F F . ……5分 设点)1,0(1F 关于直线l 的对称点为),('001y x F ,则⎪⎪⎩⎪⎪⎨⎧-⨯=+-=⨯-.42221,1210000x y xy ……7分 解得⎩⎨⎧-==.1,400y x∴点)1,4('1-F . ……8分∴直线l 与直线1:'21-=y F F 的交点为)1,23(0-P . ……9分 由椭圆的定义及平面几何知识得:椭圆C 1的长轴长4|'||||'|||||2212121=≥+=+=F F PF PF PF PF a , ……11分其中当点P 与点P 0重合时,上面不等式取等号.∴当a=2时,椭圆C 1的长轴长取得最小值,其值为4. ………12分此时椭圆C 1的方程为13422=+x y ,点P 的坐标为)1,23(-. …14分 解法2:∵抛物线C 2的焦点为)1,0(1F ,依题意知椭圆C 1的两个焦点的坐标为)1,0(),1,0(21-F F . ……5分设椭圆C 1的方程为)1(112222>=-+a a x a y , ……………6分 由⎪⎩⎪⎨⎧=-+-=11,422222a x a y x y 消去y , 得.(*)0)16)(1()1(16)45(22222=--+---a a x a x a ……7分 由0)16)(1)(45(4)]1(16[22222≥-----=∆a a a a , ……………8分 得020524≥-a a . ……9分解得42≥a .2≥∴a . ……………11分∴当a=2时,椭圆C 1的长轴长取得最小值,其值为4. ………12分此时椭圆C 1的方程为13422=+x y . ……………13分 把a=2代入(*)方程,得1,23-==y x ,∴点P 的坐标为)1,23(-. …14分20.(本小题满分14分)(本小题主要考查数列、不等式等知识,考查化归与转化、分类与整合的数学思想方法,以 及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:由于222)2)(1(2-+=+-=n n n n n a a a a S ,当n=1时,2212111-+==a a S a . ……………1分整理得02121=--a a ,解得a 1=2或a 1=-1.0>n a ,21=∴a . ……………2分当n≥2时,1--=n n n S S a 22221212-+--+=--n n n n a a a a , ……3分 化简得01212=-----n n n n a a a a ,0)1)((11=--+∴--n n n n a a a a .0>n a ,11=-∴-n n a a . ……4分∴数列}{n a 是首项为2,公差为1的等差数列.1)1(2+=-+=∴n n a n . ……………5分(2)解:)1ln()2ln(ln ln 1++==+n n a a b n n n , k b b b ∙∙∙∴ 21)1ln()2ln(3ln 4ln 2ln 3ln ++∙∙∙=k k 2ln )2ln(+=k)2(log 2+=k . ……6分令m k =+)2(log 2,则22-=mk (m 为整数), ……………7分 由2012221≤-≤m,得201423≤≤m ,10,,4,3,2 =∴m .∴在区间[1,2012]内的k 值为22,,22,221032--- , ……8分 其和为)22()22()22(1032-++-+-92)222(1032⨯-+++=1821)21(292---⨯= ………9分=2026 ………10分(3)解法1:1)1ln()1ln()1ln()2ln(=++>++=n n n n b n ,)1ln()2ln()2ln()3ln(1++++=∴+n n n n b b n n )2(ln )1ln()3ln(2++∙+=n n n ……………11分 )2(ln ]2)1ln()3ln([22++++<n n n ……………12分 )2(ln 4)]1)(3[ln(22+++=n n n )2(ln 4)213ln(222+⎥⎦⎤⎢⎣⎡+++<n n n ……………13分 =1.n n b b <∴+1. ……………14分解法2:1)1ln()1ln()1ln()2ln(=++>++=n n n n b n ,)1ln()2ln()2ln()3ln(1++-++=-∴+n n n n b b n n=)1ln()2ln()2(ln )1ln()3ln(2+∙++-+∙+n n n n n ……………11分)1ln()2ln()2(ln ]2)1ln()3ln([22+⋅++-+++<n n n n n …………12分 )1ln()2ln()2(ln ]2)1)(3ln([22+∙++-++=n n n n n )1ln()2ln()2(ln ])213ln(21[222+∙++-+++<n n n n n …………13分 =0.n n b b <∴+1. …………14分解法3:设)2(ln )1ln()(≥+=x x x x f , 则xx x x x x f 2ln )1ln(1ln 11)('+⋅-⋅+=. …………11分 2≥x ,0)1ln(1ln 1)1ln(1ln 11<+⋅-⋅<+⋅-⋅+∴x xx x x x x x . 0)('<∴x f . …………12分∴函数f(x)在),2[+∞上单调递减.*N n ∈ ,212+<+≤∴n n .)1()2(+<+∴n f n f .)1ln()2ln()2ln()3ln(++<++∴n n n n . ………13分 n n b b <∴+1. ………14分21.(本小题满分14分)(本小题主要考查函数和方程、导数、函数的极值等知识,考查函数与方程、分类与整合、 化归与转化的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解:函数f(x)的定义域为),0(+∞. ……1分xx ax ax x x f 111)('2---=+-=. ……2分①当a=0时,xxx f +=1)(',0)(',0>∴>x f x ∴函数f(x)单调递增区间为),0(+∞. ……3分②当0=/a 时,令f'(x)=0得012=---xx ax , 01,02=--∴>x ax x . a 41+=∆∴.(i)当0≤∆,即41-≤a 时,得012≤--x ax ,故0)('≥x f , ∴函数f(x)的单调递增区间为)0(∞+,. ……4分 (ii)当0>∆,即41->a 时,方程012=--x ax 的两个实根分别为 a a x a a x 2411,241121++=+-=. ……5分若041<<-a ,则0,021<<x x ,此时,当),0(+∞∈x 时,0)('>x f .∴函数f(x)的单调递增区间为),0(+∞, ……………6分 若a>0,则0,021><x x ,此时,当),0(2x x ∈时,0)('>x f ,当),(2+∞∈x x 时,0)('<x f , ∴函数f(x)的单调递增区间为)2411,0(a a++,单调递减区间为),2411(+∞++aa .………7分综上所述,当a>0时,函数f(x)的单调递增区间为)2411,0(aa++,单调递减区间为),2411(+∞++aa:当0≤a 时,函数f(x)的单调递增区间为),0(+∞,无单调递减区间. ……………8分第 11 页 共 11 页 (2)解:由(1)得当0≤a 时,函数f(x)在(0,+∞)上单调递增,故函数f(x)无极值; ………9分 当a>0时,函数f(x)的单调递增区间为)2411,0(aa ++,单调递减区间为 ),2411(+∞++aa ; 则f(x)有极大值,其值为2222221ln )(x ax x x f +-=,其中a a x 24112++=. …10分 而01222=--x ax ,即1222+=x ax ,21ln )(222-+=∴x x x f . ……11分 设函数)0(21ln )(>-+=x x x x h ,则0211)('>+=x x h , …………12分 则21ln )(-+=x x x h 在),0(+∞上为增函数. 又h(1)=0,则h(x)>0等价于x>1.021ln )(222>-+=∴x x x f 等价于12>x . ………13分 即在a>0时,方程012=--x ax 的大根大于1,设1)(2--=x ax x φ,由于)(x φ的图象是开口向上的抛物线,且经过点(0,-1),对称 轴021>=ax ,则只需0)1(<φ,即a-1-1<0解得a<2,而a>0, 故实数a 的取值范围为(0,2). …………14分 说明:若采用下面的方法求出实数a 的取值范围的同样给1分.1.由于a a a 212411=++a a a 2141212=++aa 41212++在),0(+∞是减函数, 而12411=++a a 时,a=2,故12411>++aa 的解集为(0,2), 从而实数a 的取值范围为(0,2). 2.解不等式12411>++a a ,而a>0,通过分类讨论得出实数a 的取值范围为(0,2).。
2012年广州市高考数学一模试题(理)及答案
2012年广州市高考数学一模试题(理)及答案试卷类型:A 2012年广州市普通高中毕业班综合测试(一)数学(理科) 2012.3本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高.方差,其中 . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数(其中,是虚数单位),则的值为 A. B. C.0 D.2 2.已知全集,函数的定义域为集合,函数的定义域为集合,则集合 A. B. C. D. 3.如果函数的相邻两个零点之间的距离为,则的值为 A.3 B.6 C.12 D.24 4.已知点()是圆:内一点,直线的方程为,那么直线与圆的位置关系是 A.相离 B.相切 C.相交 D.不确定 5.已知函数,对于任意正数,是成立的A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件 6.已知两个非零向量与,定义,其中为与的夹角.若,,则的值为 A. B. C.8 D.6 7.在△ 中,,,,在上任取一点,使△ 为钝角三角形的概率为 A. B. C. D. 8.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标,若是3的倍数,则满足条件的点的个数为 A.252 B.216 C.72 D.42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为.10.已知,则实数的取值范围为. 11.已知幂函数在区间上单调递增,则实数的值为. 12.已知集合,,若,则实数的取值范围为. 13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,则,若,则.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆的半径为,点是弦的中点,,弦过点,且,则的长为. 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线与曲线的参数方程分别为:(为参数)和:(为参数),若与相交于、两点,则.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数.(1)求的值;(2)设,若,求的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求的值;(2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为,求随机变量的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.)18.(本小题满分14分)如图5所示,在三棱锥中,,平面平面,于点,,,.(1)证明△ 为直角三角形;(2)求直线与平面所成角的正弦值.19.(本小题满分14分)等比数列的各项均为正数,成等差数列,且.(1)求数列的通项公式;(2)设,求数列的前项和.20.(本小题满分14分)已知椭圆的左,右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设、两点的横坐标分别为、,证明:;(3)设与(其中为坐标原点)的面积分别为与,且,求的取值范围.21.(本小题满分14分)设函数 ( 为自然对数的底数),().(1)证明:;(2)当时,比较与的大小,并说明理由;(3)证明:().。
(含答案解析)2023广州高三二模-数学
2023年广州市普通高中毕业班综合测试(二)数学本试卷共5页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1若a 为实数,且7+ai3+i=2-i ,则a =()A.2B.1C.-1D.-22已知集合A =x ∣x =3n -2,n ∈N * ,B ={6,7,10,11},则集合A ∩B 的元素个数为()A.1B.2C.3D.43已知两个非零向量a ,b 满足a =3b ,a +b ⊥b ,则cos ⟨a ,b ⟩=()A.12B.-12C.13D.-134已知a =323,b =234,c =413,则()A.c <a <bB.b <c <aC.b <a <cD.c <b <a5木升在古代多用来盛装稂食作物,是农家必备的用具,如图为一升制木升.某同学制作了一个高为40 cm 的正四棱台木升模型,已知该正四棱台的所有顶点都在一个半径为50 cm 的球O 的球面上,且一个底面的中心与球O 的球心重合,则该正四棱台的侧面与底面所成二面角的正弦值为()A.223 B.23C.255D.256已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,过点-a ,0 且方向向量为n =1,-1 的光线,经直线y =-b 反射后过C 的右焦点,则C 的离心率为()A.35B.23C.34D.457已知函数f x =sin 2x +φ ,若f x ≤f π3恒成立,且f π >f π4 ,则f x 的单调递增区间为()A.k π+π6,k π+2π3 k ∈ZB.k π-π6,k π+π3k ∈Z C.k π-π3,k π+π6k ∈Z D.k π-2π3,k π-π6k ∈Z 8已知偶函数f x 与其导函数f x 的定义域均为R ,且f x +e -x +x 也是偶函数,若f 2a -1 <f a +1 ,则实数a 的取值范围是()A.-∞,2B.0,2C.2,+∞D.-∞,0 ∪2,+∞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9有3台车床加工同一型号的零件,第1台加工的次品率为8%,第2台加工的次品率为3%,第3台加工的次品率为2%,加工出来的零件混放在一起.已知第1,2,3台车床.加工的零件数分别占总数的10%,40%,50%,从混放的零件中任取一个零件,则下列结论正确的是()A.该零件是第1台车床加工出来的次品的概率为0.08B.该零件是次品的概率为0.03C.如果该零件是第3台轪床加工出来的,那么它不是次品的概率为0.98D.如果该零件是次品,那么它不是第3台车床加工出来的概率为1310已知函数f x =1-4xx 2+4的定义域是a ,b a ,b ∈Z ,值域为0,1 ,则满足条件的整数对a ,b 可以是()A.-2,0B.-1,1C.0,2D.-1,211已知双曲线Γ:x 2-y 2=a 2a >0 的左,右焦点分别为F 1,F 2,过F 2的直线l 与双曲线Γ的右支交于点B ,C ,与双曲线Γ的渐近线交于点A ,D (A ,B 在第一象限,C ,D 在第四象限),O 为坐标原点,则下列结论正确的是()A.若BC ⊥x 轴,则△BCF 1的周长为6aB.若直线OB 交双曲线Γ的左支于点E ,则BC ⎳EF 1C.△AOD 面积的最小值为4a 2D.AB +BF 1 的取值范围为3a ,+∞12已知正四面体A -BCD 的棱长为2,点M ,N 分别为△ABC 和△ABD 的重心,P 为线段CN 上一点,则下列结论正确的是()A.若AP +BP 取得最小值,则CP =PNB.若CP =3PN ,则DP ⊥平面ABCC.若DP ⊥平面ABC ,则三棱雉P -ABC 外接球的表面积为27π2D.直线MN 到平面ACD 的距离为269三、填空题:本题共4小题,每小题5分,共20分.13某班有48名学生,一次考试的数学成绩X (单位:分)服从正态分布N 80,σ2 ,且成绩在80,90 上的学生人数为16,则成缋在90分以上的学生人数为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页
.. 试卷类型:B
2012年广州市普通高中毕业班综合测试(二)
数 学(理科)
2012.4.26
本试卷共4页,21小题,满分150分。考试用时l20分钟。
注意事项:
1.答卷前。考生务必用2B铅笔在“考生号”处填涂考生号。用黑色字迹的钢
笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、
试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题
卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案
信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能
答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各
题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再
写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作
答。漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式13VSh,其中S是锥体的底面积,h是锥体的高.
一、选择题:本大题共8小题。每小题5分.满分40分.在每小题给出的四个
选项中,只有一项是符合题目要求的
1.已知i为虚数单位,复数1zai,22zi,且12|z||z|,则实数a的值为
A.2 B.-2 C.2或-2 D.±2或0
2.设集合A={(x,y)|2x+y=6},B={(x,y)|3x+2y=4},满足C(AB)的集合C
的个数为
A.1 B.2 C.3 D.4
3.已知双曲线221xmy的虚轴长是实轴长的2倍,则实数m的值是
A. 4 B.14 C.14 D.-4
4.已知等差数列{na}的公差为2,项数是偶数,所有奇数项之和为l5,所有偶
数项之和为25,则这个数列的项数为
A.10 B.20 C.30 D.40
5.已知两条不同直线m、l,两个不同平面、,在下列条件中,可得出
的是
第2页
A.ml,l∥,l∥ B.ml,,m
C.m∥l,m,l D.m∥l,l,m
6.下列说法正确的是
A.函数1f(x)x在其定义域上是减函数
B.两个三角形全等是这两个三角形面积相等的必要条件
C.命题“210xR,xx”的否定是
“
2
10xR,xx
”
D.给定命题P、q,若Pq是真命题,则P是假
命题
7.阅读图l的程序框图,该程序运行后输出的A的值
为
A.5 B.6 C.7 D.8
8.已知实数a,b满足22430aba,函数
1f(x)asinxbcosx的最大值记为(a,b)
,则
(a,b)
的最小值为
A.1 B.2 C.31 D.3
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.
(一)必做题(9~13题)
9.某社区有600个家庭,其中高收入家庭150户,中等收入家庭360户,低收
人家庭90户,为了调查购买力的某项指标,用分层抽样的方法从中抽取一个容
量为l00的样本,则中等收入家庭应抽取的户数是 。
10.(12xx)6展开式中的常数项是 (用数字作答)。
11.已知不等式2|x|>1的解集与不等式20xaxb的解集相等,则ab的
值为 。
12.在平行四边形ABCD中,点E是AD的中点,BE与AC相交于点F,若
EFmABnAD(m,nR)
,则mn的值为 。
13.已知点P是直角坐标平面xOy上的一个动点2|OP|(点O为坐标原点),
点M(-1,0),则cosOPM的取值范围是 。
(二)选做题(14~15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)在极坐标系中,若
第3页
等边三角形ABC(顶点A,B,C按顺时针方向排列)的顶点A,B的极坐标分别
为(2,6),(2,76),则顶点C的极坐标为 。
15.(几何证明选讲选做题)如图2,AB是圆O的直径,延长AB至C,使BC=2OB,
CD是圆O的切线,切点为D,连接AD,BD,则面ADBD的值为 .
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和
演算步骤。
16.(本小题满分12分)
已知函数003f(x)Asin(x)(A,)在某一个周期内的图象的最高
点和最低点的坐标分别为(512,2)(1112,-2)。
(1)求A和的值;
(2)已知(0,2),且45sin,求f()的值.
17.(本小题满分l2分)
如图3,A,B两点之间有6条网线连接,每条
网线能通过的最大信息量分别为1,1,2,2,3,4.从
中任取三条网线且使每条网线通过最大信息量,设
这三条网线通过的最大信息量之和为.
(1)当≥6时,则保证线路信息畅通,求线路信
息畅通的概率;
(2)求的分布列和数学期望.
18.(本小题满分l4分)
某建筑物的上半部分是多面体MN—ABCD,下半部分是长方体
ABCD—A1B1C1D1(如图4).该建筑物的正(主)视图和侧(左)视图如图5,其中正(主)
视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而
成.
(1)求直线AM与平面A,B,C,D,所成角的正弦值;
(2)求二面角A—MN—C的余弦值;
(3)求该建筑物的体积.
第4页
19.(本小题满分14分)
已知对称中心为坐标原点的椭圆C1与抛物线C2:24xy有一个相同的焦点
F1,直线l:2yxm与抛物线C2只有一个公共点.
(1)求直线l的方程;
(2)若椭圆C1经过直线l上的点P,当椭圆C1的离心率取得最大值时,求椭
圆C1的方程及点P的坐标.
20.(本小题满分l4分)
已知函数212f(x)lnxaxx,aR.
(1)求函数f(x)的单调区间;
(2)是否存在实数a,使得函数f(x)的极值大于0?若存在,求a的取值范围;
若不存在,说明理由.
21.(本小题满分l4分)
已知函数f(x)的定义域为(-1,1),且112f(),对任意11x,y(,),都有
1xyf(x)f(y)f()xy
,数列{na}满足1122121*nnnaa,a(nN).a
(1)证明函数f(x)是奇函数;
(2)求数列{nf(a)}的通项公式;
(3)令12*nnaa...aA(nN)n,证明:当2n时,11112nniiin|aA|。
第5页
第6页
第7页
第8页
第9页
第10页
第11页
第12页
第13页
第14页
第15页
第16页
第17页
第18页
第19页