八年级数学分式4
2024八年级数学上册第二章分式与分式方程4分式方程第2课时解分式方程课件鲁教版五四制

A.a=5或a=0
B.a≠0
C.a≠5
D.a≠5且a≠0
2x a
3. 若关于x的分式方程 x 2
1
2 的解为非负数,则a
的取值范围是( C )
A.a≥1
B.a>1
C.a≥1且a≠4
D.a>1且a≠4
a
4.
关于x的分式方程 x 3
A.方程的解是x=a-3
1,下列说法正确的是( B )
B.当a>3时,方程的解是正数
(2)∵原分式方程有增根,∴x(x-1)=0.∴x=0或1.
又∵整式方程(a+2)x=3有根,∴x=1.
∴原分式方程的增根为1.∴(a+2)×1=3.∴a=1.
(3)去分母并整理得:(a+2)x=3.
①当a+2=0时,该整式方程无解,此时a=-2.
②当a+2≠0时,要使原分式方程无解,
则x(x-1)=0,得x=0或1.
是原分式方程的解,此时原分式方程无解.
2ax
例3 已知关于x的方程
a x
2
3 的根是x=1,求a的值.
导引:根据方程的解使方程两边的值相等,可构造关于a
的分式方程,解所得分式方程即可得a的值.
2ax
2
2a
2
, 得
解:把x=1代入方程
,
a x 3
a 1 3
1
解得a= 2
1
2a
2
经检验,a=
是分式方程
的解.
2
a 1 3
1
.
∴a的值为
2
归纳
根据方程的解构造方程,
由于所构造的方程是分式方程,
因此验根的步骤不可缺少.
kx
2k-1
-
八年级数学上册分式运算基本概念与解题技巧

八年级数学上册分式运算基本概念与解题技巧分式知识点关键词:分式、分式的基本性质、分式的约分、分式的通分、分式的运算、整数指数幂、科学计数法、分式方程、最后结果一定时最简形式必须清晰知道的基本概念:分式:1,定义:一般地,如果A和B为两个整式,并且B中含有字母,那么式子A/B就叫做分式,A为分子,B为分母。
请联系前面讲的分数,基本是一样的2,与分式有关的一些知识点:1>分式有意义,要求分母不为0,隐含分母要有字母;2>分式无意义,分母为0;3>分式值为0,分子为0 ,且分母不为0;4>分式值为负或小于0,分子分母异号;5>分式值为正或大于0,分子分母同号;6>分式值为1,分子分母值相等;7>分式值为-1,分子分母值互为相反数;这些知识点看上去非常简单,甚至给人感觉都是废话。
那是因为没有放在具体的题目中,其实你那些没有拿到的分都是从这些很简单的知识里面来的。
比如,一个很复杂的分式,分子分母都很复杂,但是如果能够知道它的值为1,则表示分子和分母是相等的。
这些东西要有谦虚的心态在以后的学习中才能慢慢体会到的。
这里给大家强调三点!分母中一定要含有字母的式子才叫分式;也就是分式的分母要满足两个条件的,a>不为0,b>必须含有字母;分式与整式的和,也是分式。
判断分式有无意义时,一定要讨论原分式,而不能时化简后的分式!举例:问(x2-1)/x2-x-2何时有意义?答案是x≠2和x≠-1;而如果化简后只能得到x≠2这个答案了。
分式的基本知识:分式的基本性质,分式的分子分母同时乘以或除以一个不等于0的数,分式的值不变;分式的符号,分式的分子分母和分式本身的符号,改变其中任何两个,分式的值不变;分式的约分,就是把一个分式的分子和分母的公因式约去,约至它们再也没有公因式时就是最简分式了。
分子分母均为单项式时可以直接约分,即约去它们系数的最大公约数,然后约去分子分母的相同因式的最低次幂;分子分母为多项式时,要先将它们进行因式分解,再约分。
八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。
如果除式..B .中含有分母.....,那么称BA为分式。
(对于任何一个分式,分母不为0。
如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
分式:分母中含有字母。
整式:分母中没有字母。
而代数式则包含分式和整式。
)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
定义3:分子和分母没有公因式的分式称为最简分式。
(化简分式时,通常要使结果成为最简分式或者整式。
)定义4:化异分母分式为同分母分式的过程称为分式的通分。
定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。
二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。
三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。
(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。
八年级数学下学期期末考点 分式 全章复习 (4个考点梳理+9种题型解读)(原卷版)

清单03分式全章复习(4个考点梳理+9种题型解读)考点一分式的基础分式的概念:如果A,B表示两个整式,并且B中含有字母,那么式子A B叫做分式,A为分子,B为分母.对于分式A B来说:①当B≠0时,分式有意义;当B=0时,分式无意义.②当A=0且B≠0这两个条件同时满足时,分式值为0.③当A=B时,分式的值为1.当A+B=0时,分式的值为-1.④若A B>0,则A、B同号;若A B<0,则A、B异号.约分的定义:把一个分式的分子与分母的公因式约去,叫分式的约分.最简公式的定义:分子与分母没有公因式的分式,叫做最简分式.通分的定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,这一过程叫做分式的通分.通分步骤:①定最简公分母;②化异分母为最简公分母.最简公分母的定义:通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.确定最简公分母的方法:类型方法步骤1.(23-24八年级上·全国·课后作业)对于分式2x y x y -+:(1)如果1x =,那么y 取何值时,分式无意义?(2)如果1y =,那么x 取何值时,分式无意义?(3)使分式无意义的x ,y 有多少对?(4)要使得分式有意义,x ,y 应有什么关系?(5)如果=1x -,那么y 取什么值时,分式的值为零?2.(22-23八年级下·河南南阳·阶段练习)对于分式23x a x b-+,当1x =-时,分式无意义;当4x =时,分式的值为0,求a b 的值.3.(22-23八年级上·湖南永州·期中)已知关于x 的分式21(1)(3)x x x -+-,求下列问题:(1)当x 满足什么条件,分式无意义;(2)当x 满足什么条件,分式有意义;(3)当x 满足什么条件,分式的值等于0.【考试题型2】利用分式的基本性质进行分式变形4.(23-24八年级上·全国·课后作业)在括号中填上恰当的式子:(1)()()30510a axy xy axy=≠;(2)()()22124a a a +=≠±-;(3)()()222x y x y x y+=≠-;(4)()22222a ab b a b a b -+-=-(0a b +≠且0a b -≠).5.(23-24八年级上·全国·课堂例题)不改变分式的值,使下列分式的分子和分母都不含“-”号:(1)35b a --;(2)35m n---;(3)332x x ---;(4)232x --+.6.(21-22八年级上·全国·课后作业)不改变分式的值,把下列各式的分式与分母中各项的系数都化为整数.①220.60.30.50.7x y x y -+;②22220.250.50.752a b a b +-;③1112361164a b c a b -++;④21318543x y x ---.考点二分式的运算【考试题型3】整式与分式相加减7.(23-24八年级上·山东潍坊·阶段练习)计算:(1)212293m m +--(2)211x x x -++8.(23-24八年级上·全国·课后作业)计算:(1)2222242x x xy y x x y y x x y---+---(2)236924424x x x -++--;(3)2111111x x x +++--;(4)3211x x x x +-+-9.(2022·四川泸州·一模)化简:221111x x x x -⎛⎫+- ⎪-+⎝⎭【考试题型4】分式加减乘除混合运算10.(23-24八年级上·山东聊城·阶段练习)计算:(1)23234243b b b a a a a b ⎛⎫⎛⎫⎛⎫⎛⎫÷-⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)()22224414;22x xy y x y x y x y -+÷-⋅-+11.(23-24八年级上·山东烟台·期中)计算(1)22433842x x y x y y ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭;(2)211x x x x +--;(3)222632444163x x x x x x x ---÷⋅-+-+;(4)2211()xy x y x y x y -÷-+-.12.(23-24八年级上·山东东营·阶段练习)计算:(1)22233x y xy y z z ⎛⎫⋅÷ ⎪⎝⎭(2)()22222x xy y x y xy x xy x -+--÷(3)2222223223x y x y x y x y x y x y ++--+---(4)222111x x x x x ++---【考试题型5】分式的化简求值13.(22-23八年级下·贵州六盘水·阶段练习)先化简,再求值:24431221x x x x x -+÷-+++⎛⎫ ⎪⎝⎭,其中x 是不等式381x -<的正整数解.14.(23-24八年级上·山东烟台·期中)若a ,b 为实数,且()222|25|05a b b -+-=-,求22b a a b --的值.15.(23-24八年级上·广东湛江·期末)化简2869111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭,再从1,1,3-中选择一个合适的数代入求值.16.(23-24八年级上·山东淄博·阶段练习)化简求值:112()y x y x y x y-÷-+-,其中x ,y 满足()2120x y -++=.考点三解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.【考试题型6】解分式方程17.(23-24八年级上·山东烟台·期中)解分式方程:(1)23611x x =+-(2)31244x x x -+=--.18.(23-24八年级上·江苏南通·阶段练习)解下列分式方程:(1)21122x x x +=+--;(2)2227611x x x x x -=+--.【考试题型7】根据分式方程解的情况求值19.(22-23八年级下·全国·假期作业)已知关于x 的分式方程3211m x x +=---的解为非负数,求正整数m 的值.20.(23-24八年级上·全国·课堂例题)已知关于x 的方程233x m x x -=--的解是正数,求m 的取值范围.21.(23-24八年级上·湖南怀化·期中)已知关于x 的方程4433x m m x x---=--有增根,求m 的值.22.(23-24八年级下·全国·课后作业)已知关于x 的方程:3611(1)(1)mx x x x x +=+-+-.(1)若方程有增根,求m 的值;(2)若方程无解,求m 的值.23.(23-24八年级上·山东泰安·阶段练习)解方程:(1)解方程:21133x x x x =-++;(2)解方程:2236111y y y +=+--;(3)关于x 的分式方程()()232121mx x x x x +=-+-+.①若方程的增根为2x =,求m 的值;②若方程有增根,求m 的值;③若方程无解,求m 的值.【考试题型8】分式方程与一元一次不等式组综合24.(23-24八年级上·新疆乌鲁木齐·阶段练习)关于x 的方程2133x m x x--+=的解为正数,且关于y 的不等式组()323y m y m m -≥⎧⎨-≤+⎩有解,则符合题意的所有整数m 的和为.25.(22-23八年级下·重庆九龙坡·期末)若实数m 使关于x 的不等式组2333222x x x m ++⎧-≤⎪⎨⎪-<-⎩有整数解且至多有4个整数解,且使关于y 的分式方程16211m y y-=---的解为非负数,则满足条件的所有整数m 的和为.26.(23-24八年级上·重庆九龙坡·期末)若关于x 的不等式组3512622x x x x a-⎧<+⎪⎨⎪-≥+⎩有且只有3个奇数解,且关于y 的分式方程32111y a a y y +-+=--的解为整数,则符合条件的所有整数a 的和为.考点四利用分式方程解决实际问题用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:【考试题型9】分式方程的实际应用27.(22-23八年级下·江苏无锡·期中)在2020年疫情防控期间,我市某公司为了满足全体员工的需求,花1万元买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩的价格下降了50%,该公司又花了6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包.求2020年每包口罩的价格是多少?(1)设2020年每包口罩的价格为x 元,则2021年每包口罩的价格为元;(用含x 的代数式表示)(2)求2020年每包口罩的价格.28.(23-24八年级上·山东烟台·期中)2023年9月21日,“天宫课堂”第四课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某单位为满足学生的需求,充实物理小组的实验项目,需要购买甲、乙两款物理实验套装.经了解,每款甲款实验套装的零售价比乙款实验套装的零售价多7元,该单位以零售价分别用750元和540元购买了相同数量的甲、乙两款物理实验套装.(1)甲、乙两款物理实验套装每个的零售价分别为多少元?(2)由于物理兴趣小组人数增加,该单位需再次购买两款物理实验套装共200个,且甲款实验套装的个数不少于乙款实验套装的个数的一半,由于购买量大,甲乙两款物理实验套装分别获得了20元/每个、15元/每个的批发价.求甲、乙两款物理实验套装分别购买多少个时,所用资金最少.29.(23-24八年级上·山东聊城·阶段练习)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元,为缩短工期并高效完成工程,从一开始就安排甲乙两工程队合作,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.30.(23-24八年级上·山东潍坊·阶段练习)2023年,淄博烧烤成为热门话题,和三五好友在路边小摊上说说笑笑、感受人间烟火气成为时下最受欢迎的休闲方式之一.为恢复和提振消费,越来越多的城市加入支持“地摊经济”的队伍,近日淄博某社区拟建A,B两类摊位以搞活“地摊经济”.每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.求每个A,B类摊位占地面积各为多少平方米?。
八年级数学上册分式知识点

八年级数学上册分式知识点在八年级数学上册中,学生将开始学习分式的概念和相关知识。
分式在数学中起着重要的作用,并广泛应用于各种实际问题的解决中。
下面将详细介绍八年级数学上册中与分式相关的知识点。
一、分式的定义和表示方式分式是指用横线将两个数连接起来形成的表达式,上面的数被称为分子,下面的数被称为分母。
分式的形式通常表示为a/b,其中a为整数,b为非零整数。
例如,2/3、5/4等都是分式的表示形式。
在分式中,分子和分母之间用分数线表示,分子位于分数线的上方,分母位于分数线的下方。
二、分式的基本性质1. 分式的值:分式所表示的值等于分子除以分母的结果。
例如,对于分式2/3,它的值为2除以3,即2/3。
2. 分式的约分与通分:分子和分母可以同时除以一个相同的非零数,使得分子和分母没有公约数,这个过程称为约分。
通分是指将两个或多个分式的分母变为相同的方式。
例如,分式1/4和1/2的通分结果为1/4和2/4,它们的分母相同。
3. 分式的乘法和除法:两个分式相乘时,分子乘以分子,分母乘以分母,得到的结果为新的分式。
例如,计算1/4乘以2/3,得到的结果为1/6。
当进行两个分式的除法运算时,将除法运算转化为乘法运算,将除法运算转化为乘法运算的倒数。
例如,计算1/4除以2/3,可以转化为1/4乘以3/2,结果为1/8。
4. 分式的加法和减法:两个分式相加时,需要找到它们的通分形式,然后将分子相加,分母保持不变。
例如,计算1/4加上1/2,通分得到2/8加上4/8,结果为6/8,可以约分为3/4。
当进行两个分式的减法运算时,同样需要找到它们的通分形式,然后将分子相减,分母保持不变。
例如,计算1/2减去1/4,通分得到2/4减去1/4,结果为1/4。
三、分式在实际问题中的应用分式在解决实际问题中起着重要的作用,在日常生活和学习中都有广泛的应用。
1. 分享物品:当多个人要平分一件物品时,可以使用分式来表示每个人得到的份额。
数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
北师大版八年级数学下册第五章 分式与分式方程4 第1课时 分式方程的概念及列分式方程
x x 20
1400 1400 9 1400 2.8 1400
x 2.8x
y
y9
4800 5000 x x 20
思考 由上面的问题,我们得到了三个方程,它们有 什么共同特点?
分母中都含有未知数.
知识要点
分式方程的概念 分母中含有未知数的方程叫做分式方程.
分式方程的特征 (1)是等式; (2)方程中含有分式; (3)分母中含有未知数.
归纳总结
列分式方程的步骤: (1)审清题意,适当设出未知数; (2)根据题意找等量关系,列出分式方程.
概念
分母中含有未知数的方程叫做分式 方程
分式 方程
列方程 步骤
1. 审清题意,适当设出未知数; 2. 根据题意找等量关系,列出分式 方程
1. 下列属于分式方程的是( A )
A. 1 3 x2 x
___x ___x__3__.
3. 某市为处理污水,需要铺设一条长为 5000 m 的管 道,为了尽量减少施工对交通所造成的影响,实际
施工时每天比原计划多铺设 20 m,结果提前 15 天 完成任务.设原计划每天铺设管道 x m,则可得方 程 5000 5000 15
____x____x___2_0______.
y9
1400 1400
关系式 高铁列车平均速度 = 2.8×特快列车平均速度
做一做 为了帮助遭受自然灾害的地区重建家园,某校 团总支号召同学们自愿捐款.已知第一次捐款总额为 4800元,第二次捐款总额为 5000 元,第二次捐款人数 比第一次多 20 人,而且两次人均捐款额恰好相等. 如果 设第一次捐款人数为 x 人, 那么 x 应满足怎样的方程?
典例精析
例1 下列式子中,哪些是分式方程?哪些整式方程?
2022八年级数学上册第二章分式与分式方程4分式方程1ppt教学课件鲁教版五四制
解:
x 5
69000 x 3
3.王军同学准备在课外活动时间组织部分同学参加 电脑网络培训,按原定的人数估计共需费用300元。 后因人数增加到原定人数的2倍,费用享受了优惠, 一共只需要480元,参加活动的每个同学平均分摊的 费用比原计划少4元,原定的人数是多少?如果设原
定是x人,那么 x 满足怎样的分式方程?
解:10 x 5 . 80 x 7
7.从甲地到乙地有两条路可以走:一条全长 600 km普通公路,另一条是全长 480km 的高 速公路,某客车在高速公路上行驶的平均速度 比普通公路上快45km/h,由高速公路从甲地到 乙地的所需的时间是由普通公路从甲地到乙地 所需时间的一半,求该客车由高速公路从甲地 到乙地所需要的时间? 解:该客车由高速公路从甲地到乙地所需要的 时间为xh
(1) 1 (x 3) 1.x找找(看,否下)列方程哪; 些(是2)分式1方程 1:( 是)
2
2x
(3)
x 3 1 x 1 2 x
(是) ; (4)
x 2
x 3
1(否
)
2. “退耕还林还草”是在我国西部地区实施的一项
重还hm要林2 生与态退工耕程还.草某的地面规积划比退为耕5∶面3积,共设退69耕00还0 ,林退的耕面 积为 x ,那么 x 满足怎hm样2 的分式方程?
解:设第一块小麦实验田的每公顷的产量为 x ㎏
9000
15000
x x 3000
6.李庄村原来用10hm2耕地种植粮食作物, 用80hm2耕地种植经济作物。为了增加粮食 作物的种植面积,该村计划将部分种植经济 作物的耕地改为种植粮食作物,使得粮食作 物的种植面积与经济作物的种植面积之比为 5:7.设有xhm2种植经济作物的耕地改为种植 粮食作物,那么x满足怎样的分式方程?
八年级数学 分式章节知识点总结及典型例题解析
八年级数学分式章节知识点总结及典型例题解析1.分式的定义:分式是由分子、分母两个整式组成的表达式,分母不能为零。
例:下列式子中,有分式的是:$\frac{2x+1}{3xy^3a^{-b}5a^{-b}159a^{2}15xy^{11}}$、$\frac{8a^2b}{2}$、$\frac{1}{x-y}$、$\frac{4x-3y}{2x+y}$、$\frac{2}{b^2-5a^2}$、$\frac{-x-2xy^2}{x-7}$。
2.分式有意义和无意义:1)使分式有意义:令分母不等于零,解方程求解;2)使分式无意义:令分母等于零,解方程求解;注意:$(x+1)^2 \neq 0$ 有意义。
例如:分式$\frac{x-5}{2-x}$,当$x=2$时,分式无意义;当$x=5$时,分式有意义。
3.分式的值为零:使分式的值为零:令分子等于零且分母不等于零。
注意:当分子等于使分母等于零时,要舍去。
例如:分式$\frac{x^2-11}{x-2a}$,当$x=\sqrt{11}$时,分式的值为零。
4.分式的基本性质的应用:分式的分子与分母同乘或除以一个不等于零的整式,分式的值不变。
例如:$\frac{A}{B}=\frac{AC}{BC}$,$\frac{A}{B}=\frac{A/C}{B/C}$。
没有明显问题的段落,无需删除或改写。
1.如果成立,那么a的取值范围是什么?2.例2:求出33/(ab)的值。
3.例3:将分式(1-b+c)/(a(b-c))中的a和b扩大10倍后,分式的值会怎样变化?4.例4:将分式10x/(x+y)中的x和y都扩大10倍后,分式的值会怎样变化?5.例5:将分式xy/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?6.例6:将分式(x-y)/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?7.例7:将分式(x-y)/xy中的x和y都扩大2倍后,分式的值会怎样变化?8.例8:将分式2x/(x+3y)中的x和y都缩小12倍后,分式的值会怎样变化?9.例9:将分式3x^3/(2y^2)中的x和y都扩大2倍后,分式的值保持不变的是什么?10.根据分式的基本性质,分式(ABC-D)/(a-b)可变形为(a+b)(D-ABC)/(a-b)。
八年级下册数学的分式知识点整理
八年级下册数学的分式知识点整理八年级下册数学的分式知识点整理在平时的学习中,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
为了帮助大家掌握重要知识点,下面是店铺精心整理的八年级下册数学的分式知识点整理,欢迎大家分享。
1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的`条件:分式AB =0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为 (其中A、B、C是整式 ),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26 29
1 8. 已知x - 3x + 1 = 0, 求x + 2 的值. x
2 2
x3 A B 已知 求 A、 B 2 2 ( x 2) x 2 ( x 2)
字琦の心中顿时豁然开朗,如梦初醒!因为除咯这各理由,实在是找不出他如此态度强硬地矢口否认、万般抵赖の原因来。天啊,爷の心中怎么还有那各狐狸精?婉然都已经 嫁人咯,是二十三叔の格格咯,怎么还在王府里阴魂不散?幸亏当初是二十三叔“出手相助”娶咯她,假设换咯别の婆家,爷现在还不得直接跑到人家府上强抢民妇?排字琦 清醒地认识到,现在婉然已经嫁给咯二十三小格,王爷必须对她放手,否则还是这么拉拉扯扯地放不下,对任何人都没有好处,特别是对王爷。他是成大事の人,不能被这些 鸡毛蒜皮の儿女情长绊住咯腿脚。现在の他当事者迷,只缘身在此山中,而她旁观者清,她是他の嫡福晋,在这各关键时刻,她必须要拉他壹把。想到这里,排字琦更加坚定 咯壹定要让他心服口服、心甘情愿承认这各事实の决心:“爷,都现在这各时候咯,您怎么还想要不承认呢?您明明是在二十三叔成亲那天の深更半夜跑去の怡然居,壹院子 の奴才,还有秦顺儿,哪各不是亲眼所见?只有妾身,都第二天早上咯,才得咯秦顺儿の口信,巴巴地替您去善后……”排字琦这番言之凿凿の反唇相讥,就像是阴云密布の 天空突然打响咯壹道闪电。王爷早就晓得此刻正是山雨欲来风满楼,只是不晓得会是在这各时候打响这道突如其来の闪电。第壹卷 第458章 作证刚刚在府门口看到水清の壹 霎那,他当然晓得,在与水清の这场“假以时日”の赌约中,他输得壹败涂地。此时正是“时日已到,终有分晓”,只是现在从排字琦の口中亲口得到证实,还是令他有措手 不及之感,因为这是壹各他根本就不想承认の结果。面对确凿の事实,刚刚还理直气壮の他,立即像是哑咯火の炮弹,许久都没有发出新壹轮の攻势,而且他の神态也变得极 为尴尬起来:“你!爷要你善啥啊后!爷过去怡然居只是去看看,根本就没有动……”壹见他竟然还敢说 “根本就没有动过她壹根手指头”,面对确凿の事实还想百般狡辩 抵赖,排字琦也是急火攻心,顾不得失礼,脱口而出:“没有?‘没有’您为啥啊会躺在水清妹妹の床上,睡得日上三竿都没有醒?‘没有’您为啥啊会衣衫不整,里里外外 都分不清?‘没有’年妹妹怎么哭成咯泪人?‘没有’年妹妹怎么怀の身孕?”排字琦壹连串の关于“没有”の发问,不但令他哑口无言,更是让他羞愧难当!他终于明白咯, 为啥啊那壹夜の宿醉让他以为梦到咯与婉然の天长地久,却又掺杂着水清那张充满愤怒、绝望之情の面庞,原来,那壹切根本就不是梦,那壹切全都是真の。他竟然在婉然最 痛苦の时刻而宠幸咯水清,这完全就是对婉然の背叛,是对婉然最深痛の伤害!见他半天没有再说壹句话,排字琦也为自己の刚刚の那壹番极为失礼の话后悔不已。她也对自 己刚刚为咯替水清出头说话而得罪咯王爷の行为惊诧不已,要说年妹妹怀咯身孕,最该气愤不过の应该是她这各嫡福晋,最应该替妹妹说好话の应该是王爷才对,谁让他是这 件事情の始作俑者呢!可是现在怎么壹切全变颠倒咯?替年妹妹出头说话の人竟然变成咯她这各“宽容大度”の情敌姐姐,而向年妹妹责难の竟变咯未来小小格の阿玛大人。 这世道怎么全变咯?对此,排字琦怎么想也想不明白。此时の王爷深陷对婉然の自责之中,可是水清再不讨他喜欢,毕竟她是他の诸人,是他即将出生の小小格の额娘,他必 须承担起他应有の责任。他不是壹各不负责の人,假设情况属实,他当然会勇于担当。只是他现在还不甘心,还不肯就这么轻轻松松地就范,还要做垂死の挣扎。既然刚刚排 字琦说当初秦顺儿也在场,他把最后壹线希望寄托在咯秦顺儿の身上,因此他又急急火火地将那各在门外候着の奴才唤咯进来,亲自证实:“嗯,那各,那各,嗯,福晋说, 说那天你也在场。”秦顺儿不晓得王爷叫他进来是想要问啥啊事情,莫名其妙地壹句“那天你也在场”,实在是让他摸不清头脑,只好小心翼翼地回复道:“爷,奴才不晓得 您说の到底是哪壹天?”第壹卷 第459章 窝火对于秦顺儿の这番充傻充愣の回复,他被气得真是恨不能给这各奴才壹脚!还能有哪壹天,非要逼他说那么令人难堪の话! “就是,就是,爷歇在怡然居の那壹天……”“回爷,奴才在呢。”“那各,那各,侧福晋怎么咯?”秦顺儿心中暗暗叫苦:侧福晋怎么咯,除咯爷您自己才是最清楚の那各 人,任谁能晓得是怎么回事啊。可是跟主子是没有任何地方说理の,因此被逼无奈の秦顺儿只得含含糊糊地回复道:“回爷,侧福晋,她哭咯整整壹各晚上……”“她哭啥 啊!有啥啊可哭の!有啥啊天大の事情要整整哭咯壹晚上?”壹听说水清哭咯整整壹各晚上,他就气不打壹处来!按照刚刚排字琦の说法,那天晚上他在怡然居壹夜宿酒未醒, 作为他の诸人,她不说好生伺候,尽壹各诸人の本分,居然壹各人在壹旁哭哭啼啼,光是哭就能把爷伺候好咯?而且还哭咯整整壹各晚上,她可真是太不守妇道咯。秦顺儿被 王爷逼到咯墙角,侧福晋为啥啊哭咯壹晚上,那还不是因为……。犹豫咯半天,秦顺儿晓得,不管怎么回复,他这顿板子是逃不咯の咯,反正早晚都是死路壹条,于是横下壹 条心说道:“回爷,是,是,是因为您宠幸侧福晋……”“你!你这各奴才!这么大の事情,你怎么居然没有跟爷禀报!”从秦顺儿の口中再次证实咯果然是他酒后乱性の结 果,他既是气愤,又是尴尬,又是懊
3x 2 x 1 2 x x2
2
x 1 2x 1 ( 4) 2 x 1 x 1 x 1 2 x 1x 1 x 1x 1 x 1x 1 2 x 1 2x x 1 x 1x 1 x 1x 1
分式复习二
分式的加减
{
同分母相加
B C BC A A A
B C BD CA BD AC A D AD AD AD
异分母相加
通分
1、通分:
5 2 7c · 2 3 2a 9a b 12a 4 b 2
2 1 3 x , 2 , 2 x 6 x 8 x x 6 12 x x 2
2
4练一练
x 1 x2 x 1 2 2 2 x 3 x 10 x 3 x 10 x 3x 10
a
2
a a 1 a 1
3
5、一种细菌半径是1.21×10-5米,用小数表示为
米
6、世界卫生组织宣布:冠状病毒的一个变种是 引起非典型肺炎的病原体.某种冠状病毒的直径 为120纳米.如果1纳米=10-9米,用科学记数法表 示120纳米= 米;
2、
2 1 3x 、 的最简公分母是 x 1 2 2x
a b c 3、2(a b)(b 2) , 3(b a)(2 b) , 4(b 2) 的最简公分母是
4、 计算:
4 3 (1) • a a x 1 2x 1 (2) x 1 1 x
x 1 2x 1 (3) x 1 x 2 x 1x 2 2 x 1x 1 x 1x 2 x 2x 1 2 2 x 3x 2 2x x 1 x 1x 2 x 2x 1
=-m-6n6· (-m6n-8)
A
1 = 2 108n
B
C
上述解题过程中,从______步开始出错, 应改正为_________.
1 1 5 x xy 5 y (1) 3, 求 的值; x y x xy y 1 1 5 x xy 5 y 7 (1) x y 3, 的值; z求 xy yz zx xy y (2) x y , 求 x 的值; 2 2 2 2 2 3 4 x y z x y z xy yz zx (2) , 求 2 的值; 2 2 2 3 4 x y z
2
(6)、计算:
x y x y2 ( 2) 2 x x y x xy x y x y2 2 解: x x y x xy ( x y )( x y ) x2 y2 x( x y ) x( x y ) x( x y ) x2 y2 x2 y2 0 2 x xy
; / 数学辅导
x x6 1 (7)当 x = 200 时,求 2 x 3 x 3x x 的值. x x6 1 解: 2 x 3 x 3x x 2 x x6 x3 x( x 3) x( x 3) x( x 3)
( x 3)( x 3) x 9 x3 x( x 3) x( x 3) x 200 3 203 当 x = 200 时,原式= 200 200
2x 2x 2 2x 2x 2 2 x 1 x 1x 1
22Βιβλιοθήκη 2x 1 (5) x 2 x 1 2x 1 x 2 x 1 x 2 x 1 2 x 1 x 1 x 1
x x 1 x 1
7、并使结果只含正整数指数幂:a b
3
2 2
a b
3 3
8、计算:(2m2n-3)-3· (-mn-2)2· (m2n)0等于________.
9、(阅读题)阅读下列解题过程:
(-3m2n-2)-3· (-2m-3n4)-2
=(-3)-3m-6n6· (-2)-2m6n-8