四年级下册数学奥数试题-培优拓展训练--第12讲:流水行船(学生版)
四年级下册数学试题-竞赛思维训练:12流水行船(四年级竞赛)学生版

流水问题有如下两个基本公式:顺水速度=船速+水速逆水速度=船速-水速这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程.另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2一艘轮船在相距300千米的两地航行,顺流而下用了15小时,逆流而上用了25小时,求轮船在静水中的速度和水的流速.一条江上有甲、乙两城,它们之间的水路长208千米.一条船从甲城顺流开往乙城,8小时到达;从乙城返回甲城,13小时到达,问此船在静水中的速度和水流速度?轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则往返一次需要多少时间?甲船、乙船在同一条河流中,甲、乙两船分别从相距1200千米的两地同时出发相向而行,甲船在静水中的速度为每小时60千米,乙船在静水中的速度为每小时90千米,水速为每小时10千米。
问两船几小时后相遇?甲、乙两船在静水中的速度分别是每小时26千米、34千米,两船同时从相距360千米两港出发,相向而行,几小时相遇?同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?一艘轮船在两个码头之间航行,顺水航行需要8小时,逆水航行需要10小时,已知水流速度是每小时3千米,求轮船在静水中的速度?一艘轮船从A地出发去B地为顺流,需10小时;从B地返回A地为逆流,需15小时。
水流速度为每小时10千米。
那么A、B两地间的路程有_______千米。
(中环杯初赛真题)轮船从A地到B地需要2天,从B地到A地需要3天,如果从A地放一个无动力的木筏,漂到B地需要几天?轮船从上游到下游航行需要3天,从下游到上游航行需要5天,如果在开船时丢下一块木板,漂到下游需要几天?一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时。
(完整版)四年级奥数流水行船问题

四年级奥数流水问题【知识重点】流水行船问题和行程问题相同,也是研究行程、速度与时间之间的数目关系。
可是在流水行船问题里,速度会遇到水流的影响,发生了变化,同时还波及水流方向的问题。
行船问题中常用的观点有:船速、水速、顺流速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游随手而行的速度叫顺流速度;船从下游逆水而行的速度叫逆水速度。
各样速度之间的关系:( 1)顺流速度=船速+水速逆水速度=船速-水速( 2)(顺流速度+逆水速度)÷2=船速(顺流速度-逆水速度)÷2=水速1、A、B 两港相距140 千米,一艘客轮在两港间航行,顺流用去7 小时,逆流用10 小时,则轮船的船速和水速每小时分别是多少千米?2、甲、乙两船在静水的速度分别是每小时36 千米和每小时28 千米,今从相隔192 千米的两港同时面对面行驶,甲船逆水而上,乙船顺流而下,那么几小时后两船相遇?3、两码头相距231 千米,轮船顺流行驶这段路需要11 小时,逆水比顺流每小时少行10 千米。
那么行驶这段行程逆水要比顺流需要多用多少小时?4、甲船逆水航行360 千米需 18 小时,返回原地需10 小时,乙船逆水航行相同一段距离需15 小时,返回原地需要几个小时?5、一艘轮船每小时行15 千米,它逆水 6 小时行了72 千米,假如它顺流行驶相同长的航程需要几个小时?6、甲、乙两港间的水道长208 千米,一只船从甲港开往乙港,顺流8 小时抵达,从乙港返回甲港,逆水13小时抵达。
求船在静水中的速度和水速各是多少?7、已知一艘轮船顺流行48 千米需 4 小时,逆水行48 千米需 6 小时。
此刻轮船从上游 A 港到下游 B 港。
已知两港间的水道长为72 千米,开船时一游客从窗口扔到水里一块木板,问船到 B 港时,木块离 B 港还有多远?1、A、B 两港相距140 千米,一艘客轮在两港间航行,顺流用去7 小时,逆流用10 小时,则轮船的船速和水速每小时分别是多少千米?140 ÷7= 20140 ÷ 10= 14(20+ 14) ÷2=17(20- 14) ÷2=3所以船速为17 千米 / 小时,水速为 3 千米 / 小时。
四年级流水行船问题的公式和例题(含答案)

流水行船问题的公式和例题之马矢奏春创作流水问题是研究船在流水中的行程问题,是以,又叫行船问题.在小学数学中涉及到的标题,一般是匀速运动的问题.这类问题的主要特点是,水速在船逆行温顺行中的传染感动不合.流水问题有如下两个底子公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程.公式(1)标明,船顺水航行时的速度等于它在静水中的速度与水流速度之和.这是因为顺水时,船一方面按本身在静水中的速度在水面上行进,同时这艘船又在按着水的流淌速度提高,是以船相对地面的实际速度等于船速与水速之和.公式(2)标明,船逆水航行时的速度等于船在静水中的速度与水流速度之差.按照加减互为逆运算的道理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的随便率性两个,就可以求出第三个.别的,已知某船的逆水速度温顺水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,按照和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米.此船在静水中的速度是若干?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”.5-1=4(千米/小时)分化算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米.*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米.水流的速度是每小时若干千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米.*例3一只船,顺水每小时行20千米,逆水每小时行12千米.这只船在静水中的速度和水流的速度各是若干?解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时)因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)答略.*例4某船在静水中每小时行18千米,水流速度是每小时2千米.此船从甲地逆水航行到乙地需要15小时.求甲、乙两地的路程是若干千米?此船从乙地回到甲地需要若干小时?解:此船逆水航行的速度是:18-2=16(千米/小时)甲乙两地的路程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地需要的时间是:240÷20=12(小时)答略.*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时.已知水速为每小时3千米.此船从乙港前去甲港需要若干小时?解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港前去甲港需要的时间是:144÷12=12(小时)分化算式:(15+3)×8÷(15-3)=144÷12=12(小时)答略.*例6 甲、乙两个船埠相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米.求由甲船埠到乙船埠顺水而行需要几小时,由乙船埠到甲船埠逆水而行需要若干小时?解:顺水而行的时间是:144÷(20+4)=6(小时)逆水而行的时间是:144÷(20-4)=9(小时)答略.*例7一条大河,河中心(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米.一只船在河中心顺流而下,6.5小时行驶260千米.求这只船沿岸边前去原地需要若干小时?解:此船顺流而下的速度是:260÷6.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边逆水而行的速度是:32-6=26(千米/小时)此船沿岸边前去原地需要的时间是:260÷26=10(小时)分化算式:260÷(260÷6.5-8-6)=260÷(40-8-6)=260÷26=10(小时)答略.*例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时.顺水行150千米需要若干小时?解:此船逆水航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米需要的时间是:150000÷10000=15(小时)分化算式:150000÷(120000÷24+2500×2)=150000÷(5000+5000)=150000÷10000=15(小时)答略.*例9一只轮船在208千米长的水路中航行.顺水用8小时,逆水用13小时.求船在静水中的速度及水流的速度.*例10 A、B两个船埠相距180千米.甲船逆水行全程用18小时,乙船逆水行全程用15小时.甲船顺水行全程用10小时.乙船顺水行全程用几小时?演习1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港.从乙港出航需要6小时,求船在静水中的速度和水流速度?.演习2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米.这只船在甲、乙两港之间往返一次,共用去6小时.求甲、乙两港之间的航程是若干千米?演习3、一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地前去甲地,比逆水航行提前2. 5小时到达.已知水流速度是每小时3千米,甲、乙两地间的距离是若干千米?演习4、一轮船在甲、乙两个船埠之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程.已知水流速度是每小时3千米,求甲、乙两船埠之间的距离?。
四年级流水行船问题练习题

四年级流水行船问题练习题一、选择题1. 下列哪个选项中的船只能逆流而行?A. 快艇B. 靠桥拖船C. 电动游船2. 下列哪个选项中的船只能顺流而行?A. 靠桥拖船B. 快艇C. 电动游船3. 小明乘坐快艇沿着一条河流顺流而下,然后又原路返回到起点。
他的速度与河流的流速相等。
小明在行驶过程中是否消耗了燃料?A. 是B. 否4. 当船只逆流而行时,它的速度等于下列哪个速度相加?A. 船自身前进速度与河流流速的差值B. 船自身前进速度与河流流速的和值C. 船自身前进速度与河流流速的积值5. 如果一艘快艇顺流行驶的速度是12千米/小时,而河流的流速是4千米/小时,该快艇的逆流速度是多少千米/小时?A. 8B. 12C. 16二、填空题1. 某船的速度是10千米/小时,河流的流速是3千米/小时,如果该船逆流而行,它的速度是______千米/小时。
2. 如果小明乘坐的电动游船的速度是8千米/小时,而河流的流速是2千米/小时,小明顺流而行时的实际速度是______千米/小时。
3. 某船的速度是15千米/小时,如果它在静水中顺流行驶,它的速度是______千米/小时。
4. 快艇与靠桥拖船都行驶在同一河流中,且二者的速度相同。
假设河流的流速为4千米/小时,快艇逆流而行时速度是10千米/小时,那么靠桥拖船逆流而行的速度也是______千米/小时。
三、解答题1. 简单解释顺流和逆流的意思,并举一个生活中的实例说明。
2. 一艘小船在水中顺流行驶10千米,然后逆流行驶同样的距离回到原点。
假设顺流时速度为x千米/小时,逆流时速度为y千米/小时,河流的流速为v千米/小时。
请根据题意列出方程表达式,并求解出x、y和v的值。
四、应用题1. 在一个湖中,一艘快艇以常速行驶,从A点到B点需要3小时。
若该湖中有一条河流,从C点流入,流经B点最后流出。
在这条河流中,水的流速为1千米/小时。
快艇从A点出发后,仍以相同的速度驶向B点,但这次需要4小时到达。
奥数专题_流水行船问题(带答案完美排版)(可编辑修改word版)

流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208 千米,一只船从甲港开往乙港,顺水8 小时到达,从乙港返回甲港,逆水13 小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21 千米,水流速度每小时 5 千米.例2、某船在静水中的速度是每小时15 千米,它从上游甲地开往下游乙地共花去了8 小时,水速每小时3 千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
四年级奥数-流水行船

【例3】(★★) 有甲乙两船航行于360千米的两港口之间,甲逆水行全程用18小时, 乙逆水行全程用12小时,甲顺水行全程用12小时,乙顺水行全程要用 多长时间?
【例4】(★★) 一艘轮船顺流航行120千米,逆流航行80千米共用时16小时;顺流航 行60千米,逆流航行120千米也用时16小时。求水流的速度。
【例7】(★★★★) 甲、乙两船分别从A港顺水而下至480千米外的B港,静水中甲船每小 时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发 后1.5小时,甲船才出发,到B港后返回与乙迎面相遇,此处距A港多 少千米?
2
ห้องสมุดไป่ตู้
流水行船
【例1】(★) ⑴一只船在长江上的相距360千米的A、B两港间航行,顺流而下用了 12小时,已知长江的水速为5千米/小时。求这艘船的速度? ⑵一只渔船在顺水每小时行12千米,逆水每小时行8千米,该船在静 水中的速度和水速各是多少?
【例2】(★★) 一条大河 条大河,河中间的水流速度是每小时 河中间的水流速度是每小时8千米,沿岸边的水流速度是 千米 沿岸边的水流速度是 每小时6千米,一条船在河中间顺流而下,13小时行520千米,这条船 沿岸边逆行 岸 520千 千米,要多少小时? ,
【例6】(★★★) ⑴小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他 们发现并调过船头时,水壶与船已经相距12千米,假定小船的速度 是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要 多少时间? ⑵凡凡在长江游泳,逆流而上,在A处丢失一只水壶,她向前又游了 20分钟后,才发现丢失了水壶,立即返回追寻,在离 分钟后 才发现丢失了水壶 立即返回追寻 在离A处2千米的地 方追到,水流速度是每小时多少千米?
1
四年级流水行船问题的公式和例题含答案精修订
四年级流水行船问题的公式和例题含答案GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
四年级下册数学奥数试题-培优拓展训练--第12讲:流水行船(教师版)
第12讲流水行船划销训练1.问题简介。
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题(又叫流水问题)。
2.基本公式。
逆水船速=净水船速-水流速度;顺水船速=净水船速+水流速度。
3.推论。
静水船速=(顺水船速+逆水船速)÷2;水流速度=(顺水船速-逆水船速)÷2。
4.问题引申。
除此以外,在流水行船问题中还经常运用到一条性质:河流漂流物体速度=水流速度。
在相同的一条河流中,甲乙两船的速度有如下数量关系。
甲船顺(逆)水速度+乙船逆(顺)水速度=甲船静水船速+乙船静水船速。
同样的在追及问题也有类似的数量关系:甲船顺(逆)水速度-乙船顺(逆)水速度=甲船静水船速-乙船静水船速。
第一流水行程问题中静水速度,水流速度,顺水速度,逆水速度之间的关系;第二分析与判断流水行程中的路程速度与时间关系.;第三流水相遇与追及问题中速度和与速度差与水速无关的运用。
小白兔住在一条河的上游,但是它每天都要划船到下游去采摘蔬菜,船在静水中的速度是80米/分,水流的速度是20/分,小白兔早晨出发去采摘蔬菜,需要30分钟才能到达,小白兔采摘蔬菜的地方有多远?回来需要多长时间?考点:船在顺水中的问题、船在逆水中的问题。
分析:路程=(船在静水中的速度+水流的速度)×时间,回来需要的时间=路程÷(船在静水的中速度-水流的速度)。
解答:小白兔采摘蔬菜的距离:(80+20)×30=3000(米);回来需要的时间:3000÷(80-20)=50(分)。
点评:难度适中,考查公式的综合运用能力。
例1.甲、乙两船在静水中的速度分别为33千米/小时和25千米/小时,两船从相距232千米的两港同时出发相向而行,几小时后相遇?如果同向而行,甲船在后乙船在前,几小时后甲船可以追上乙船?考点:船在静水中的问题。
分析:此题属于流水行船的静水问题,不需要考虑水流的速度,第一问求两船相遇的时间,可直接用距离除以两船的速度之和即可;第二问求几小时后甲船追上乙船,用他们出发时的距离除以它们的速度差即可。
小学四年级奥数习题:流水行船
小学四年级奥数习题:流水行船流水行船是四年级奥数非常经典的习题,大家对于这种题目掌握的如何呢?下面就是小编为大家整理的流水行船奥数题,希望对大家有所帮助!习题一一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
解:设静水速度为x。
总路程是相同的。
6×(x+2.5)=8×(x-2.5)6x+15=8x-20x=17.5答:静水速度为17.5千米/小时。
习题二两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷2=(38-22)÷2=8(千米/时)答:这条河的水流速度为8千米/时。
习题三已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).答:船到B港时,木块离B港还有60米.。
小学生奥数流水行船问题、对策问题、年龄问题练习题及答案
小学生奥数流水行船问题、对策问题、年龄问题练习题及答案1.小学生奥数流水行船问题练习题及答案篇一汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?依据船逆流在176千米的河中所需航行时间是11小时,可以求出逆流的速度。
返回原地是顺流而行,用行驶路程除以顺流速度,可求出返回所需的时间。
逆流速:176÷11=16(千米/时)所需时间:176÷[30+(30—16)]=4(小时)答:返回原地需4小时。
2.小学生奥数流水行船问题练习题及答案篇二有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。
甲船行4小时后与漂流物相距100千米,乙船行12小时后与漂流物相遇,两船的划速相同,河长多少千米?漂流物和水同速,甲船是划速和水速的和,甲船4小时后,距漂流物100千米,即每小时行100÷4=25(千米)。
乙船12小时后与漂流物相遇,所受的阻力和漂流物的速度等于划速。
这样,即可算出河长。
列算式为船速:100÷4=25(千米/时)河长:25×12=300(千米)答:河长300千米。
3.小学生奥数流水行船问题练习题及答案篇三船行于120千米一段长的江河中,逆流而上用10小时,顺流而下用6小时,水速是(),船速是()。
解答:根据题意可得:逆流而上的速度是:120÷10=12(千米/小时);顺流而下的速度是:120÷6=20(千米/小时);由和差公式可得:水速:(20—12)÷2=4(千米/小时);船速:20—4=16(千米/小时)答:水速是4千米/小时,船速是16千米/小时。
故答案为:4千米/小时,16千米/小时。
4.小学生奥数流水行船问题练习题及答案篇四一只轮船在208千米长的水路中航行。
顺水用8小时,逆水用13小时。
求船在静水中的速度及水流的速度。
解:此船顺水航行的速度是:208÷8=26(千米/小时)此船逆水航行的速度是:208÷13=16(千米/小时)由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是:(26+16)÷2=21(千米/小时)由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是:(26-16)÷2=5(千米/小时)5.小学生奥数流水行船问题练习题及答案篇五一艘船往返于一段长240千米的两个港口之间,逆水而行15小时,顺水而行12小时,求船在静水中航行的速度与水速各是多少?分析:用路程除以逆水而行的时间,求出逆水速度;用路程除以顺水而行的时间,求出顺水速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲流水行船
划消训练
1.问题简介。
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题(又叫流水问题)。
2.基本公式。
逆水船速=净水船速-水流速度;
顺水船速=净水船速+水流速度。
3.推论。
静水船速=(顺水船速+逆水船速)÷2;
水流速度=(顺水船速-逆水船速)÷2。
4.问题引申。
除此以外,在流水行船问题中还经常运用到一条性质:河流漂流物体速度=水流速度。
在相同的一条河流中,甲乙两船的速度有如下数量关系。
甲船顺(逆)水速度+乙船逆(顺)水速度=甲船静水船速+乙船静水船速。
同样的在追及问题也有类似的数量关系:
甲船顺(逆)水速度-乙船顺(逆)水速度=甲船静水船速-乙船静水船速。
第一流水行程问题中静水速度,水流速度,顺水速度,逆水速度之间的关系;第二分析与判断流水行程中的路程速度与时间关系.;第三流水相遇与追及问题中速度和与速度差与水速无关的运用。
小白兔住在一条河的上游,但是它每天都要划船到下游去采摘蔬菜,船在静水中的速度是80米/分,水流的速度是20/分,小白兔早晨出发去采摘蔬菜,需要30分钟才能到达,小白兔采摘蔬菜的地方有多远?回来需要多长时间?
例1.甲、乙两船在静水中的速度分别为33千米/小时和25千米/小时,两船从相距232千米的两港同时出发相向而行,几小时后相遇?如果同向而行,甲船在后乙船在前,几小时后甲船可以追上乙船?
考点:船在静水中的问题。
分析:此题属于流水行船的静水问题,不需要考虑水流的速度,第一问求两船相遇的时间,可直接用距离除以两船的速度之和即可;第二问求几小时后甲船追上乙船,用他们出发时的距离除以它们的速度差即可。
解答:相遇的时间:232÷(33+25)=8(小时);
甲船追上乙船的时间:232÷(33-25)=29(小时)。
点评:难度较为简单,考查基本内容。
例2.一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行
需要7小时,求:这两个港口之间的距离。
考点:船在顺水中的问题、船在逆水中的问题。
分析:此题中既包含顺水问题,有包含逆水问题,首先我们考虑,两港口之间的距离=(船在静水中的速度+水流速度)×时间1=(船在静水中的速度-水流速度)×时间2。
通过变换我们可以发现,船在静水中的速度=水流速度×(时间1+时间2)÷(时间2-时间1)。
两港口间距离=(船在静水中的速度+水流的速度)×时间1。
解答:船在静水中船速=6×(7+4)÷(7-4)=22(千米/时),两港口间距离=(22+6)×4=112(千米/时)。
点评:难度很大,考查变换的能力,综合解决问题的能力。
例3.某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?
考点:船在顺水中的问题、船在逆水中的问题。
分析:由题意根据公式,可知甲、乙两地的路程=(船在静水中的速度-水流的速度)×时间;船从乙地回到甲地是顺水而行,因此从乙地到甲地需要的时间=(船在静水中的速度+水流的速度)×时间。
解答:此船逆水航行的速度是:18-2=16(千米/小时),甲乙两地的路程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时),此船从乙地回到甲地需要的时间是:240÷20=12(小时)。
点评:此题难度适中,解答稍微复杂。
例4.某船在静水中的速度是每小时15千米,它从上游的甲港开往下游的乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?
考点:船在顺水中的问题、船在逆水中的问题。
分析:知道船在静水的船速、水流的速度和时间,可以求出甲港和乙港的距离=(船在静水中的速度+水流的速度)×时间,从乙港返回甲港是逆水而行,因此用甲港和乙港的距离除以船在逆水中的速度,就是从乙港返回甲港需要的时间。
解答:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)。
点评:难度适中,考察基本知识的运用能力。
例5.甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?
考点:船在顺水中的问题、船在逆水中的问题。
分析:已知两个码头的距离,船在静水中的速度以及水流的速度,用两个码头的距离除以船在顺水中的速度就是由甲码头到乙码头需要的时间,用两个码头的距离除以船在逆水中的速度就是由乙码头到甲码头需要的时间。
解答:顺水而行的时间是:144÷(20+4)=6(小时)逆水而行的时间是:144÷(20-4)=9(小时)。
点评:难度较低,考察基本知识的掌握。
A
1.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返
回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
2.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,
水速每小时3千米,问从乙地返回甲地需要多少时间?
3.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5
小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?
4.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,
水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
5.甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336
千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?
B
6.两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为
4千米/小时,求逆水行完全程需几小时?
7.两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9
千米,逆水比顺水需要多用几个小时行完全程?
C
8.A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航.如果相向而行
3小时相遇,如果同向而行15小时甲船追上乙船,求两船在静水中的速度。
9.乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,
用了3小时.甲船返回原地比去时多用了几小时?
1.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13
小时,问船速和水速各为每小时多少千米?
2.一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,
需要行几个小时?
3.一只小船静水中速度为每小时30千米.在176千米长河中逆水而行用了11个小时.求返
回原处需用几个小时。
4.一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小
时所行的路程相等.求船速和水速。
5.两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需
要16小时,求这条河水流速度。
6.A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航.如果相向而行
3小时相遇,如果同向而行15小时甲船追上乙船,求两船的速度。
7.乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,
用了3小时.甲船返回原地比去时多用了几小时?
1.两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时。
乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?
2.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时。
现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?
3.某船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?
4.有甲、乙两艘船,甲船在静水中的速度是26千米/时,乙船在静水中的速度是24千米/时,水流的速度是2千米/时,它们从A、B两港出发,甲在上游的A港,乙在下游的B港,两港相距200千米,它们同时相向而行,多长时间以后相遇?
5.一艘船在从A地到B,用时9小时,水流的速度是2千米/时,船在逆水中行驶的速度是16千米/小时,求A、B两地的距离。
6.一艘渡轮在静水中每小时行9千米,在一段河中逆水航行3小时行了21千米。
这条河水流的速度是多少?
课程顾问签字: 教学主管签字:。