初中数学知识点总结(修改版)

合集下载

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结初中数学知识点总结总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总结了。

那么我们该怎么去写总结呢?以下是小编帮大家整理的初中数学知识点总结,欢迎阅读,希望大家能够喜欢。

初中数学知识点总结1一、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

二、相交线与平行线1、知识网络结构2、知识要点(1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

(2)在同一平面内,不相交的两条直线叫平行线。

如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

(3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角的性质:邻补角互补。

如图1所示,与互为邻补角,与互为邻补角。

+=180°;+=180°;+=180°;+=180°。

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时,易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。

注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。

易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

三、函数易错点1:各个待定系数表示的意义。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

初中数学知识点全总结(完整版)

初中数学知识点全总结(完整版)

(2)有理数的分类 :
① 有理数
正有理数 零 负有理数
正整数 正分数
负整数
负整数
分数
正分数 负分数
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线
.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;
0 的相反数还是 0;
(2)相反数的和为 0 a+b=0 a、 b 互为相反数 .
14.乘方的定义: ( 1)求相同因式积的运算,叫做乘方; ( 2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于 10 的数记成 a3 10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫 科学记数法 .
16. 近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位
( 1)读题分析法 :,,,,
多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如: “大,小,多,少,是,共,合,为,完成,增加,减少, 配套 -----”,利用这些关键字列出文字等式, 并且据题意设出未知数, 最后利用题目中的量与量的关系填入代
数式,得到方程 .
( 2)画图分析法 : ,,,,
,研究了两条直线相交时的形成
的角的特征 ,两条直线互相垂直所具有的特性 ,两条直线平行的长期共存条件和它所有的特征以及有关图形平
移变换的性质 ,利用平移设计一些优美的图案 . 重点 :垂线和它的性质 , 平行线的判定方法和它的性质 ,平移和它
的性质 ,以及这些的组织运用 . 难点 :探索平行线的条件和特征 ,平行线条件与特征的区别 ,运用平移性质探索图 形之间的平移关系 , 以及进行图案设计。

(完整版)初中数学知识点小结(全)-精品,推荐文档

(完整版)初中数学知识点小结(全)-精品,推荐文档

初中数学知识点总结一、基本知识(一)、数与代数A、数与式:1、有理数有理数:数轴①:整数:正整数、0、负整数;②分数:正分数、负分数;①画一条水平直线,在直线上取一点表示 0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于 0,负数小于 0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是 0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与 0 相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与 0 相乘得 0。

③乘积为 1 的两个有理数互为倒数。

除法:①除以一个数等于乘以这个数的倒数。

②0不能作除数。

乘方:求n 个相同因数a 的积的运算叫做乘方, a n 乘方的结果叫幂,a 叫底数,n 叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数x 的平方等于a ,那么这个正数x 就叫做a 的算术平方根。

②如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根。

③一个正数有2 个平方根,0 的平方根为0,负数没有平方根。

④求一个数a 的平方根运算,叫做开平方,其中a 叫做被开方数。

立方根:①如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根。

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、讲话致辞、条据书信、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, speeches, policy letters, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初中数学知识点总结初中数学知识点总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以帮助我们总结以往思想,发扬成绩,让我们来为自己写一份总结吧。

(完整版)初中数学知识点小结(全)

初中数学知识点总结一、基本知识(一)、数与代数A、数与式:1、有理数有理数:①整数:正整数、0、负整数;②分数:正分数、负分数;数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以这个数的倒数。

②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,n a乘方的结果叫幂,a叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

③一个正数有2个平方根,0的平方根为0,负数没有平方根。

④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)初中数学知识点总结归纳(完整版)总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以提升我们发现问题的能力,让我们一起认真地写一份总结吧。

你所见过的总结应该是什么样的?以下是小编为大家整理的初中数学知识点总结归纳(完整版),欢迎阅读与收藏。

初中数学知识点总结归纳(完整版) 篇11、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质:⑴矩形具有平行四边形的一切性质;⑵菱形的四条边都相等;⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

初中数学知识点总结大全(完整版)

初中数学必考知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数。

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 第一章 实数 考点一、实数的概念及分类 (3分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如32,7等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001„等; (4)某些三角函数,如sin60o等 考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 (3—10分) 1、平方根 如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“a”。 2、算术平方根 正数a的正的平方根叫做a的算术平方根,记作“a”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a(a0) 0a

aa2 ;注意a的双重非负性:

-a(a<0) a0 3、立方根 如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。 第2页

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33aa,这说明三次根号内的负号可以移到根号外面。 考点四、科学记数法和近似数 (3—6分) 1、有效数字 一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。 2、科学记数法

把一个数写做na10的形式,其中101a,n是整数,这种记数法叫做科学记数法。 考点五、实数大小的比较 (3分) 1、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数,

,0baba

,0baba baba0 (3)求商比较法:设a、b是两正实数,;1;1;1babababababa

(4)绝对值比较法:设a、b是两负实数,则baba。 (5)平方法:设a、b是两负实数,则baba22。 考点六、实数的运算 (做题的基础,分值相当大) 1、加法交换律 abba

2、加法结合律 )()(cbacba 3、乘法交换律 baab 4、乘法结合律 )()(bcacab

5、乘法对加法的分配律 acabcba)( 6、实数的运算顺序 先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 第3页

第二章 代数式 考点一、整式的有关概念 (3分) 1、代数式 用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。 2、单项式 只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如ba2314,这种

表示就是错误的,应写成ba2313。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如cba235是6次单项式。 考点二、多项式 (11分) 1、多项式 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 单项式和多项式统称整式。 用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。 (2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。 2、同类项 所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 3、去括号法则 (1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。 (2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。 4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数nmaaanmnm

),(都是正整数)(nmaamnnm )()(都是正整数nbaabnnn 22))((bababa

2222)(bababa

2222)(bababa

整式的除法:)0,,(anmaaanmnm都是正整数 注意:(1)单项式乘单项式的结果仍然是单项式。 (2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。 第4页

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数paaaaapp (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。 考点三、因式分解 (11分) 1、因式分解 把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。 2、因式分解的常用方法

(1)提公因式法:)(cbaacab

(2)运用公式法:))((22bababa 222)(2bababa

222)(2bababa

(3)分组分解法:))(()()(dcbadcbdcabdbcadac (4)十字相乘法:))(()(2qapapqaqpa 3、因式分解的一般步骤: (1)如果多项式的各项有公因式,那么先提取公因式。 (2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式 (3)分解因式必须分解到每一个因式都不能再分解为止。 考点四、分式 (8~10分) 1、分式的概念

一般地,用A、B表示两个整式,A÷B就可以表示成BA的形式,如果B中含有字母,式子BA就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则

;;bcadcdbadcbabdacdcba

);()(为整数nbabannn ;cbacbca 第5页

bdbcaddcba

考点五、二次根式 (初中数学基础,分值很大) 1、二次根式

式子)0(aa叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。 2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。 化二次根式为最简二次根式的方法和步骤: (1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。 (2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。 3、同类二次根式 几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。 4、二次根式的性质

(1))0()(2aaa

)0(aa (2)aa2 )0(aa (3))0,0(babaab (4))0,0(bababa 5、二次根式混合运算 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

相关文档
最新文档