基桩低应变检测的实例分析与处理方法

合集下载

基桩低应变检测报告

基桩低应变检测报告

基桩低应变检测报告一、项目背景:基桩是指在地下土层中,为了增加地基承载能力,而通过打入的钢筋混凝土、预应力混凝土或木材桩等。

基桩作为地基工程中的重要组成部分,对于地下结构的承载能力和稳定性起着举足轻重的作用。

因此,基桩的质量控制和检测是非常重要的。

二、检测目的:本次基桩低应变检测的目的是为了评估基桩在荷载作用下的变形情况以及基桩的承载性能,为工程的安全运行提供依据。

三、检测方法:本次低应变检测采用的是激光位移传感器进行测量,通过记录不同荷载作用下基桩的竖向位移,进而计算基桩的应变情况。

具体的检测步骤如下:1.在被检测的基桩上选择适当的测点,每个测点进行三次测量;2.使用激光位移传感器对测点的竖向位移进行测量,并记录测量数据;3.根据测得的位移数据计算出相应的应变情况。

四、检测结果:经过对多个基桩进行低应变检测,得到了以下的检测结果:1.测定不同荷载作用下基桩的竖向位移,并计算得到相应的基桩应变;2.综合分析各个测点的位移和应变数据,评估基桩的受力情况;3.比较不同基桩之间的位移和应变数据,评估基桩的稳定性。

五、结论:根据本次低应变检测的结果,得出以下结论:1.基桩在受到不同荷载作用下出现位移,但位移值较小且接近线性关系,说明基桩具有较好的强度和承载能力;2.基桩在受到荷载作用下的应变值较小,说明基桩的变形能力较低,具有较好的刚性;3.各个测点的位移和应变数据基本一致,说明基桩的受力情况均匀,不存在明显的不均匀沉陷或倾斜现象;4.不同基桩之间的位移和应变数据变化不大,说明基桩的稳定性较高,具有较好的一致性。

六、建议:根据本次低应变检测的结果和结论,提出以下建议:1.对于基桩的设计和施工,继续保持较高的质量标准,以确保基桩的强度和承载能力;3.对于基桩的检测和监测,应加强日常的巡视和维护,及时发现潜在的问题,避免事故的发生;4.对于未来的类似工程,可以参考本次检测的经验和结果,以提高工程的质量和安全性。

基桩低应变检测方法及在工程检测中的应用

基桩低应变检测方法及在工程检测中的应用

基桩低应变检测方法及在工程检测中的应用摘要:低应变检测技术的应用优势较为明显,是很多建筑工程桩基检测使用较为频繁的一种技术。

要想保证低应变检测技术能够在建筑行业得到较好的推广与应用,还应该对低应变检测技术不断优化、创新,研究人员要站在技术视角将其原理深层次分析,在此基础之上,根据当前建筑行业桩基检测实际情况,尽可能地促进技术优势的发挥,为桩基施工高效开展提供技术保障。

文章对基桩低应变检测技术应用进行了详细探索,以供借鉴。

关键词:基桩;低应变检测;桩身缺陷;完整性1低应变检测法1.1 低应变基桩检测概况用手锤、力棒对基桩桩顶进行敲击,或者用激振器对基桩桩顶进行激振处理,由于这种方法产生的动能较小,所以应变约为十万分之一,通过在基桩桩顶量测时域波形来对桩身完整性进行推定,非常适用于检测混凝土桩身的完整性和缺陷程度。

当采用此法对建筑基桩进行检测时,受检基桩的桩身混凝土强度至少需要达到设计强度的70%。

在工程实践中通过分析归纳非嵌岩桩、嵌岩桩和缺陷桩的低应变波曲线特征,可为同类别桩的检测工作和相关研究提供实际工程经验[1]。

1.2低应变检测技术的难点1.2.1桩身截面性质不稳定低应变反射波法是以一维线弹性杆件模型为依据,对薄壁钢管桩和异形桩不适用。

而对于桩身截面多变实测信号紊乱的桩,其截面性质不稳定的桩身波形响应会出现多次缺陷反射波信号后出现桩底无信号显示,造成桩长和桩底沉渣界限的误判。

1.2.2低应变典型波形的不确定性低应变检测波形受到很多因素影响,有专家提出在低应变检测前制备混凝土模型桩,以充分表达桩身缩颈、桩身断裂和桩身扩径等典型缺陷的波形响应特征,但在检测实践中建立该模型十分困难,即便存在模型桩波形响应特点或邻近工区的经验波形指定值,也会因为工程桩的埋置形式、埋置时间和桩身所处的岩土环境差异而发生改变,因此低应变检测结果具有多解性,给基桩完整性的精确判定带来困扰,低应变检测必须结合其他检测方法才能有效控制桩身缺陷靶点。

低应变法在基桩检测中的典型波形分析

低应变法在基桩检测中的典型波形分析
评 为 Ⅱ类 桩 。
图6 桩 端 反 射不 明显 的桩
棒 重新检 测 ,或通 过取 芯进一 步查 明原 因 。该 桩更换 大 锤 进行检 测后可 以见 到桩底 ( 图7 ) 。经取 芯检 测桩 身无 缺 陷 、桩底 嵌岩情 况 良好 ,评 为 I类桩 。
2 . 3 震荡 曲线桩 波形 ( 图4  ̄ 5 )
2 3 . 8 5 m,桩底 嵌岩情 况 良好 ,评 为 I类桩 。建 议对 有震 荡 曲线 的桩 ,应该 换用 不 同材 质 的测锤 或 者小 的力棒 ,
排除 桩头 缺陷 ,这样得 到 的图形缺 陷波 更为清 晰 。
圈7 更 换 大 锤重 新 检 测 后 见 到桩 底
2 5 波 速偏 低 的嵌岩桩 波形
回福 建 交 通 科 技2 0 1 3 年 第 3 期
或 者地 质情况 有变 化 。经 查该 处的钻 探地 质图 ,地质 情 况 良好没 有淤 泥质 土夹层 。2 1 m以 下桩基 进 入岩 层 。波 速3 8 0 0 m/ s 基 本 正 常 。可 以 肯定 桩 身存 在缺 陷 。但 是 到 底 是什 么缺 陷还 是要借 助取芯 检测进 行最 后确 定 。因为 在 低 应变检 测中 ,缩径 、离析 、夹泥 、断桩 都会 产 生同
的 准确 性及 报告 质量 。
关 键词 基桩 检 测 低应变 典 型 波 形 分 析
1 概 述
基桩 检 测作 为基 础工 程验 收 的重要 环节 ,对 保证 整 个 工程 建设 的安 全稳 定起 着 十分 重要 的作 用 。特 别是 低 应变 检 测 ,由于 仪器 先进 轻巧 、使 用便捷 ,理论 与 实践 发 展 比较成 熟 ,加上 有 比较先 进 的分析 软件 ,在 检 测工

低应变检测技术-杨永波

低应变检测技术-杨永波

一、原理的相关问题
应力波的特性: (2)波的叠加原理: 两列波相遇后,仍然保持他们各自的特性(频率、波长、振 幅、震动方向等)不变,并按照原来的方向继续前进,好象
没有遇到过其它波一样。
在相遇区域内,任一点的振动为两列波单独存在时在该点所 引起的振动位移的矢量和。
一、原理的相关问题
按应力波中的应力大小分类 如果应力波中的应力小于介质的弹性极限,则介质中传播 弹性波,否则将传播弹塑性波; 若介质为粘性介质,视应力是否大于介质的弹性极限,将 传播粘弹性波或粘弹塑性波。 弹性波传过后,介质的变形能够完全恢复,弹塑性波则将 引起介质的残余变形,粘弹性波和弹塑性波引起的介质变 形将有一时间滞后。

一、原理的相关问题
E
F A AE AE u z
一维杆中的波动方程
F M 1 F M AE
u u 2u 2u AE AE 2 dz AE 2 dz z z z z
F(m-1) u(m-1)
一、原理的相关问题
2、怎么描述完整性? 定性到定量,V、F、F-ZV 3、为什么? 一维应力波 弹性理论(弹簧)
一、原理的相关问题
一维应力波的基本假定:(一维线弹性杆件:d<<L的杆件)
研究一维等截面均匀长杆的纵向波动,为使问题得到简化,两个 基本假设
第一基本假设 杆截面在变形过程中保持为平面,沿轴向只有均布的轴向应力。从而使各 运动参量都只是X和t的函数,问题化为一维问题。 第二基本假设 将材料的本构关系限于应变率无关理论,即认为应力只是应变的单值函数, 不计入应变率对应力的影响,这样材料的本构关系可写为
低应变检测技术
低应变检测技术

低应变(反射波法)检测培训_OK

低应变(反射波法)检测培训_OK
19
(3)离析(断)桩 工程桩9#,桩长10.25m。该桩现场实测波反射较强,往后同
样出现多次反射、其反射时间间隔相等,无法找出桩底反射位 置。按本工程的完整桩平均波速反算,该桩身在2m—2.2m处全 断。
20
现场钻芯取样,桩顶上部0.2m厚度无骨料,0.2—2.0m段芯样 表面有蜂窝、麻面,水泥渗量少,胶结较差,2.0—6.15m段, 砼芯破碎严重,部分砂、石分离无胶结,6.15m至桩底砼芯样 连续,呈柱状表面光滑、断口吻合、胶结较好,桩底与持力 层接触面清晰。该桩钻芯结果与低应变反射波检测结果较为 一致。
4
(二)应力波在波阻抗界面处的反射和透射 设一维平面应力波沿桩身传播到达一与传播反向垂直的 波阻抗界面。
5
根据应力波理论,由连续性条件和牛顿第三定律有
vI+vR=vt
(3)
A1(ơ1+ ơr)=A2ơt (4)
式中:v、ơ分别表示应力波的速度和应力,下标I、R、T分 别表示入射波、反射波和透射波。由波阵面动量守恒条件, 由式(4)得
与反射波同相位,并在缺陷处波形非常明显反射,反射时间为 1.41ms,按本工程完整桩的平均波速,计算出该桩实测缺陷在 2.3m处。
18
现场钻芯取样,上部0—2.30m段砼芯样连续完整,呈柱状及 短柱状,表面光滑,断口吻合,骨料分布较为均匀。中部2.40— 5.80m段砼芯样较为松散,胶结较差或无胶结现象,取中部较 为完整呈柱状体芯样,进行砼试块试压,其最大砼抗压强度 为14.1Mpa。钻芯结果与反射波检测法基本吻合。
27
2、桩身缺陷位置确定
X=1/2000⊿txC
X=1/2·c/⊿f′
采用本方法确定桩身缺陷的位置是有误差。
原因一:

桩基低应变法检测要求及常见案例分析

桩基低应变法检测要求及常见案例分析

桩基低应变法检测要求及常见案例分析【摘要】文章根据工程检测实际提出桩基低应变法从信号采集到判定过程中的检测要求,并通过检测工作中的一些实例,总结灌注桩、预应力管桩低应变波法检测过程中的常见问题,并进行桩身完整性的分析。

【关键词】低应变法;检测要求;案例分析中图分类号:u655.55+2 文献标识号:a 文章编号:2306-1499(2013)03-(页码)-页数1.引言随着社会经济的迅速发展,高层建筑物、深基坑工程的项目日益增多。

为满足工程建设的需要,大直径灌注桩、预应力管桩在地基处理中已广泛使用。

但灌注桩出现缩颈、断裂、夹泥、离析,预应力管桩出现桩断裂、错位、对接部位脱焊等质量通病不容忽视。

为确保桩基工程的施工质量,根据《建筑基桩检测技术规范》(jgj106-2003)和《建筑地基基础检测规程》(dgj32/tj 142-2012)的低应变法有关检测要求,进行桩身完整性的检测,并及时反馈检测结果给质量监督机构、建设单位、设计单位、施工单位,以对桩身质量问题采取补救措施,可以有效的减少工程地基基础质量事故的发生,确保建筑物上部结构的施工质量及安全。

2 桩基低应变检测的要求2.1 低应变法检测抽样数量要求根据《建筑基桩检测技术规范》(jgj106-2003)规定:(1)柱下三桩或三桩以下的承台抽检桩数不得少于1根;(2)设计等级为甲级,或地质条件复杂、成桩质量可靠性较低的灌注桩,抽检数量不应少于总桩数的30%,且不得少于20根;其他桩基工程的抽检数量不应少于总桩数的20%,且不得少于10根;(3)对于地下水位以上且终孔后桩端持力层已通过核验的人工挖孔桩,以及单节混凝土预制桩,抽检数量可适当减少,但不应少于总桩数的10%,且不应少于10根。

根据《建筑地基基础检测规程》(dgj32/tj142-2012)规定:(1)混凝土灌注桩桩身完整性采用低应变法,抽检数量不应少于同条件下的总桩数的50%,且不得少于20根,每个承台抽检桩数不得少于1根;对柱下四桩或四桩以上的承台工程,抽检数量还不应少于相应桩数的50%。

桩基低应变法检测要求及常见案例分析

桩基低应变法检测要求及常见案例分析

筑基桩检测技术规 范》 ( J G J 1 0 6 — 2 0 0 3 )和 《 建筑地基基础检 测规程》 ( D G j - 3 2 / T J 1 4 2 — 2 0 1 2 ) 的低 应 变 法 有 关 检 测 要 求 , 进行 桩身完整性 的检测 ,并及 时反馈检 测结果给质量 监督机 构 、建 设单位 、设计 单位 、施 工单位 ,以对 桩身质量 问题采 取补救措施 , 可 以有效的减少工程 地基基础质量事故 的发生 , 确保建筑物上部结构 的施工质量及安全 。
使 其 松 动 返 回 土 仓 继 续 搅 拌 与 泥 土 混 合 5分 钟 后 恢 复 出 土 ;
二 次 注 浆 由底 部 向 上 依 次 压 注 。每 环 注 浆 量 控 制 在
2 m 3。
B 、注 浆 压 力
二次注浆压力为 0 . 3~ 0 . 5 M p a 2 . 8盾尾油脂及刀盘密封油脂 加注 为 防止 盾构掘进 时,地下水及 同步注浆浆 液从盾尾 窜入 隧道及保护 盾尾刷 ,须在 盾尾钢板刷 位置压注 盾尾油脂 ,以 达 到盾构 的密封功 能。在盾构 出洞前,对盾尾钢 板刷涂刷足
检 比例 。 ( 2 )预制桩 桩身完整 性采 用低 应变 法,抽检数量不
应少 于同条件下的总桩数 的 3 0 % ,且不 得少于 2 O 根 ,每个承 台抽 检桩数不得 少于 1 根;对柱 下四桩或 四桩 以上 的承台工 程 ,抽检数量还不应少于相应桩数的 3 0 % 。 2 . 2 低应 变法 检 测 受检 桩 的条 件 要 求 灌注 桩低 应 变检 测 前, 首先 应将 受 检桩 头 破至 设 计标 高,保证 受检桩混 凝土强 度达 到设计 强度 的 7 0 % ,且 不小 于 1 5 M P a 。桩顶面需平整 、密实 、干净 、无积水 ,要凿去桩头表

低应变法在桩基完整性检测中的几个案例浅析

低应变法在桩基完整性检测中的几个案例浅析

低应变法在桩基完整性检测中的几个案例浅析摘要:本文结合几个案例,介绍了低应变检测技术在桩基完整性检测中的注意事项及其缺陷判定方法。

关键词:低应变法桩基完整性缺陷一、概述桩基质量检测技术主要有直接检测和间接检测两种:直接检测主要包括静载试验和钻芯法,间接检测主要包括低应变法、高应变法和声波透射法。

其中,低应变法检测相对于桩基的其他检测方法更加简便、快捷。

低应变法检测,具有仪器轻便、基桩信息采集快速、测试成本低廉、检测耗时短、对桩身无损等优点,因此在桩基质量检测中应用最为广泛。

低应变法主要用于检查基桩桩身完整性,能够根据反射波形判断出基桩的扩径、缩径、离析、裂缝、断桩等桩身可能存在的异常及大概位置等。

一般地,由混凝土、CFG等刚性材料形成的,与其周围介质存在显著声学差异的的桩,均可用低应变法进行完整性检测判断。

二、低应变法检测的历史20世纪70年代初,A.G.Davis、J.Stenbach和E.Vey分别提出了机械阻抗法和应力波传播法在桩基无损检测中的传播理论,为桩基低应变法检测桩基完整性奠定了理论基础。

20世纪80年代,国内外同时又相继研究和发展了各种激振式的动力测桩法,低应变法检测桩基完整性因此而逐步发展。

直到现在,低应变法检测也因为其经济便捷的优势已经成为了桩基完整性检测的主要方法。

三、低应变法检测的原理简介一般我们将基桩检测工作中的桩近似地看作一维弹性均质杆件,因为一维弹性杆件的波动理论与基桩检测中的敲击激发方式相符合。

基桩检测中,利用激振锤撞击桩体时所产生的反射信号,被桩头传感器传送给动测仪,再经计算机对这些信号进行分析,我们便能以此作为对桩身质量的判断依据。

简介原理如图1四、低应变法检测前的准备工作对于基桩的低应变检测,除了按照相应检测技术规范准备外,还需注意以下内容:(1)敲击工具的选择:力棒敲击能激发宽脉冲,它激发出的波穿透能力较强,但判别能力稍差,适宜于较长的基桩;手锤敲击能激发窄脉冲,它激发出的波穿透能力较弱,但判别能力较强,适宜于较短的基桩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基桩低应变检测实例分析与处理方法
瑞安市建设工程检测科学研究所有限公司朱永茅陈华弟基础工程是建筑工程的重要组成部分,地基基础工程的质量直接关系到整个建筑物的结构安全。

桩基础是主要的基础形式之一,由于桩的施工具有高度的隐蔽性,因此桩基工程的设计、施工、质量检测等方面往往比上部建筑结构更为复杂,更容易存在质量隐患。

桩基工程的质量问题将直接危及主体结构的正常使用与安全。

桩基质量检测技术,特别是桩基动力试验,涉及到岩土力学、振动学、桩基施工技术和计算机技术等诸多学科知识,它既不同于常规的建筑材料试验,又不同于普通的建筑结构测试。

因此,作为一名检测人员,应坚持不懈地学习专业理论知识,不断地积累实际工作经验,努力地提高桩基检测的技术水平,进一步完善基桩质量检测技术。

桩基在施工过程中如果控制不当,就会造成质量事故。

特别是钻(冲)孔灌注桩,往往在浇注混凝土时出现质量问题。

下面,本人就近几年在基桩低应变检测中测得的几例比较典型的钻(冲)孔灌注桩工程实例进行分析,供同行参考。

图1:中国南洋汽摩集团有限公司综合宿舍楼工程,该桩桩径500mm,有效桩长40m,混凝土强度C20,简易钻孔桩。

该桩在2.2m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。

处理方法:开挖处理,开挖至2.2m左右,发现钢筋笼内空心,下去1m左右出现平整的水泥土,继续开挖至5m左右(采用人工挖孔桩的方法),出现密实的混凝土,修整后再测,桩身完整。

原因分析:在浇灌至距桩顶标高5m左右,导管拔空,混凝土无法从导管中下去,拔出导管后直接把混凝土从孔口倒下,于是孔中的泥浆和砂浆的混合物就被倒下的混凝土压缩在2.2m至5m 左右的钢筋笼中,水份被吸收后就形成前面的状态。

经与浇灌工人核对后,情况完全符合。

图2:瑞安红旭车辆贸易公司综合楼工程,该桩桩径500mm,有效桩长45m,混凝土强度C20,简易钻孔桩。

该桩在5.1m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。

原因分析:在
该桩所在的轴线上有5根桩出现类似的情况,该轴线靠近河边,在河床底下有一层流动性淤泥,而简易钻孔桩护壁较差,所以在5m多的地方出现严重的夹泥,形成断桩。

处理方法:由于问题桩较多,又靠近河边,开挖有一定的难度,所以采用机械钻孔桩补桩,成孔时增大泥浆比重,加强桩孔护壁,混凝土强度改为C30。

图3:瑞安市仙桥包装实业公司综合楼工程,该桩径600mm,有效桩长50m,混凝土强度C25,简易钻孔桩。

该桩在8m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。

原因分析:简易钻孔桩护壁较差,在混凝土浇注至距桩顶标高8m左右时出现坍孔,使该桩在8m左右形成严重夹泥,相当于断桩。

处理方法:由于桩在6m至8m附近存在流动性较大的淤泥层,开挖有一定的难度,而该桩处在四桩承台中,旁边是三桩承台,设计人员经过计算,把两个承台合并成一个大承台,并增加配筋量。

图4:瑞安市隆山小学综合楼工程,该桩径600mm,有效桩长56m,混凝土强度C30,钻孔灌注桩。

该桩在14m附近有明显的同向反射,桩底信号不明显,说明该桩在14m附近严重离析或夹泥,判为Ⅲ类桩。

原因分析:该工程靠近温瑞塘河,地下水较丰富,该桩在成桩与浇注混凝土时都没出现异常情况,在浇注完成后可能受地下水的影响而在14m附近造成严重离析。

处理方法:该桩在动测前就被确定为静压桩,动测后我方建议另选一根桩做静载荷试验。

桩基施工方对此结论有异议,坚持用问题桩做静载荷试验,结果在加载到第4级时桩身突然沉陷,试验
终止。

桩头清理后再用低应变测试,14m附近已经断裂。

由于此桩缺陷位置较深,地质条件又不允许用人工挖孔桩,最后采用冲击成孔灌注桩进行补桩。

图5:瑞安市岭下村返回地A地块1#楼工程,该桩径700mm,有效桩长16.3m,混凝土强度C30,冲击成孔灌注桩。

该桩在8.1m附近有明显的同向反射,桩底反射信号也是同向反射。

此桩为嵌岩桩,正常桩桩底应有反向反射信号。

实测图形说明该桩在8.1m附近已经断裂,桩底信号为二次反射信号,缺陷处已成为实际的桩底,判为Ⅳ类桩。

原因分析:该桩在浇注混凝土时埋管太浅,在浇注至缺陷位置附近时拔了空管,导管底部拔离混凝土端面,插在浮浆中(砂浆与泥浆混合物),接着倒入的混凝土就倒在浮浆中,于是在此处夹了一层浮浆,混凝土凝固后就出现一个断面。

处理方法:该处地质条件较好,桩顶至距桩顶9m处都为粘土层,采用Φ800的孔径进行人工挖孔,当开挖至距桩顶8.1m附近时,出现一个较为平整的砂浆断面,再挖0.6m左右,出现较好的混凝土,磨平桩面,重新动测,下部桩身基本完整,7.6m附近有桩底信号(反向)。

清理好桩头,接上钢筋笼,用C35商品混凝土浇注。

图6:瑞安市元隆山庄7#楼工程,该桩径800mm,有效桩长29.5m,混凝土强度C25,冲击成孔灌注桩。

该桩在7.3m附近有明显的同向反射, 并伴有多次反射,桩底无反射信号。

此桩为嵌岩桩,正常桩桩底应有反向反射信号。

实测图形说明该桩在7.3m附近严重离析或者已经断裂,
判为Ⅳ类桩。

原因分析:该桩在混凝土浇灌至距地面13m多的位置时出现堵管(地面距桩顶标高5m多),后来拔出导管重下,再次浇灌。

由于处理堵管的时间过长,孔内混凝土表面沉淀的浮浆过厚,第二次浇灌混凝土前没有进行清孔,首灌混凝土不足以排开混凝土表面的浮浆,于是在此处就形成了夹层,类似断桩。

处理方法:该桩处在地下室的中间部位,离边坡较远,地下土层含水量少,适合采用人工开挖。

为了便于操作,采用Φ900的孔径来进行人工挖孔。

当开挖至距桩顶7.3m附近时,桩身出现一层砂浆层,挖掉0.7m左右的松散层,磨平桩面,重新动测,下部桩身完整,21.5m附近有桩底反向反射信号。

清理好桩头,接上钢筋笼,用C30的商品混凝土浇注。

图7:温州昊泰汽车零部件有限公司生产车间工程,该桩桩径600mm,有效桩长29.85m,混凝土强度C25,冲击成孔灌注桩。

该桩在1.4m附近有明显的同向反射, 并伴有多次反射,桩底信号不明显。

实测图形说明该桩在1.4m附近严重离析或严重裂缝,判为Ⅲ类桩。

原因分析:该桩可能在距桩顶1.4m附近存在离析,挖土时被挖土机的抓斗碰了一下,于是在离析处出现严重裂缝。

处理方法:开挖处理,由于缺陷桩周围土质较好,就先在桩周开挖一个Φ1500左右的孔,孔径随着深度增加而减小,挖到1.6m左右时停止挖土,清理桩周泥土,把1.3m~1.5m处的地方清洗干净,可见距桩顶1.4m处桩周约1/3的地方出现裂缝,破掉桩身混凝土,在1.4m 处出现较为平整的断裂面,局部有夹砂。

清理干净桩面,重新动测,下部桩身基本完整,桩底附近有反向反射信号。

接桩用C30的混凝土浇注。

图8:瑞安市盛丰汽车配件厂2#生产车间工程,该桩径600mm,有效桩长24.7m,混凝土强
度C30,冲击成孔灌注桩。

该桩在9.3m附近有明显的同向反射,而且波幅较宽,桩底无反射信号。

此桩为嵌岩桩,正常桩桩底应有反向反射信号。

实测图形说明该桩在9.3m以下出现严重的离析或者松散层,判为Ⅳ类桩。

原因分析:该桩在浇灌混凝土时,下面掉了几节导管,到混凝土浇注结束时才发现,施工单位抱着侥幸的心理隐瞒了情况,直到动测以后才说明实情。

掉导管必定是在料斗和导管内加满混凝土往上拔管或者在抖浆(先提升料斗和导管,突然松掉卷扬机刹车,让料斗和导管自由落下,再拉紧刹车,让料斗和导管靠惯性抖动,使料斗和导管里面的料插入桩孔里的混凝土中)时,接头松开而掉落。

在导管底部和混凝土端面就出现了一段泥浆层,接着落下的混凝土就和泥浆混合在一起,形成了一段松散或夹泥层。

这是个单桩单柱的承台,只能采取补桩或者人工开挖的方式来处理。

该工程的土层条件还算不错,施工单位认为人工开挖可以减少费用,于是经设计方同意,采用Φ800的孔径来进行人工挖孔。

当开挖至距桩顶8.5m 附近时,混凝土中出现了导管,挖到9.3m左右时出现松散层(砂浆夹泥),割掉导管壁,发现导管里面是完整的混凝土,说明导管是带着混凝土一起掉落的。

接着往下挖,一直挖到14.4m 左右才出现密实的混凝土,把桩头修整后重新动测,下部桩身完整,有桩底反向反射波。

清理好桩头,接上钢筋笼,用C35的商品混凝土浇注。

(此桩开挖用了三十四天时间)。

通过上面这几例个案的分析和处理,我们可以看出,有好多问题都是人为的因素造成的,是可以避免的。

虽然最后都解决了问题,可是都给施工方带来了一定的经济损失,延误了工期。

而且采用人工挖孔桩法还具有一定的危险性,危险性随着深度的加深而增大。

为了避免垃圾工程的产生,不能事事都靠亡羊补牢,加大检测力度固然重要,可更重要的还要从源头抓起,加强施工队伍的技术素质培训,规范监理人员的职责,避免工程事故的产生,特别是人为因素造成的事故,这才是保证建设工程质量的最佳方法。

相关文档
最新文档