图像增强文献综述(可编辑修改word版)

合集下载

基于深度学习的图像数据增强研究综述

基于深度学习的图像数据增强研究综述

基于深度学习的图像数据增强研究综述摘要:近年来,深度学习在计算机视觉领域取得了重大突破。

图像数据增强作为一种提高神经网络性能的有效方法,在图像分类、目标检测等任务中被广泛应用。

本文综述了基于深度学习的图像数据增强技术的研究现状和发展趋势,包括数据扩增方法、生成对抗网络、自监督学习等。

通过对这些方法的分析和比较,整理出图像数据增强在深度学习中的应用场景和优势。

最后,对未来进行了展望,并提出了一些可能的研究方向。

1. 引言深度学习技术的发展为图像数据增强提供了新的空间。

在深度神经网络训练过程中,数据增强不仅能提高模型的鲁棒性,还可以有效缓解因样本不平衡和过拟合而引发的问题。

因此,基于深度学习的图像数据增强引起了广泛的研究兴趣。

2. 数据扩增方法数据扩增是图像数据增强的基础。

在深度学习中,数据扩增方法主要包括平移、旋转、缩放、镜像等。

这些方法能够生成一系列变换后的图像,从而增加训练集的多样性。

此外,还有一些特定领域的数据扩增方法,如遮挡、光照变化等,能够模拟真实世界中的更多情况。

3. 生成对抗网络生成对抗网络(GANs)是近年来深度学习中的一个热门研究方向。

它由一个生成器和一个判别器组成,通过博弈过程使生成器生成更逼真的样本。

在图像数据增强中,GANs可以用来生成与原始图像相似但不同的图像,从而扩展训练集。

此外,GANs还可以用于图像修复、图像超分辨率等任务。

4. 自监督学习自监督学习是一种无监督学习的方式,它通过设计自身监督任务来学习图像的特征表示。

在图像数据增强中,自监督学习可以用来生成图像的旋转、遮挡等数据扩增。

通过自身监督任务的引导,神经网络能够学习到更鲁棒的特征表示,提高模型的泛化能力。

5. 应用场景与优势基于深度学习的图像数据增强在多个领域中被广泛应用。

在图像分类任务中,数据增强能够提高模型的分类准确率。

在目标检测任务中,数据增强能够增加目标的尺度和视角变化,提高模型的检测性能。

此外,数据增强还可以应用于图像生成、图像分割等任务。

图像超分辨率重建算法研究文献综述

图像超分辨率重建算法研究文献综述

图像超分辨率重建算法研究文献综述图像超分辨率重建是一种通过图像增强技术将低分辨率图像转换为高分辨率图像的方法。

在计算机视觉领域,图像超分辨率重建技术具有广泛的应用,如监控视频分析、医学图像诊断和卫星图像分析等。

本文将对图像超分辨率重建算法的研究文献进行综述,包括传统方法和基于深度学习的方法。

传统方法主要基于插值和信号处理技术,如双三次插值、基于边缘的插值和基于局部统计的插值等。

这些方法主要通过将低分辨率图像的像素进行插值来增加图像的分辨率,但其效果有限。

近年来,基于深度学习的图像超分辨率重建方法取得了显著的进展。

主要有以下几种方法:1. SRCNN(Super-Resolution Convolutional Neural Network):SRCNN是一种使用卷积神经网络进行图像超分辨率重建的方法。

它通过学习低分辨率图像到高分辨率图像的映射关系来进行重建。

SRCNN模型包括三个卷积层和一个像素重构层,可以在保持高分辨率细节的情况下,有效地提高图像的分辨率。

2. SRGAN(Super-Resolution Generative Adversarial Network):SRGAN是一种将生成对抗网络应用于图像超分辨率重建的方法。

它通过引入生成器和判别器网络来优化图像重建过程。

生成器网络负责将低分辨率图像转换为高分辨率图像,判别器网络则负责评估生成器网络的输出图像是否与真实高分辨率图像相似。

通过不断迭代训练,SRGAN可以生成更高质量的重建图像。

3. ESPCN(Efficient Sub-Pixel Convolutional Neural Network):ESPCN是一种高效的子像素卷积神经网络。

它通过将低分辨率图像放大到目标分辨率的多倍,然后使用卷积神经网络来提取高频信息。

相比于其他方法,ESPCN具有更少的网络参数和计算复杂度。

4. EDSR(Enhanced Deep Residual Networks):EDSR是一种基于残差网络的图像超分辨率重建方法。

低光照图像增强算法综述

低光照图像增强算法综述

低光照图像增强算法综述一、本文概述随着计算机视觉技术的快速发展,图像增强技术成为了研究的重要领域之一。

其中,低光照图像增强算法是处理低质量、低亮度图像的关键技术,对于提高图像质量、增强图像细节、提升图像识别精度等方面具有重要的应用价值。

本文旨在对低光照图像增强算法进行全面的综述,介绍其研究背景、发展历程、主要算法及其优缺点,并探讨未来的发展趋势。

本文将对低光照图像增强的研究背景进行介绍,阐述低光照图像增强技术在视频监控、医学影像分析、军事侦察、航空航天等领域的应用需求。

本文将回顾低光照图像增强技术的发展历程,分析不同算法在不同历史阶段的发展特点和主要贡献。

接着,本文将重点介绍当前主流的低光照图像增强算法,包括基于直方图均衡化的算法、基于Retinex理论的算法、基于深度学习的算法等,并详细阐述其原理、实现方法、优缺点等。

本文将展望低光照图像增强技术的未来发展趋势,探讨新技术、新算法在提升图像质量、提高识别精度等方面的潜在应用。

通过本文的综述,读者可以全面了解低光照图像增强算法的研究现状和发展趋势,为相关领域的研究和实践提供有益的参考和借鉴。

二、低光照图像增强的基本原理低光照图像增强算法的核心目标是在保持图像细节和色彩信息的提高图像的亮度和对比度,从而改善图像的视觉效果。

这通常涉及到对图像像素值的调整,以及对图像局部或全局特性的分析和优化。

基本的低光照图像增强算法可以分为两类:直方图均衡化和伽马校正。

直方图均衡化是一种通过拉伸像素强度分布来增强图像对比度的方法。

这种方法假设图像的可用数据跨度大,即图像包含从暗到亮的所有像素值。

然而,对于低光照图像,由于大部分像素值集中在较低的亮度范围内,直方图均衡化可能会过度增强噪声,导致图像质量下降。

伽马校正则是一种更为柔和的增强方法,它通过调整图像的伽马曲线来改变图像的亮度。

伽马曲线描述了输入像素值与输出像素值之间的关系,通过调整这个关系,可以改变图像的亮度分布。

图像增强算法研究应用综述

图像增强算法研究应用综述

图像增强算法研究综述摘要:本文简要简介图像增强概念和图像增强算法分类,从图像直方图均衡化解决办法,直方图规定化解决办法和图像平滑解决办法三方面对图像增强算法进行讨论和研究,并阐明了图像增强技术应用和前景展望。

核心词:图像增强直方图均衡化平滑解决近年来,随着电子计算机技术进步,计算机图像解决得到了奔腾发展,己经成功应用于几乎所有与成像关于领域,并正发挥着相称重要作用。

它运用计算机对数字图像进行系列操作,从而获得某种预期成果。

对图像进行解决时,经常运用图像增强技术以改进图像质量增强对某种信息辨识能力,以更好应用于当代各种科技领域,图像增强技术迅速发展同它广泛应用是分不开,发展动力来自稳定涌现新应用,咱们可以预料,在将来社会中图像增强技术将会发挥更为重要作用。

在图像解决过程中,图像增强是十分重要一种环节。

1.图像增强概念及现实应用1.1 图像增强技术图像增强[1,2]是数字图像解决[3,4]基本内容之一。

图像增强是指按特定需要突出一幅图像中某些信息,同步,削弱或去除某些不需要信息。

此类解决是为了某种应用目去改进图像质量,解决成果更适合于人视觉特性或机器辨认系统,图像增强解决并不能增长原始图像信息,而只能增强对某种信息辨识能力,使解决后图像对某些特定应用比本来图像更加有效。

1.2图像增强技术现实应用当前,图像增强解决技术应用己经渗入到医学诊断、航空航天、军事侦察、纹辨认、无损探伤、卫星图片解决等有关领域,在国民经济发展中起到了很大作用。

其中最典型应用重要体现如下方面。

1.2.1通讯领域涉及图像传播、电视电话、电视会议等,重要是进行图像压缩甚至理解基本上压缩是把文字、图表、照片等图像通过光电扫描方式变成电信号加以传送。

1.2.2遥感航空遥感和卫星遥感图像需要用数字技术加工解决,并提取有用信息。

重要用于地形地质,矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测预报,环境污染监测,气象卫星云图解决以及地面军事目的记别。

(完整word版)数字图像处理文献综述

(完整word版)数字图像处理文献综述

(完整word版)数字图像处理文献综述数字图像处理技术综述摘要:随着计算机的普及,数字图像处理技术也获得了迅速发展,逐渐走进社会生产生活的各个方面。

本文是对数字图像处理技术的一个总体概述,包括其内涵、优势、主要方法及应用,最后对其发展做了简单的总结。

关键词:数字图像、图像处理技术、处理方法、应用领域Overview of digital image processing technology Abstract: With the popularization of computer, digital image processing technology also won the rapid development, and gradually go into all aspects of social life and production. This paper is a general overview of the digital image processing technology, including its connotation, advantage, main method and its application. And finally, I do a simple summary of the development.Keywords: digital image, image processing technology, processing method, application field前言:图像处理技术被分为模拟图像处理和数字图像处理两大类。

数字图像处理技术一般都用计算机处理或实时的硬件处理,因此也称之为计算机图像处理[1]。

而时至今日,随着计算机的迅速普及,数字图像处理技术也飞速发展着,因为其用途的多样性,可以被广泛运用于医学、交通、化学等各个领域。

一、数字图像处理技术的概念内涵数字图像处理技术是指将一种图像信号转变为二进制数字信号,经过计算机对而其进行的图像变换、编码压缩、增强和复原以及分割、特征提取等处理,而高精准的还原到显示器的过程[2]。

图像增强技术综述

图像增强技术综述
空域里的增强技术也可以提成不同类别。假如考虑增强操作的作用点,常将空域增强方法提成两类。一类是根据每个像素点的特性进行操作,此时称为点操作。点操作实际中可以原地完毕,由于对一副图像的点操作仅运用每个像素一次,运用过后该像素位置就可赋新值,所以对一副图像点操作的结果就可直接存储在这幅图像中。另一类是要考虑像素邻近像素特性,即邻域操作。
Keywords:digitalimage,image enhancement, histogram enhancement, contrast enhancement, smoothing,sharpening.
1.图像增强的概述1
2.图像增强的基本理论2
3.数字图像的概念5
4.图像增强方法分类概述8
二.直方图均衡化方法的基本环节:
(1)求原图的灰度直方图;
(2)求原图的灰度分布概率;
(3)求图像各个灰度值的累计分布概率;
(4)计算直方图均衡化,得解决后图像的像素值。
三.直方图规定化的基本原理:
在直方图均衡化的原理上形成了直方图规定化,它重要是建立起原始图像和盼望图像两者的关系,然后选择性的对灰度直方图进行控制,目的是让原始图像的直方图能形成规定中的形状,它的优点在于将直方图均衡化中不能交互的特点进行补消。
本人署名:
日期:
巢湖学院本科毕业论文(设计)使用授权说明
本人完全了解巢湖学院有关收集、保存和使用毕业论文(设计)的规定,即:本科生在校期间进行毕业论文(设计)工作的知识产权单位属巢湖学院。学校根据需要,有权保存并向国家有关部门或机构送交论文的复印件和电子版,允许毕业论文(设计)被查阅和借阅;学校可以将毕业论文(设计)的所有或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业,并且本人电子文档和纸质论文的内容相一致。

图像去雾增强算法的研究-文献综述

图像去雾增强算法的研究-文献综述

福州大学专业英语文献综述题目:图像去雾增强算法的研究姓名:学号:专业:一、引言由于近年来空气污染加重,我国雾霾天气越来越频繁地出现,例如:2012底到2013年初,几次连续七日以上的雾霾天气笼罩了大半个中国,给海陆空交通,人民生活及生命安全造成了巨大的影响。

因此,除降低空气污染之外,提高雾霾图像、视频的清晰度是亟待解决的重要问题。

图像去雾实质上就是图像增强的一种现实的应用。

一般情况下,在各类图像系统的传送和转换(如显示、复制、成像、扫描以及传输等)总会在某种程度上造成图像质量的下降。

例如摄像时,由于雾天的原因使图像模糊;再如传输过程中,噪声污染图像,使人观察起来不满意;或者是计算机从中提取的信息减少造成错误,因此,必须对降质图像进行改善处理,主要目的是使图像更适合于人的视觉特性或计算机识别系统。

从图像质量评价观点来看,图像增强技术主要目的是提高图像可辨识度。

通过设法有选择地突出便于人或机器分析的某些感兴趣的信息,抑制一些无用信息,以提高图像的使用价值,即图像增强处理只是增强了对某些信息的辨别能力[1].二、背景及意义近几年空气质量退化严重,雾霾等恶劣天气出现频繁,PM2。

5[2]值越来越引起人们的广泛关注。

在有雾天气下拍摄的图像,由于大气中混浊的媒介对光的吸收和散射影响严重,使“透过光"强度衰减,从而使得光学传感器接收到的光强发生了改变,直接导致图像对比度降低,动态范围缩小,模糊不清,清晰度不够,图像细节信息不明显,许多特征被覆盖或模糊,信息的可辨识度大大降低。

同时,色彩保真度下降,出现严重的颜色偏移和失真,达不到满意的视觉效果[3—6]。

上述视觉效果不佳的图像部分信息缺失,给判定目标带来了一定的困难,直接限制和影响了室外目标识别和跟踪、智能导航、公路视觉监视、卫星遥感监测、军事航空侦察等系统效用的发挥,给生产与生活等各方面都造成了极大的影响[7—9].以公路监控为例,由于大雾弥漫,道路的能见度大大降低,司机通过视觉获得的路况信息往往不准确,进一步影响对环境的判读,很容易发生交通事故,此时高速封闭或者公路限行,给人们的出行带来了极大的不便[10]。

图像增强技术外文翻译参考文献综述

图像增强技术外文翻译参考文献综述

图像增强技术外文翻译参考文献综述(文档含中英文对照即英文原文和中文翻译)原文:Hybrid Genetic Algorithm Based Image EnhancementTechnologyAbstract—in image enhancement, Tubbs proposed a normalized incomplete Beta function to represent several kinds of commonly used non-linear transform functions to do the research on image enhancement. But how to define the coefficients of the Beta function is still a problem. We proposed a Hybrid Genetic Algorithm which combines the Differential Evolution to the Genetic Algorithm in the image enhancement process and utilize the quickly searching ability of the algorithm to carry out the adaptive mutation and searches. Finally we use the Simulation experiment to prove the effectiveness of the method.Keywords- Image enhancement; Hybrid Genetic Algorithm; adaptive enhancementI. INTRODUCTIONIn the image formation, transfer or conversion process, due to other objective factors such as system noise, inadequate or excessive exposure, relative motion and so the impact will get the image often a difference between the original image (referred to as degraded or degraded) Degraded image is usually blurred or after the extraction of information through the machine to reduce or even wrong, it must take some measures for its improvement.Image enhancement technology is proposed in this sense, and the purpose is to improve the image quality. Fuzzy Image Enhancement situation according to the image using a variety of special technical highlights some of the information in the image, reduce or eliminate the irrelevant information, to emphasize the image of the whole or the purpose of local features. Image enhancement method is still no unified theory, image enhancement techniques can be divided into three categories: point operations, and spatial frequency enhancement methods Enhancement Act. This paper presents an automatic adjustment according to the image characteristics of adaptive image enhancement method that called hybrid genetic algorithm. It combines the differential evolution algorithm of adaptive search capabilities, automatically determines the transformation function of the parameter values in order to achieve adaptive image enhancement.II. IMAGE ENHANCEMENT TECHNOLOGYImage enhancement refers to some features of the image, such as contour, contrast, emphasis or highlight edges, etc., in order to facilitate detection or further analysis and processing. Enhancements will not increase the information in the image data, but will choose the appropriate features of the expansion of dynamic range, making these features more easily detected or identified, for the detection and treatment follow-up analysis and lay a good foundation.Image enhancement method consists of point operations, spatial filtering, and frequency domain filtering categories. Point operations, including contrast stretching, histogram modeling, and limiting noise and image subtraction techniques. Spatial filter including low-pass filtering, median filtering, high pass filter (image sharpening). Frequency filter including homomorphism filtering, multi-scale multi-resolution image enhancement applied [1].III. DIFFERENTIAL EVOLUTION ALGORITHMDifferential Evolution (DE) was first proposed by Price and Storn, and with other evolutionary algorithms are compared, DE algorithm has a strong spatial search capability, and easy to implement, easy to understand. DE algorithm is a novel search algorithm, it isfirst in the search space randomly generates the initial population and then calculate the difference between any two members of the vector, and the difference is added to the third member of the vector, by which Method to form a new individual. If you find that the fitness of new individual members better than the original, then replace the original with the formation of individual self.The operation of DE is the same as genetic algorithm, and it conclude mutation, crossover and selection, but the methods are different. We suppose that the group size is P, the vector dimension is D, and we can express the object vector as (1): xi=[xi1,xi2,…,xiD] (i =1,…,P) (1)And the mutation vector can be expressed as (2):()321r r r i X X F X V -⨯+= i=1,...,P (2) 1r X ,2r X ,3r X are three randomly selected individuals from group, and r1≠r2≠r3≠i.F is a range of [0, 2] between the actual type constant factor difference vector is used to control the influence, commonly referred to as scaling factor. Clearly the difference between the vector and the smaller the disturbance also smaller, which means that if groups close to the optimum value, the disturbance will be automatically reduced.DE algorithm selection operation is a "greedy " selection mode, if and only if the new vector ui the fitness of the individual than the target vector is better when the individual xi, ui will be retained to the next group. Otherwise, the target vector xi individuals remain in the original group, once again as the next generation of the parent vector.IV . HYBRID GA FOR IMAGE ENHANCEMENT IMAGEenhancement is the foundation to get the fast object detection, so it is necessary to find real-time and good performance algorithm. For the practical requirements of different systems, many algorithms need to determine the parameters and artificial thresholds. Can use a non-complete Beta function, it can completely cover the typical image enhancement transform type, but to determine the Beta function parameters are still many problems to be solved. This section presents a Beta function, since according to the applicable method for image enhancement, adaptive Hybrid genetic algorithm search capabilities, automatically determines the transformation function of the parameter values in order to achieve adaptive image enhancement.The purpose of image enhancement is to improve image quality, which are more prominent features of the specified restore the degraded image details and so on. In the degraded image in a common feature is the contrast lower side usually presents bright, dim or gray concentrated. Low-contrast degraded image can be stretched to achieve a dynamic histogram enhancement, such as gray level change. We use Ixy to illustrate the gray level of point (x, y) which can be expressed by (3).Ixy=f(x, y) (3) where: “f” is a linear or nonlinear function. In general, gray image have four nonlineartranslations [6] [7] that can be shown as Figure 1. We use a normalized incomplete Beta function to automatically fit the 4 categories of image enhancement transformation curve. It defines in (4):()()()()10,01,1011<<-=---⎰βαβαβαdt t t B u f u (4)where:()()⎰---=10111,dt t t B βαβα (5)For different value of α and β, we can get response curve from (4) and (5).The hybrid GA can make use of the previous section adaptive differential evolution algorithm to search for the best function to determine a value of Beta, and then each pixel grayscale values into the Beta function, the corresponding transformation of Figure 1, resulting in ideal image enhancement. The detail description is follows:Assuming the original image pixel (x, y) of the pixel gray level by the formula (4), denoted by xy i ,()Ω∈y x ,, here Ω is the image domain. Enhanced image is denoted by Ixy. Firstly, the image gray value normalized into [0, 1] by (6).min max min i i i i g xy xy --=(6) where: max i and m in i express the maximum and minimum of image gray relatively.Define the nonlinear transformation function f(u) (0≤u ≤1) to transform source image to Gxy=f(xy g ), where the 0≤ Gxy ≤ 1.Finally, we use the hybrid genetic algorithm to determine the appropriate Beta function f (u) the optimal parameters α and β. Will enhance the image Gxy transformed antinormalized.V. EXPERIMENT AND ANALYSISIn the simulation, we used two different types of gray-scale images degraded; the program performed 50 times, population sizes of 30, evolved 600 times. The results show that the proposed method can very effectively enhance the different types of degraded image.Figure 2, the size of the original image a 320 × 320, it's the contrast to low, and some details of the more obscure, in particular, scarves and other details of the texture is not obvious, visual effects, poor, using the method proposed in this section, to overcome the above some of the issues and get satisfactory image results, as shown in Figure 5 (b) shows, the visual effects have been well improved. From the histogram view, the scope of the distribution of image intensity is more uniform, and the distribution of light and dark gray area is more reasonable. Hybrid genetic algorithm to automatically identify the nonlinear transformation of the function curve, and the values obtained before 9.837,5.7912, from the curve can be drawn, it is consistent with Figure 3, c-class, that stretch across the middle region compression transform the region, which were consistent with the histogram, the overall original image low contrast, compression at both ends of the middle regionstretching region is consistent with human visual sense, enhanced the effect of significantly improved.Figure 3, the size of the original image a 320 × 256, the overall intensity is low, the use of the method proposed in this section are the images b, we can see the ground, chairs and clothes and other details of the resolution and contrast than the original image has Improved significantly, the original image gray distribution concentrated in the lower region, and the enhanced image of the gray uniform, gray before and after transformation and nonlinear transformation of basic graph 3 (a) the same class, namely, the image Dim region stretching, and the values were 5.9409,9.5704, nonlinear transformation of images degraded type inference is correct, the enhanced visual effect and good robustness enhancement.Difficult to assess the quality of image enhancement, image is still no common evaluation criteria, common peak signal to noise ratio (PSNR) evaluation in terms of line, but the peak signal to noise ratio does not reflect the human visual system error. Therefore, we use marginal protection index and contrast increase index to evaluate the experimental results.Edgel Protection Index (EPI) is defined as follows:(7)Contrast Increase Index (CII) is defined as follows:min max min max,G G G G C C C E O D +-== (8)In figure 4, we compared with the Wavelet Transform based algorithm and get the evaluate number in TABLE I.Figure 4 (a, c) show the original image and the differential evolution algorithm for enhanced results can be seen from the enhanced contrast markedly improved, clearer image details, edge feature more prominent. b, c shows the wavelet-based hybrid genetic algorithm-based Comparison of Image Enhancement: wavelet-based enhancement method to enhance image detail out some of the image visual effect is an improvement over the original image, but the enhancement is not obvious; and Hybrid genetic algorithm based on adaptive transform image enhancement effect is very good, image details, texture, clarity is enhanced compared with the results based on wavelet transform has greatly improved the image of the post-analytical processing helpful. Experimental enhancement experiment using wavelet transform "sym4" wavelet, enhanced differential evolution algorithm experiment, the parameters and the values were 5.9409,9.5704. For a 256 × 256 size image transform based on adaptive hybrid genetic algorithm in Matlab 7.0 image enhancement software, the computing time is about 2 seconds, operation is very fast. From TABLE I, objective evaluation criteria can be seen, both the edge of the protection index, or to enhance the contrast index, based on adaptive hybrid genetic algorithm compared to traditional methods based on wavelet transform has a larger increase, which is from This section describes the objective advantages of the method. From above analysis, we can see that this method.From above analysis, we can see that this method can be useful and effective.VI. CONCLUSIONIn this paper, to maintain the integrity of the perspective image information, the use of Hybrid genetic algorithm for image enhancement, can be seen from the experimental results, based on the Hybrid genetic algorithm for image enhancement method has obvious effect. Compared with other evolutionary algorithms, hybrid genetic algorithm outstanding performance of the algorithm, it is simple, robust and rapid convergence is almost optimal solution can be found in each run, while the hybrid genetic algorithm is only a few parameters need to be set and the same set of parameters can be used in many different problems. Using the Hybrid genetic algorithm quick search capability for a given test image adaptive mutation, search, to finalize the transformation function from the best parameter values. And the exhaustive method compared to a significant reduction in the time to ask and solve the computing complexity. Therefore, the proposed image enhancement method has some practical value.REFERENCES[1] HE Bin et al., Visual C++ Digital Image Processing [M], Posts & Telecom Press,2001,4:473~477[2] Storn R, Price K. Differential Evolution—a Simple and Efficient Adaptive Scheme forGlobal Optimization over Continuous Space[R]. International Computer Science Institute, Berlaey, 1995.[3] Tubbs J D. A note on parametric image enhancement [J].Pattern Recognition.1997,30(6):617-621.[4] TANG Ming, MA Song De, XIAO Jing. Enhancing Far Infrared Image Sequences withModel Based Adaptive Filtering [J] . CHINESE JOURNAL OF COMPUTERS, 2000, 23(8):893-896.[5] ZHOU Ji Liu, LV Hang, Image Enhancement Based on A New Genetic Algorithm [J].Chinese Journal of Computers, 2001, 24(9):959-964.[6] LI Yun, LIU Xuecheng. On Algorithm of Image Constract Enhancement Based onWavelet Transformation [J]. Computer Applications and Software, 2008,8.[7] XIE Mei-hua, WANG Zheng-ming, The Partial Differential Equation Method for ImageResolution Enhancement [J]. Journal of Remote Sensing, 2005,9(6):673-679.基于混合遗传算法的图像增强技术摘要—在图像增强之中,塔布斯提出了归一化不完全β函数表示常用的几种使用的非线性变换函数对图像进行研究增强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述题目图像增强与处理技术学生姓名李洋专业班级网络工程 08-2 班学号 200813080223院(系)计算机与通信工程学院指导教师(职称)吴雪丽完成时间2012 年 5 月 20 日综述题目图像增强与处理技术专业班级:网络工程08-2 班姓名:李洋学号:200813080223图像增强与处理技术综述内容摘要数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。

图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。

本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过 Matlab 实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。

关键词:图像增强对比度增强平滑锐化梯度变换拉普拉斯变换AbstractDigital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm.The application of occasions, and its image enhancement method of performance evaluation.Keywords: Image Enhancement histogram enhancement contrast enhancement smoothing sharpening1 图像增强概述1.1图像增强背景及意义在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。

在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。

总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。

图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。

处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。

图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。

它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。

增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。

1.2图像增强的应用目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。

如对 x 射线图片、CT 影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。

图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。

2 图像增强的基本理论2.1图像增强的定义为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。

一般情况下,图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。

图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。

图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。

但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。

传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST 转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。

这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。

2.2图像增强的分类及方法图像增强可分成两大类:频率域法和空间域法。

前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。

采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。

具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。

在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。

图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。

基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。

基于空域的算法分为点运算算法和邻域去噪算法。

点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。

邻域增强算法分为图像平滑和锐化两种。

平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。

常用算法有均值滤波、中值滤波。

锐化的目的在于突出物体的边缘轮廓,便于目标识别。

常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。

2.3常用的图像增强方法2.3.1灰度变换灰度变换可使图像动态范围增大,对比度得到扩展,使图像清晰、特征明显,是图像增强的重要手段之一。

它主要利用点运算来修正像素灰度,由输入像素点的灰度值确定相应输出点的灰度值,是一种基于图像变换的操作。

灰度变换不改变图像内的空间关系,除了灰度级的改变是根据某种特定的灰度变换函数进行之外,可以看作是“从像素到像素”的复制操作。

基于点运算的灰度变换可表示为[1]:g(x, y) =T[ f (x, y)] (2.1) 其中 T 被称为灰度变换函数,它描述了输入灰度值和输出灰度值之间的转换关系。

一旦灰度变换函数确定,该灰度变换就被完全确定下来。

灰度变换包含的方法很多,如逆反处理、阈值变换、灰度拉伸、灰度切分、灰度级修正、动态范围调整等。

虽然它们对图像的处理效果不同,但处理过程中都运用了点运算,通常可分为线性变换、分段线性变换、非线性变换。

2.3.2线性变换假定原图像 f(x,y)的灰度范围为[a,b],变换后的图像 g(x,y)的灰度范围线性的扩展至[c,d],如图 2 .2 所示。

则对于图像中的任一点的灰度值 P(x,y),变换后为g(x,y),其数学表达式如下所示。

g(x, y) =d -c ⨯[ f (x, y) -a] +cb-a (2.2) 若图像中大部分像素的灰度级分布在区间[a,b]内,max f 为原图的最大灰度级,只有很小一部分的灰度级超过了此区间,则为了改善增强效果,可以令⎩ ⎨ b -a ⎧c g (x , y ) = ⎪ d -c ⨯[ f (x , y ) - a ] + c ⎪d , o ≤ f (x , y ) ≤ a a ≤ f (x , y ) ≤ b b ≤ f (x , y ) ≤ max f (2.3)在曝光不足或过度的情况下,图像的灰度可能会局限在一个很小的范围内,这时得到的图像可能是一个模糊不清、似乎没有灰度层次的图像。

采用线性变换对图像中每一个像素灰度作线性拉伸,将有效改善图像视觉效果。

2.3.3 分段线性变换为了突出图像中感兴趣的目标或灰度区间,相对抑制不感兴趣的灰度区间,可采用分段线性变换,它将图像灰度区间分成两段乃至多段分别作线性变换。

进行变换时, 把 0-255 整个灰度值区间分为若干线段,每一个直线段都对应一个局部的线性变换关 系。

如图 2.1 所示,为二段线性变换,(a)为高值区拉伸,(b)为低值区拉伸[9]。

图 2.1 二段线性变换2.3.4 非线性变换非线性变换就是利用非线性变换函数对图像进行灰度变换,主要有指数变换、对数变换等。

指数变换,是指输出图像的像素点的灰度值与对应的输入图像的像素灰度值之间满足指数关系,其一般公式为[1]:g(x, y) =b f(x,y)(2.4) 其中 b 为底数。

为了增加变换的动态范围,在上述一般公式中可以加入一些调制参数,以改变变换曲线的初始位置和曲线的变化速率。

这时的变换公式为:g(x, y) =b c⨯[ f ( x, y )-a] -1(2.5) 式中 a,b,c 都是可以选择的参数,当 f(x,y)=a 时,g(x,y)=0,此时指数曲线交于 X 轴,由此可见参数 a 决定了指数变换曲线的初始位置参数 c 决定了变换曲线的陡度,即决定曲线的变化速率。

相关文档
最新文档