模糊控制_精品文档

合集下载

第2章 模糊控制- 控制系统

第2章 模糊控制- 控制系统
15


N
Z
P
-1
0
+1
x
输入论域的三级模糊空间分割

NB NM NS ZE PS PM PB
-1
0
+1 x
输入论域的七级模糊空间分割
16
双输入情况下, 模糊分割的例 子:
输 入 变 量 2
大 小
小 (������1 )
较大 (�中(������4 ) 中

规 则 的 形 式 : 模 糊 条 件 语 句 (IF… THEN…)。 规则制定时需考虑的因素:规则的完整 性和兼容性等。 规则的表格表示:
19
输入变量������1 ������������ 输 入 变 量 ������2 ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������

模糊控制

模糊控制

目录摘要 (1)1.模糊控制简介 (3)1.1模糊控制的历史背景 (3)1.2模糊控制的基本原理 (4)1.3模糊算法的四个步骤 (4)2.基于单片机的液位模糊控制器的设计 (5)2.1设计的基本原理 (5)2.2设计的基本步骤 (5)2.3.设计的基本内容 (6)2.3.1模糊控制器的结构设计 (6)2.3.2模糊控制规则的设计 (7)2.3.3模糊推理及其模糊量的非模糊化方法 (9)2.4模糊控制器的程序实现 (10)2.5程序编写中的几点说明 (11)3.程序流程图 (12)4.液位控制部分 (13)5.设计小结 (13)参考文献 (14)摘要随着科技的不断进步,工业生产过程已经向大型化、精细化、现代化以及复杂性发展,一般的常规控制方法已经不能满足实际生产的需求。

智能型控制算法应运而生,在众多的算法中,模糊控制算法利用计算机来实现人的控制经验,是模糊理论与计算机技术、自动化技术相结合的产物,由于其良好的控制特性而得到了广泛应用。

本报告对模糊控制基于单片机对液位的控制理论及其智能优化控制策略和方法上作出详尽的研究,建立了一种控制系统。

在系统的构建中,应用单片机89C51做为核心控制部分,采用模糊控制算法进行控制。

控制系统根据设定值将得到的实际位置和偏差变化率进行模糊化,建立模糊控制规则表,将优化后的参数变化量,在模糊控制器的控制下实现转动控制。

通过对常规控制器、纯模糊控制器和具有自整定功能的模糊控制器进行仿真对比。

关键词:模糊控制、自动化技术、优化控制。

AbstractThe abstract along with the technical unceasing progress, the industrial production process already to the large scale, the fine refinement, the modernization as well as the complex development, the general convention control method already could not satisfy the actual production the demand.The intelligence control algorithm arises at the historic moment, in the multitudinous algorithms, controls the algorithm to realize human's control experience fuzzily using the computer, is product which the fuzzy theory and the computer technology, the automated technology unify, obtained the widespread application as a result of its good control characteristic.This report makes the exhaustive research to the fuzzy control based on the monolithic integrated circuit to the fluid position control theory and in the intelligent optimization control strategy and the method, has established one kind of control system.In the system construction, does using monolithic integrated circuit 89C51 for the core control section, uses the fuzzy control algorithm to carry on the control.The control system the physical location and the deviation rate of change which obtains according to the setting value carries on the fuzzy, establishes the fuzzy control rule table, will optimize after the parameter change quantity, will realize the rotation control in under the fuzzy controller control.Through to the conventional controller, the pure fuzzy controller and has the self regulating to decide the function the fuzzy controller to carry on the simulation contrast.Key word: Fuzzy control, automated technology, optimized control.1.模糊控制简介1.1模糊控制的历史背景1965年美国自动控制理论专家L A Zadeh首次提出了模糊集合,1974年英国E H Mamdani首先将模糊控制应用于锅炉和蒸汽机的自动控制。

模糊控制2500字

模糊控制2500字

模糊控制2500字一、模糊控制简介模糊控制(Fuzzy Control)是一种基于模糊数学理论的控制方法,在复杂系统控制中应用广泛。

传统的控制方法基于准确的数学模型,对系统有严格的要求,而实际控制过程中,系统的动态特性常常难以精确建模。

模糊控制通过模糊化输入输出变量,使用模糊规则来描述人类的控制经验,并通过模糊推理来实现控制目标,从而克服了传统控制方法对系统模型的要求。

二、模糊控制的基本原理模糊控制系统由输入、模糊化、模糊规则库、模糊推理、去模糊化和输出等部分组成。

输入是实际系统的状态量或变量,经过模糊化处理,转化为模糊变量。

模糊化是将输入量通过隶属函数转化为隶属度,表示其属于不同模糊集的程度。

模糊规则库是由专家经验提供的规则集合,其形式为“如果...那么...”。

模糊推理是根据输入的模糊变量和模糊规则,通过模糊逻辑运算得到模糊输出。

去模糊化是将模糊输出转化为实际控制变量,通常采用去隶属化、非线性映射和合成明确规则等方法。

最后,输出是实际控制器对系统施加的控制量。

三、模糊控制的特点1. 鲁棒性高:模糊控制对系统参数变化、外界干扰和测量噪声具有一定的鲁棒性,能够适应各种环境变化。

2. 推理能力强:模糊控制使用基于人类经验的模糊规则库进行推理,能够处理非线性、多变量、不确定的控制问题。

3. 操作简单:模糊控制主要通过数学模型中的模糊集、隶属度函数和模糊规则等概念进行描述,易于理解和实现。

4. 适应性强:模糊控制可以根据实际控制结果反馈信息,自动调整模糊规则和参数,实现自适应控制。

四、模糊控制器的设计方法模糊控制器的设计方法主要分为模糊控制器的结构设计和参数设计两个方面。

1. 结构设计:模糊控制器的结构设计包括选择输入输出变量、构建模糊规则库和确定模糊推理机制。

根据控制系统的特点和需求,选择合适的输入输出变量,并通过专家经验或试验数据构建模糊规则库。

模糊推理机制可以选择模糊关系矩阵、模糊神经网络或模糊Petri网等方法。

模糊控制

模糊控制

2 按模糊控制的线性特性分类 对开环模糊控制系统S,设输入变量为u,输出变量
为v。对任意输入偏差Δ u和输出偏差Δ v,满足
v k u
u U,v V
定义线性度δ ,用于衡量模糊控制系统的线性化
程度:
vmax 2u m a xm
其中 vmax vmax vmin
,umax umax umin
1. 模糊控制器的结构 单变量二维模糊控制器是最常见的结构形式。
2 .定义输入输出模糊集 对误差E、误差变化EC及控制量u的模糊集及其论域
定义如下:
E、EC和u的模糊集均为:NB, NM , NS, Z, PS, PM, PB
E、EC的论域均为:{-3,-2,-1,0,1,2,3} u的论域为:{-4.5,-3,-1.5,0,1,3,4.5}
4.4 模糊自适应整定PID控制
4.4.1 模糊自适应整定PID控制原理
在工业生产过程中,许多被控对象随着负荷变化 或干扰因素影响,其对象特性参数或结构发生改变。 自适应控制运用现代控制理论在线辨识对象特征参数 ,实时改变其控制策略,使控制系统品质指标保持在 最佳范围内,但其控制效果的好坏取决于辨识模型的 精确度,这对于复杂系统是非常困难的。因此,在工 业生产过程中,大量采用的仍然是PID算法,大多数 都以对象特性为基础。
图4-6 多变量模糊控制器
4.2 模糊控制系统分类
1 按信号的时变特性分类 (1)恒值模糊控制系统
系统的指令信号为恒定值,通过模糊控制器消除外 界对系统的扰动作用,使系统的输出跟踪输入的恒定值。 也称为“自镇定模糊控制系统”,如温度模糊控制系统。 (2)随动模糊控制系统
系统的指令信号为时间函数,要求系统的输出高精度、 快速地跟踪系统输入。也称为“模糊控制跟踪系统”或 “模糊控制伺服系统”。

模糊控制原理(PDF)

模糊控制原理(PDF)

第一部分模糊控制第2讲模糊控制原理第一节模糊控制(推理)系统的基本结构1.1 模糊控制系统的组成模糊控制器1.2 模糊控制器(推理)的结构1.2 模糊控制器的结构模糊化模糊化的作用是将输入的精确量转换成模糊量。

具体过程为:1)尺度变换尺度变换,将输入变量由基本论域变换到各自的论域范围。

变量作为精确量时,其实际变化范围称为基本论域;作为模糊语言变量时,变量范围称为模糊集论域。

2)模糊处理将变换后的输入量进行模糊化,使精确的输入量变成模糊量,并用相应的模糊集来表示。

知识库1.2 模糊控制器的结构数据库规则库数据库主要包括各语言变量的隶属函数,尺度变换因子及模糊空间的分级数等。

规则库包括了用模糊语言变量表示的一系列控制规则。

它们反映了控制专家的经验和知识。

1.2 模糊控制器的结构◆模糊推理模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。

◆清晰化作用:将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。

包括:1) 将模糊量经清晰化变换成论域范围的清晰量。

2) 将清晰量经尺度变换变化成实际的控制量。

1.3 模糊控制器的维数模糊控制器输入变量的个数称为模糊控制器的维数。

对于单输入单输出的控制系统,一般有以下三种情况:一维模糊控制器一个输入:误差;输出为控制量或控制量的变化。

二维模糊控制二个输入:误差及误差的变化。

三维模糊控制器三个输入为输入:误差、误差的变化、误差变化的速率。

第二节模糊控制系统的基本原理2.1 模糊化运算(Fuzzification)2.2 清晰化计算(Defuzzification)2.3 数据库(Data base)2.4 规则库(Rule base)2.4 模糊推理(Fuzzy Inference)2.1 模糊化运算(Fuzzification)模糊化运算是将输入空间的观测量映射为输入论域上的模糊集合。

首先需要对输入变量进行尺度变换,将其变化到相应的论域范围,然后将其模糊化,得到相应的模糊集合。

第三章模糊控制

第三章模糊控制
❖规则库
▪ 规则库的基本要求
• 规则数量合理
控制规则的增加可以增加控制的精度,但是会影响系统的实时 性;控制规则数量的减少会提高系统的运行速度,但是控制的 精度又会下降。所以,需要在控制精度和实时性之间进行权衡
• 规则要具有一致性
控制规则的目标准则要相同。不同的规则之间不能出现相矛盾 的控制结果。如果各规则的控制目标不同,会引起系统的混乱。
Kec选的较大时,系统的超调变小,系统的响应速度变慢。
Ku选的过小时,系统动态响应过程变长,选择过大会导致系 统振荡。 Ku影响着控制器的输出,能过调整Ku可以改变被控 对象输入的大小。
14
3.1 模糊控制的工作原理
❖ 对输入量进行模糊化处理,包括确定语言变量和 隶属函数
▪ 确定语言变量的语言值 通常在语言变量的论域上,将其划分为有限的几档。
11
3.1 模糊控制的工作原理
❖ 输入量和输出量论域的设计
如何实现实际的连续域到有限整数离散域的转换?
通过引入量化因子ke、kec和比例因子ku来实现
期望值
+ - y
e
E
ke
d/dt
ec
kec
EC
模糊 U 控制器
u
ku
实际中误差的连续取值范围是e=[eL,eH],则:
ke
2m eH eL
12
3.1 模糊控制的工作原理
E* ke(e*eH2 eL)
E*C k ec(e*ceH c2 eL c)
18
3.1 模糊控制的工作原理
❖ 模糊化过程小结
第二步 将模糊控制器的精确输入E*和EC*转化为模糊输入A*和B*。
将E*和EC*所对应的隶属度最大的模糊值当作当前模糊控制器 的模糊输入量A*和B*。

模糊控制_精品文档

模糊控制_精品文档
若输入量数据存在随机测量噪声,则此时的模糊化运算相当于将随机 量变换为模糊量,对于这种情况,可以取模糊量的隶属度函数为等于三 角形。三角形的顶点对应于该随机数的均值,底边的长度等于2倍的随机 数据的标准差。另外可以取正态分布的函数。
1
0
x0-σ x0 x0+σ
x
模糊控制的基本原理
清晰化计算 Defuzzification
120
X Years
“年轻”的隶属函数曲线
模糊控制的基本原理
模糊隶属度函数
隶属度函数是模糊集合论的基础,实质上反映的是事物的 渐变性。
规则
✓表示隶属度函数的模糊集合必须是凸模糊集合。
一个模糊集合是凸的,当且仅当任何 x1, x2 X
和任何 0,1 ,满足:
A ( x1 (1 )x2 ) min{A (x1), 2 (x2 )}
模糊控制的基本原理
模糊系统发展的历程
1965年,美国系统论专家Zadeh教授创立了模糊集合理论,提供了处 理模糊信息的工具
1974年,英国学者Mamdani首次将模糊理论应用于工业控制(蒸气 机的压力和速度控制)
近30年来,模糊控制在理论、方法和应用都取得了巨大的进展
模糊控制的基本原理
模糊控制理论出现的必然性
人类的控制规则 如果水温比期望值高,就把燃气阀关小; 如果水温比期望值低,就把燃气阀开大。
描述了输入(水温与期望值的偏差 e)和输出(燃气阀开度的增量 u) 之间的模糊关系R
模糊控制的基本原理
模糊控制的基本结构
模糊化 知识库 模糊推理 反模糊化
给定值
FC 模糊化
知识库 模糊推理
解模糊
模糊控制器
作用:将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。 包括:

6章 模糊控制2011(修改后)

6章 模糊控制2011(修改后)
1、模糊关系
~ ~ ~ ~ ~ A B 上的一个模糊子集 R , 模糊集合A 和 B 的直积 ~ ~ 称为 A 到 B的模糊关系,即 ~ ~ ~ ~ ~ R { R (a, b) R (a, b) [0,1], a A, b B} = A B ~ 其中 R (a, b) 表示a到b具有模糊关系R 程度,也可记作 ~ R(a, b) [0,1] ,且
模糊命题的真值是命题对绝对真的隶属度,它介于[0,1] 之间,是对普通命题的扩展。
2013-6-17
24
—计算机控制系统—
2、模糊逻辑 研究模糊命题的逻辑称为模糊逻辑。由于模糊命题的 真值在[0,1]上连续取值,因此模糊逻辑也称为连续逻辑 或多值逻辑。
2013-6-17
25
—计算机控制系统—
3、模糊蕴涵关系 在模糊控制中,模糊模型是由模糊控制规则构成的, 而模糊控制规则的实质就是模糊蕴涵关系。设存在模糊控 ~ ~ 制规则“if x is A then y is B ”,则该规则表示了 和 之间的模糊蕴涵关系,记为 A B 。 常见的模糊蕴涵关系有:
2013-6-17
4
—计算机控制系统—
6.1 模糊控制的数学基础
在数学和哲学领域里,不分明或模糊逻辑已有长久的 历史。当人们发现并非所有的逻辑判断陈述句均为同样程 度的“真”或“假”时,模糊逻辑的历史就开始了。模糊 逻辑发展了传统意义上的不分明或连续逻辑,使之变成基 于不分明概念或不分明集合上的推理。模糊集合代数允许 单词映射成模糊集合,句子映射成模糊规则或模糊集合间 的结合。本节将简要介绍模糊集合及其运算、模糊矩阵与 模糊关系、模糊逻辑与模糊推理的基本内容。
2013-6-17
16
—计算机控制系统—
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊控制
摘要:
模糊控制是一种针对非线性系统的控制方法,通过使用模糊集合和
模糊逻辑对系统进行建模和控制。

本文将介绍模糊控制的基本原理、应用领域以及设计步骤。

通过深入了解模糊控制,读者可以更好地
理解和应用这一控制方法。

1. 导言
在传统的控制理论中,线性系统是最常见和最容易处理的一类系统。

然而,许多实际系统都是非线性的,对于这些系统,传统的控制方
法往往无法取得良好的效果。

模糊控制方法由于其对于非线性系统
的适应性,广泛用于工业控制、机器人控制、汽车控制等领域。

2. 模糊控制的基本原理
模糊控制的基本原理是建立模糊集合和模糊逻辑,通过模糊化输入
和输出,进行模糊推理和解模糊处理,完成对非线性系统的控制。

模糊集合是实数域上的一种扩展,它允许元素具有模糊隶属度,即
一个元素可以属于多个集合。

模糊逻辑则描述了这些模糊集合之间
的关系,通过模糊逻辑运算,可以从模糊输入推导出模糊输出。

3. 模糊控制的应用领域
模糊控制方法在许多领域中都有着广泛的应用。

其中最常见的应用领域之一是工业控制。

由于工业系统往往具有非线性和复杂性,传统的控制方法往往无法满足要求,而模糊控制方法能够灵活地处理这些问题,提高系统的控制性能。

另外,模糊控制方法还广泛应用于机器人控制、汽车控制、航空控制等领域。

4. 模糊控制的设计步骤
模糊控制的设计步骤一般包括五个阶段:模糊化、建立模糊规则、进行模糊推理、解模糊处理和性能评估。

首先,需要将输入和输出模糊化,即将实际的输入输出转换成模糊集合。

然后,根据经验和知识,建立模糊规则库,描述输入与输出之间的关系。

接下来,进行模糊推理,根据输入和模糊规则,通过模糊逻辑运算得到模糊的输出。

然后,对模糊输出进行解模糊处理,得到实际的控制量。

最后,需要对控制系统的性能进行评估,以便进行调整和优化。

5. 模糊控制的优缺点
模糊控制方法具有一定的优点和缺点。

其优点包括:对于非线性、时变和不确定系统具有较好的适应性;模糊规则的建立比较直观和简单,无需精确的数学模型;能够考虑因素的模糊性和不确定性。

然而,模糊控制方法也存在一些缺点:模糊规则的设计需要大量的专家知识和经验;对于高维、复杂系统的建模和控制比较困难;解模糊处理可能会引入一定的误差。

6. 结论
模糊控制是一种针对非线性系统的控制方法,通过使用模糊集合和
模糊逻辑对系统进行建模和控制。

本文介绍了模糊控制的基本原理、应用领域以及设计步骤。

模糊控制方法具有一定的优点和缺点,根
据实际情况选择合适的控制方法对于系统的稳定性和性能具有重要
意义。

通过深入了解模糊控制,读者可以更好地理解和应用这一控
制方法。

相关文档
最新文档