无线传感器网络在智能交通中的应用
无线传感器网络在智能交通中的应用

无线传感器网络在智能交通中的应用前言随着科技的不断发展,无线传感器网络(Wireless Sensor Network, WSN)在各个领域得到了广泛应用,其中智能交通系统作为一个应用范畴逐渐被人们所接受。
本文将就无线传感器网络在智能交通中的应用进行探究。
第一章无线传感器网络概述无线传感器网络是一类无线网络,由多个分布式传感器节点组成,每个节点都能实现感知、处理、通信等功能。
这些节点通过固定的无线通信信道相互通信,最终实现数据的收集、处理和传输。
无线传感器网络应用广泛,包括农业、军事、能源、环保、医疗等领域。
第二章智能交通系统概述智能交通系统是指通过信息技术手段对传统交通系统进行改造升级,实现交通信息的采集、处理、传输和利用,以提高交通系统运行效率、安全性、便捷性等方面的指标。
智能交通系统主要包括交通信息采集、交通信息处理、交通控制等方面的技术。
第三章无线传感器网络在智能交通中的应用3.1 交通数据采集无线传感器网络可以在城市各个角落安装节点,实时感知道路拥堵状态、行车速度、车辆和行人人流等信息。
传感器节点采集的数据需经过分析和处理,成为真正的交通信息。
3.2 交通信息处理交通信息处理的目的在于整合各个层次的交通信息,建立交通信息库,并对信息进行分析、处理和挖掘。
无线传感器网络在实现交通信息采集的过程中,产生的庞大数据需要通过信息处理技术进行综合评估、分析处理和提取信息。
3.3 交通控制无线传感器网络在智能交通系统中还可以用于实现交通控制。
例如,通过路灯的智能控制,根据交通流量变化智能地调整路灯的亮度,减少能源浪费和环境污染;应急救援中警车、救援车、消防车在途经红灯时自动改绿灯等。
第四章无线传感器网络在智能交通中的优势4.1 传输速度快无线传感器网络中的传感器节点数量一般很多,且分布广泛,传感器节点一般不直接与中心节点通信,而是通过中继节点进行数据传输,这样可以大大减少传输距离和传输时间,提高数据传输和处理效率。
无线传感器网络在智能交通系统中的应用与改进

无线传感器网络在智能交通系统中的应用与改进智能交通系统是近年来快速发展的一项科技创新,它以传感器、通信、信息处理和控制技术为基础,通过智能化设备和系统的集成与应用,提高交通流量的效率、缓解道路拥堵、提升交通安全性,并实现智能化的交通管理。
在智能交通系统中,无线传感器网络发挥着至关重要的作用。
一、无线传感器网络的基本原理和特点无线传感器网络是一种由大量分散部署的传感器节点组成的网络,节点之间通过无线通信进行信息传输和数据交换。
它具有以下几个特点:1. 自组织和自适应:传感器节点能够自主组网,根据网络拓扑和节点状态的变化,动态调整网络结构,以适应各种环境和应用需求;2. 分布式处理和协同工作:传感器节点能够将采集到的数据进行分布式处理和协同工作,以提高处理速度和准确性;3. 低成本和低能耗:传感器节点通常采用微型电池供电,能耗较低,且节点的开发和部署成本相对较低;4. 多功能性:传感器节点不仅能够采集环境信息,还可以进行信号处理、数据存储和通信等功能。
二、无线传感器网络在智能交通系统中的应用1. 交通流量监测与分析:通过在交通要道上布设传感器节点,可以实时监测车辆的流量和速度等信息,并结合交通管理系统进行分析和研究,以便对交通流量进行合理的调度和管理;2. 道路拥堵检测与预警:传感器网络可以监测道路的交通流量和密度,当遇到拥堵情况时,节点能够及时发出预警信号,提醒交通管理部门采取相应的措施进行疏导;3. 车辆定位与导航:通过在车辆上搭载传感器节点,可以实时获取车辆的位置信息,并与导航系统进行集成,以提供准确的导航和路径规划服务;4. 交通事故预防与处理:传感器节点能够检测车辆间的距离和速度等信息,当预测到有可能发生交通事故时,节点能够及时发出警报信号,提醒驾驶员采取减速等措施,以避免事故的发生。
三、无线传感器网络在智能交通系统中的改进虽然无线传感器网络在智能交通系统中的应用已经取得了一定的成果,但仍然存在一些问题和挑战,需要进一步改进和优化。
无线传感网络技术在智能交通中的应用

无线传感网络技术在智能交通中的应用在当今的现代城市,交通堵塞以及安全问题已经成为了最大的挑战之一。
随着科技的进步,想要解决这些问题已经不再困难。
智能交通的发展,就是为了解决这个问题。
无线传感网络技术正是智能交通中一个关键的工具,具有很多极好的应用,它可以通过大数据分析和传感器技术提供我们所需要的信息。
一、无线传感网络技术的介绍无线传感网络技术(WSN)是一种能够自组织的、无线通信的、基于节点的、自动监测的、在无线线条和有线网络之间传输数据的技术。
WSN技术可以让分布在不同地点的小型计算机之间互相通信,也可以收集、处理和传输各种类型的传感器数据,比如光线,温度和气压等数据。
WS\N 系统通常由大量的无线传感器节点组成,并为特定的目的而设计。
这些节点能够收集各种形式的数据,并将其传输到不同的地方进行处理。
这使得WSN技术在许多不同领域的应用中都能发挥其优势。
二、智能交通的介绍智能交通系统是由基于计算机的技术、无线传感器技术、通信技术、以及视频监控等组成的。
该系统能够对城市交通进行实时监控及流量评估,提供有效的信息管理,加强交通规划和管理,提高交通安全性,降低环境污染并优化旅行体验。
同时,智能交通系统还可以优化道路流量,减少交通事故并提高道路的通行效率。
三、1. 道路监控WSN技术可以通过在道路旁边安装传感器节点来监测道路政策,以便获得道路交通状况。
例如,这些节点可以检测到某个路口的交通状况,包括拥堵、轻流量和无流动量,并将这些数据传输到控制中心。
控制中心可以据此判断交通拥堵情况,并调整路灯或交通信号灯的时间,以安排路线或减少拥堵情况。
2. 资源管理WSN技术可以帮助交通部门更好地管理交通资源。
例如,在城市中部署WSN节点可以帮助监测所有交通指标,以便能够更好地分析和计划交通运输。
此外,WSN物联网技术还可以集成到其他资源管理系统中。
随着物联网技术的日益成熟,资源管理系统可以更好地监测交通资源、供应物资以及可靠的物流管理,从而更好地服务于公共利益。
无线传感器网络在智能交通管理中的应用案例

无线传感器网络在智能交通管理中的应用案例智能交通管理是指利用现代信息技术和通信技术,对交通流进行实时监测、分析和调度,以提高交通效率、减少交通拥堵和事故发生率的一种管理方式。
而无线传感器网络(Wireless Sensor Network,简称WSN)则是指由大量分布在空间中的无线传感器节点组成的网络,用于感知和采集环境信息,并将数据传输至中心节点进行处理和分析。
在智能交通管理中,无线传感器网络可以发挥重要作用。
下面将通过几个实际案例来阐述其应用。
案例一:交通流量监测无线传感器网络可以部署在道路上,通过感知车辆的通过来实时监测交通流量。
传感器节点可以通过测量车辆的速度和密度等参数,准确计算出道路上的交通流量,并将数据传输至中心节点进行分析。
基于这些数据,交通管理部门可以及时了解道路的拥堵情况,采取相应的措施进行调度,以提高交通效率。
案例二:交通事故预警无线传感器网络可以通过感知车辆的加速度和方向等参数,实时监测交通事故的发生。
当传感器节点检测到异常的加速度或碰撞等情况时,会立即发送报警信息至中心节点。
中心节点可以根据这些信息及时通知交警部门和救援人员,以便他们能够迅速到达现场进行处置,减少交通事故的损失。
案例三:停车位管理无线传感器网络可以用于实时监测停车位的使用情况。
传感器节点可以感知停车位的占用情况,并将数据传输至中心节点。
中心节点可以根据这些数据实时显示停车位的使用情况,方便司机找到可用的停车位。
同时,交通管理部门可以根据停车位的使用情况进行合理规划和管理,以提高停车位的利用率。
案例四:交通信号灯优化无线传感器网络可以用于实时监测交通信号灯的使用情况。
传感器节点可以感知车辆的到达和离开,以及交通信号灯的状态。
中心节点可以根据这些数据进行交通信号灯的优化调度,以减少交通拥堵和等待时间。
同时,交通管理部门可以根据交通信号灯的使用情况进行合理规划和管理,以提高交通效率。
综上所述,无线传感器网络在智能交通管理中具有广泛的应用前景。
无线传感器网络在智能交通中的应用

无线传感器网络在智能交通中的应用随着智能交通技术的不断发展,无线传感器网络在智能交通中的应用也越来越广泛。
无线传感器网络是一种允许大量低成本、低功率传感器联合工作的技术,在智能交通中可以实时监测车辆、交通状况和环境状况,从而提高交通管理的效率和安全性。
无线传感器网络在智能交通中的主要应用场景包括车辆监测、交通状态监测和环境监测。
车辆监测主要是通过在道路边缘或交通枢纽等区域部署传感器,实时监测经过的车辆数量、车速、车型和车辆密度等信息,为交通管理部门提供交通流量预测和道路使用情况分析。
交通状态监测主要是通过在道路上部署传感器,实时监测道路拥堵情况和事故状况,为交通管理部门提供交通预警和路线规划等服务。
环境监测主要是通过在城市环境中布置传感器,实时监测空气质量、噪声污染和温湿度等环境指标,以及路面湿度和路面状态等交通相关指标,为交通管理部门提供城市环境监测和交通设施维护等服务。
无线传感器网络在智能交通中的应用具有以下优势:1.实时监测。
无线传感器网络可以实时监测道路和车辆的状态,为交通管理部门提供最新的交通数据。
2.系统灵活。
无线传感器网络可以根据实际需要定制多种系统,如车辆监测系统、交通状态监测系统和环境监测系统等。
3.成本低廉。
无线传感器网络硬件成本低廉,部署和维护成本也相对较低。
4.数据可靠。
无线传感器网络通过多个传感器联合工作,可以提高数据的可靠性和准确性。
无线传感器网络在智能交通中也存在一些挑战和问题。
例如,传感器的能耗问题、数据通信的可靠性和安全性问题等。
为了解决这些问题,必须不断研发新的技术和算法,提高无线传感器网络的性能和可靠性。
总之,无线传感器网络在智能交通中的应用具有广阔的发展前景。
未来,无线传感器网络将成为智慧城市建设的重要组成部分,为实现智慧交通和可持续发展做出更大的贡献。
无线传感器网络在智能交通系统中的应用

无线传感器网络在智能交通系统中的应用随着科技的不断进步,无线传感器网络正在得到越来越广泛的应用。
其中,智能交通系统便是无线传感器网络得到广泛应用的领域之一。
那么无线传感器网络在智能交通系统中的应用到底有哪些呢?在本文中我们将简要介绍并探讨其使用场合、优点和具体应用等问题。
一、应用场合智能交通系统中的应用场合主要是在道路和交通设施上。
具体包括交通信号灯、路况监测、照明控制等等。
无线传感器网络能够在上述场合中实现数据的实时监控和管理,进而实现交通网络的智能化管理。
二、优点使用无线传感器网络进行智能交通管理,具有以下优点:1. 无线传感器网络能够实现实时数据采集和传输,以实现交通信号灯等设施的自动化控制。
这样可以避免人工干预带来的误差,有效提高交通路线的效率。
2. 无线传感器网络具有自组网和自动修复能力,在网络出现故障时可以自动修复,这可以有效降低维护成本和网络的可靠性。
3. 无线传感器网络拓扑结构灵活、易于扩展,可以方便快速地应对不同场景下的应用需求,有利于推进智能交通系统的建设。
三、具体应用1. 交通信号灯交通信号灯是智能交通系统的一个重要组成部分,它可以实现道路交通的控制,节省时间,避免拥堵。
应用无线传感器网络可以实现对交通信号灯的智能控制,帮助交通路线更好地规划和调整。
2. 路况监测无线传感器网络可以实现路况监测,例如道路上车流量、拥堵情况、道路状况等,这些数据能够在实时传输到智能交通系统中进行处理和分析。
通过分析处理后,可以为司机、交通人员提供即时的路况信息,帮助调整路线,避免拥堵。
3. 照明控制在夜晚道路照明控制也是智能交通系统的一部分,它可以帮助司机安全驾驶。
无线传感器网络可以实现对道路照明的自动控制,例如根据实时路况进行调节和控制。
这可以进一步提高智能交通网络的效率和可靠性。
总之,无线传感器网络在智能交通系统中的应用是无法忽视的。
它可以实现智能交通管理的自动化、智能化,降低维护成本和提高路况安全等方面做出很大的贡献。
无线传感器网络在智能城市中的应用

无线传感器网络在智能城市中的应用智能城市是指利用信息技术、物联网和大数据等先进技术,提升城市管理和生活品质的一种发展模式。
无线传感器网络(Wireless Sensor Network,WSN)作为智能城市建设中的重要组成部分,发挥着关键作用。
本文将探讨WSN在智能城市中的应用,并对其前景进行展望。
一、智能交通智能交通是智能城市的核心领域之一。
WSN通过感知交通流量、车辆信息及路况等数据,实现智能交通管理和优化。
传感器节点可以被安装在道路上,通过无线通信实时汇报交通信息。
这些数据可以被用于交通信号控制、拥堵识别、驾驶员导航等方面。
通过WSN技术,交通管理部门可以实现交通拥堵的减少、交通事故的预警和应急处理的优化,提高交通运输效率和安全性。
二、智能环境监测WSN的另一个应用领域是智能环境监测。
通过在城市中部署大量的传感器节点,可以实现对空气质量、噪声水平、温度、湿度等环境指标的实时监测。
通过这些数据,市民和环保部门可以了解城市的环境状况,及时采取相应措施改善环境质量。
同时,WSN还可以应用于灾害预警,如地震、洪水等,及时提供准确的监测数据,帮助救援部门做出决策,减少灾害损失。
三、智能能源管理智能能源管理是实现可持续发展的重要一环。
WSN可以利用传感器节点对城市中的能源消耗进行实时监测和控制,以优化能源使用效率。
例如,在城市建筑中布置传感器节点,可以实时检测不同区域的能源消耗情况,进而制定相应的节能策略。
此外,WSN还可以应用于智能电网中,监测电力传输过程中的电压、电流等参数,实现对电网运行状态的监控和控制。
四、智慧医疗与健康WSN在智能城市中的另一个重要应用领域是智慧医疗与健康。
通过在医疗机构、社区、居民家中布置传感器节点,可以实现对病人的生命体征、疾病监测等数据的采集和传输。
这些数据可以通过无线网络传输至医疗机构,医疗人员可以及时了解病人的健康状况,并进行及时干预和治疗。
此外,WSN还可以应用于老年人健康监护、紧急救援等方面。
无线传感器网络在智能交通中的应用

无线传感器网络在智能交通中的应用无线传感器网络(Wireless Sensor Network,WSN)是一种由大量分布在特定区域内的自动化传感器节点组成的网络系统。
随着智能技术的不断发展,无线传感器网络在智能交通领域中得到了广泛的应用。
本文将探讨无线传感器网络在智能交通中的应用,并分析其优势和挑战。
一、交通流量监测与控制在城市交通管理中,对交通流量的监测和控制是至关重要的。
无线传感器网络可以通过在交通要道安装传感器节点,实时获取交通流量信息,包括车流量、车速、车道占有率等。
通过分析这些数据,交通管理部门可以制定更有效的交通调度方案,缓解交通拥堵。
同时,传感器网络还可以应用于交通信号灯的智能控制,根据实时的交通流量调整信号灯的时序,优化交通流畅度。
二、智能停车管理随着车辆增加和停车位有限,停车成为城市交通管理面临的一个重要挑战。
无线传感器网络可以用于智能停车系统,通过在停车位上安装传感器节点,实时监测停车位的使用情况。
这些传感器节点可以监测停车位是否被占用,以及车辆离开后的时间。
通过数据分析和管理系统,驾驶员可以快速找到空余的停车位,提高停车效率,减少拥堵和空转。
三、道路状况监测道路状况的实时监测对于提高交通安全和效率至关重要。
无线传感器网络可以用于监测道路的状态,如湿滑、积水、堵塞等。
通过节点间的信息交互,可以实时汇报道路状况,并及时向驾驶员或交通管理部门发送警报信息。
这样可以减少交通事故发生的概率,提高道路通行效率。
四、交通事故预警与救援无线传感器网络在智能交通中还可以应用于交通事故的预警与救援。
通过在车辆或交通设施上安装传感器节点,可以实时监测车辆的位置、速度等情况,并与其他车辆、基站等进行通信。
当检测到交通事故发生时,节点可以自动触发警报,并向救援中心发送相关信息,以便及时启动救援行动。
五、智能导航与路径规划无线传感器网络在智能交通中还可以应用于智能导航和路径规划。
通过在道路、交叉口等位置安装传感器节点,可以实时监测交通状况,如拥堵程度、交通信号灯状态等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线传感器网络在智能交通系统中的应用作者:黄武陵中科院自动化研究所(100190) 时间:2008-06-16 来源: 电子产品世界摘要:无线传感器网(WSN)综合了嵌入式系统、无线通讯、微电子等技术,逐渐应用于智能楼宇与智能家居、医疗监护、工业监控等领域。
本文介绍了无线传感器网络常用芯片和典型解决方案,及其在智能交通系统(ITS)中的典型应用。
关键词:无线传感器网络;智能交通系统;交通信息采集;智能公交系统无线传感网促进智能交通的发展智能交通系统(ITS)应用在城市交通中主要体现在微观的交通信息采集、交通控制和诱导等方面,通过提高对交通信息的有效使用和管理来提高交通系统的效率,主要是由信息采集输入、策略控制、输出执行、各子系统间数据传输与通信等子系统组成。
信息采集子系统通过传感器采集车辆和路面信息,策略控制子系统根据设定的目标(如通行量最大、或平均候车时间最短等)运用计算方法(例如模糊控制、遗传算法等)计算出最佳方案,并输出控制信号给执行子系统(一般是交通信号控制器),以引导和控制车辆的通行,达到预设的目标。
无线传感器网络是一种融合短程无线通讯技术、微电子传感器、嵌入式系统的新技术,逐渐被用于智能交通系统等需要数据采集与检测的相关领域。
基于IEEE 802.15.4规范的ZigBee技术,具备以下良好特性:①功耗低,2节普通5号电池可支持一个节点工作6~24个月;②组网能力强,网络最多可达个节点,并支持树状、星状、网状等多种组网方式;③传输距离远,两节点室外传输距离可达几百米,在增加发射功率后可达几千米;④可靠性高,具备多级安全模式;⑤成本低,开放的简化ZigBee协议栈,工作在2.4GHz免执照的ISM频段。
无线传感器网络具备优良特性,可以为智能交通系统的信息采集提供一种有效手段,可以监测路口各个方向上的车辆,根据监测结果,改进简化、改进信号控制算法,提高交通效率。
无线传感器网络可以应用于执行子系统中的控制子系统和引导子系统等方面。
例如可以应用该技术改进信号控制器,实现智能公交系统的公交优先功能。
用于ITS的无线传感器网络构建如图1所示,在无线传感器网络结构中,安装道路两旁的汇聚节点组成一个自组织的多跳网状Mesh基础网络构架,交通信息采集专用的传感器终端节点与每个临近的汇聚节点组成星型网络进行通讯,最终的数据将被汇聚到网关节点上。
网关节点可以作为一个模块安装在交叉路口的交通信号控制器内,通过信号控制器的专有网络,将所采集到的数据发送到交管中心作进一步处理。
在无线传感器网络部署中,汇聚节点可以安装在路边立柱、横杠等交通设施上,网关节点可以集成再交叉路口的交通信号控制器内,专用传感器终端节点可以填埋在路面下或者安装在路边,道路上的运动车辆也可以安装传感器节点动态加入传感器网络。
图1 用于智能交通信息采集的无线传感器网络结构采用无线传感器网络进行交通信息采集在交通信息采集中,终端节点可采用非接触式地磁传感器来定时收集和感知区域内车辆的速度、车距等信息。
当车辆进入传感器的监控范围后,终端节点通过磁力传感器来采集车辆的行驶速度等重要信息,并将信息传送给下一个定时醒来的节点。
当下一个节点感应到该车辆时,结合车辆在两个传感器节点间的行驶时间估计,就可估算出车辆的平均速度。
多个终端节点将各自采集并初步处理后的信息通过汇聚节点汇聚到网关节点,进行数据融合,获得道路车流量与车辆行使速度等信息,从而为路口交通信号控制提供精确的输入信息。
通过给终端节点安装温湿度、光照度、气体检测等多种传感器,还可以进行路面状况、能见度、车辆尾气污染等检测。
图2 用于交通信息采集的无线传感器网络部署无线传感器网络在ITS中的应用实现智能公交系统中的公交优先功能需要对现有交通信号控制器进行改造。
通过添加传感器等辅助设备,交通信号控制器可以估算出公交车辆到达交叉路口的时间(旅行时间),计算出公交车辆在路口是否需要给予优先(可选择乘客数量作为优先权重),然后选择合适的优先控制策略,通过调整绿信比来优先放行公交车辆。
交通信号控制器的改造包括:①车载无线通讯终端节点;②交叉路口交通信号控制器上集成无线网关;③用于公交车辆定位的终端节点;④通过构建基于ZigBee的无线传感器网络可以实现上述功能。
当要临近路口时,车载ZigBee无线终端节点进行公交车辆信息广播,路边部署的无线传感器网络获取信息后,公交车辆定位的终端节点对其跟踪获取信息并汇聚到无线传感器网络网关节点上,通过内部连接最后信息传送给交通信号控制器,进行相应的优先处理。
网络节点和网关节点的设计网络节点软件功能设计在ITS无线传感器网络的设计中,网络节点按照功能不同,需要分别进行设计。
终端节点、汇聚节点和网关节点的软件功能如图3所示。
终端节点安装不同的传感器用于运动车辆信息采集和道路信息获取等。
其功能实现可按照精简功能设备(RFD,ReducedFunction Device)标准来实现。
终端节点与汇聚节点按照星型网络组网,在固定时间点由睡眠状态醒来与汇聚节点主动通讯。
信息路由则交给父(汇聚)节点及网络中具有路由功能的协调器和路由器完成,降低了节点功耗和软件实现复杂度。
汇聚节点是终端节点软件功能上的扩展,实现了扩展网络及路由消息的功能,允许更多重点节点接入网络。
可按照全功能设备(FFD,Full Function Device)标准进行设计。
图3 无线传感器网络节点软件功能网关节点是网络中所需要的协调器,负责启动网络、配置网络成员地址、维护网络、维护节点的绑定关系表等,还负责将所采集的数据初步处理并交付交通信号控制器传输到上一级信息中心,需要较多存储空间、计算及通讯能力。
网络节点硬件功能设计现有较多的无线传感网解决方案,包括各芯片产商推出的单片机外接射频芯片和集成射频、微处理器的单芯片等。
在节点设计中较常采用的ZigBee射频芯片有Atmel的AT86RF230、TI的CC2420、Freescale的MC1319x和MC1320x、Microchip 的MRF24J40等。
此外,芯片产商推出了单芯片解决方案,如TI CC2430延用了CC2420 芯片的架构,在单个芯片上整合了ZigBee 射频前端、内存和微控制器;Freescale的MC1321x/MC1322x和Jennic的JN5121/JN513x单芯片解决方案等。
●基于Atmel的AT86RF230射频芯片和AVR单片机设计方案典型的终端节点和汇聚节点设计如图4所示,采用Atmel的8位RISC结构低功耗ATMegal1281V MCU作为系统控制核心。
采用512 KB 的AT45DB041D作为外部程序存储器。
射频模块使用Atmel的支持ZigBee协议的AT86RF230,RF功率达到3dBm,室外传输距离可达300米以上节点的扩展接口可连接模拟输入、数字I/O、I2C、SPI和UART接口,这些扩展接口使其易于与传感器及其它外设连接,例如外接光度、温温度、气压、声、地磁和加速度等传感器。
图4 传感器节点设计[ref: /products/IRIS]●基于TI的CC2420芯片和ARM单片机设计方案在设计无线传感器网络网关时,需要较强的数据处理能力,用以实现复杂路由协议以及信息处理等。
如图5所示Crossbow的imote2节点采用了Marvell PXA271 高性能、低功耗处理器。
该处理器使用动态电压调节技术,频率范围13MHz~416MHz,可工作于低电压(0.85V)低频率(13MHz)模式,具备了优良的动态电源管理技术。
此外,该处理器封装内集成三个芯片256KB SRAM,32MB FLASH以及32MB SDRAM,减小了体积。
通过提供多种I/O,能够灵活的支持不同种类的传感器。
该处理器还支持一个MMX协处理器,提高多媒体处理能力,可以用于无线多媒体传感器网络中的语音和图像处理。
Imote2使用TI的CC2420 ZigBee射频芯片,支持2.4GHz 、16通道250kb/s数据传输,发送功率-24~0dBm。
有效通讯距离是30米,可以通过SMA 接口外接天线来增加传输距离。
图5 Imote2系统结构●节点设计其他考虑在智能交通系统专用无线传感器网络节点设计时需要如下考虑:①节点低功耗设计。
终端节点都是电池(可用太阳能蓄电池)供电。
②节点成本要低廉。
在进行大规模交通信息采集等部署时,节点成本将是项目关键。
③节点的数据处理及存储能力。
一些节点需要进行高速信息采集并且运行识别算法,所以需要数据处理能力。
还需要考虑在有限的空间之内存储程序、数据、以及支持代码在线更新等功能。
④此外,根据不同应用场合的需要,无线传感器节点要具有不同的传感器接口,能外接不同的传感器。
其中,能耗管理应该作为重点考虑。
特别是采用32位ARM处理器外接射频芯片的解决方案,需要有效降低节点能耗,需要在系统级软件上进一步改善能耗管理,例如优化TinyOS或嵌入式Linux电源管理功能。
结语无线传感器网络技术应用与研究得到更多关注。
本文结合智能交通系统中的典型应用,讨论了无线传感器网络的设计等问题。
随着技术发展与成熟,无线传感器网络技术可以在智能交通系统中更多关键性场合得到应用,例如电子收费、交通安全与自动驾驶、停车管理、交通诱导系统等,更进一步推动智能交通系统的发展。
参考文献:1. 孙利民、李建中、陈渝、朱红松编著,‘无线传感器网络’,北京:清华大学出版社,2005-52. ZigBee Alliance, ZigBee Specification v1.1, Nov. 20063. 黄武陵、何小庆、艾云峰,‘嵌入式系统电源管理软件比较’,电子产品世界,2008.024. 张豫鹤、黄希、崔莉,‘面向交通信息采集的无线传感器网络节点’,计算机研究与发展,2008年45卷1期,第110-118页5. 李楠、韩波、李平,‘智能交通系统中无线传感器网络的应用’,机电工程,2007年第24卷第10期,第85-87页。