数值分析几种常用的迭代法

合集下载

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

雅可比迭代法和高斯塞德尔迭代法对比

雅可比迭代法和高斯塞德尔迭代法对比

雅可比迭代法和高斯塞德尔迭代法对比引言雅可比迭代法和高斯塞德尔迭代法是数值分析中常用的迭代求解线性方程组的方法。

它们都是通过迭代更新变量的值,逐渐逼近方程组的真实解。

本文将详细讨论这两种迭代法的原理、特点和适用情况,并给出一些比较和应用实例。

雅可比迭代法(Jacobi Iteration)雅可比迭代法是一种逐个更新变量的值的迭代方法。

对于线性方程组Ax = b,雅可比迭代法的更新公式如下:x i(k+1)=1a ii(b i−∑a ijnj=1j≠ix j(k))其中,aii表示系数矩阵A的第i行第i列的元素,而bi表示方程组的第i个方程的右侧常数。

特点1.雅可比迭代法的计算过程简单,容易理解和实现。

2.每次迭代只更新一个变量的值,相邻两次迭代之间没有数据依赖关系,可以并行计算。

3.雅可比迭代法收敛的条件是系数矩阵A满足严格对角占优条件或对称正定条件。

优缺点•优点:简单易懂,在一些特定情况下收敛速度较快。

•缺点:收敛速度相对较慢,尤其是在系数矩阵A的条件数较大时;不适用于对角占优条件较弱的问题。

高斯塞德尔迭代法(Gauss-Seidel Iteration)高斯塞德尔迭代法是一种逐个更新变量的值,并立即使用最新的值进行下一个变量的更新的迭代方法。

对于线性方程组Ax = b,高斯塞德尔迭代法的更新公式如下:x i(k+1)=1a ii(b i−∑a iji−1j=1x j(k+1)−∑a ijnj=i+1x j(k))特点1.高斯塞德尔迭代法相较于雅可比迭代法,每次迭代可以使用当前迭代步骤中已更新的变量值,因此收敛速度更快。

2.如果系数矩阵A是严格对角占优或对称正定的,高斯塞德尔迭代法一定收敛。

优缺点•优点:相较于雅可比迭代法,收敛速度更快,对于条件数较大的问题也有较好的效果。

•缺点:实现稍微复杂一些,每次迭代的计算依赖于之前已更新的变量值,无法并行计算。

雅可比迭代法和高斯塞德尔迭代法的比较收敛速度在一些特定的问题中,雅可比迭代法可以比高斯塞德尔迭代法更快地收敛。

数值分析3.1.二分法、迭代法及收敛性

数值分析3.1.二分法、迭代法及收敛性

上述令p→∞, 及limxk+p=x* (p→∞)即得(2.6)式. 证毕. 注:误差估计式(2.5)原则上确定迭代次数,但它由 于含有信息 L 而不便于实际应用. 而误差估计式(2.6) 是实用的,只要相邻两次计算结果的偏差足够小即 可保证近似值 xk 具有足够精度.
注: 对定理1和定理2中的条件2º 可以改为导数,即 在使用时如果(x)∈C[a, b]且对任意x∈[a, b]有
显然f(x)∈C[a, b],且满足f(a)=(a)-a>0, f(b)=(b)-b<0, 由连续函数性质可知存在 x*∈(a, b) 使 f(x*)=0,即 x*=(x*),x*即为(x)的不动点. 再证不动点的唯一性. 设x1*, x2*∈[a, b]都是(x) 的不动点,则由(2.4)得
可以如此反复迭代计算
xk+1=(xk) 到的序列{xk}有极限 (k=0,1,2,). (2.2)
(x)称为迭代函数. 如果对任何x0∈[a, b],由(2.2)得
lim xk x .
k
则称迭代方程(2.2)收敛. 且x*=(x*)为(x)的不动点, 故称(2.2)为不动点迭代法.
例1 用二分法求方程 f(x)=x3-x-1=0在(1, 1.5)的实根, 要求误差不超过0.005.
解 由题设条件,即:
|x*-xn|≤0.005 则要
1 2
n 1
(b a)
1 2
n 1
(1.5 1)
1 2
n 2
0.005
2 由此解得 n 1 5.6,取 n=6, 按二分法计算过程见 lg 2
L2 xk 1 xk 2 Lk x1 x0 .
于是对任意正整数 p 有

牛顿迭代法与其他迭代法

牛顿迭代法与其他迭代法

牛顿迭代法与其他迭代法迭代法是一种常见的数值计算方法,用于求解方程的近似解。

其中,牛顿迭代法是一种较为常用且有效的迭代法。

本文将对牛顿迭代法与其他迭代法进行比较和探讨。

一、牛顿迭代法的原理和步骤牛顿迭代法是由英国物理学家牛顿在17世纪提出的一种寻找方程近似解的方法。

其基本思想是通过不断逼近函数的零点,找到方程的根。

牛顿迭代法的步骤如下:1.选择一个初始值x0;2.根据当前的近似解x0,利用函数的导数计算切线的斜率;3.通过切线与x轴的交点得到下一个近似解x1;4.重复步骤2和步骤3,直到满足精度要求为止。

牛顿迭代法的优点在于它通常具有较快的收敛速度,尤其在接近根的地方。

然而,牛顿迭代法可能会收敛到局部极值点,而不是全局极值点,这是其存在的一个不足之处。

二、牛顿迭代法与其他迭代法的比较除了牛顿迭代法,还存在着其他常用的迭代法,比如二分法和割线法。

下面将对牛顿迭代法与这两种方法进行比较。

1. 牛顿迭代法 vs. 二分法二分法是一种简单而广泛使用的迭代法。

它通过不断将搜索区间二分来逐步逼近方程的根。

二分法的步骤如下:- 选择一个初始的搜索区间[a, b],使得方程的根位于[a, b]之间;- 计算搜索区间的中点c=(a+b)/2;- 比较函数在c处的取值与零的关系来确定下一步搜索的区间,即更新[a, b]为[a, c]或者[c, b];- 重复上述步骤,直到满足精度要求。

与牛顿迭代法相比,二分法的收敛速度较慢。

然而,二分法具有简单易懂、稳定可靠的特点,在某些情况下仍然被广泛使用。

2. 牛顿迭代法 vs. 割线法割线法是一种类似于牛顿迭代法的迭代法,它通过直线的割线逼近方程的根。

割线法的步骤如下:- 选择两个初始值x0和x1,使得x0和x1分别位于方程的根的两侧;- 计算通过(x0, f(x0))和(x1, f(x1))两点的直线的方程;- 求解该直线与x轴的交点得到下一个近似解x2;- 重复上述步骤,直到满足精度要求。

数值分析学习方法

数值分析学习方法

第一章1霍纳(horner)方法:输入=c+bn*c bn?1*c b3*c b2*c b1*c an an?1 an?2 ……a2 a1 a0 bn bn?1 bn?2 b2 b1 b0 answer p(x)=b0 该方法用于解决多项式求值问题=anxn+an?1xn?1+an?2xn?2+……+a2x2+a1x+a0 ?2 注:p为近似值p(x)绝对误差:?|ep?|p?p ?||p?prp?|p| 相对误差:?|101?d|p?prp??|p|2 有效数字: (d为有效数字,为满足条件的最大整数) 3 big oh(精度的计算):o(h?)+o(h?)=o(h?);o(hm)+o(hn)=o(hr) [r=min{p,q}]; o(hp)o(hq)=o(hs) [s=q+p]; 第二章2.1 求解x=g(x)的迭代法用迭代规则,可得到序列值{}。

设函数g 满足y 定义在得。

如果对于所有x ,则函数g 在,映射y=g(x)的范围内有一个不动点;此外,设,存在正常数k&lt;1,使内,且对于所有x,则函数g 在内有唯一的不动点p。

,(ii)k是一个正常数,。

如果对于所有定理2.3 设有(i)g,g ’(iii )如果对于所有x在这种情况下,p成为排斥不动点,而且迭代显示出局部发散性。

波理尔查. 诺二分法(二分法定)&lt;收敛速度较慢&gt;试值(位)法:&lt;条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线l与x轴的交点(c,0)&gt;应注意越来越小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法. f(pk?1)其中k=1,2,……证明:用f(pk?1)牛顿—拉夫森迭代函数:pk?g(pk?1)?pk?1?泰勒多项式证明第三章线性方程组的解法对于给定的解线性方程组ax=b a11x1 ? a12x2 ? ? ? a1nxn ?b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2 ? an1x1 ? an2x2 ? ? ? annxn ? bn 一gauss elimination (高斯消元法第一步forward elimination 第二步substitution二lu factorization第一步 a = lu 原方程变为lux=y ;第二步令ux=y,则ly = b由下三角解出y;第三步 ux=y,又上三角解出x ;三iterative methods(迭代法)a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2?)back 初始值0,x0,?,x0x1n2四 jacobi method1.选择初始值2.迭代方程为0,x0,?,x0x1n2k?1? x1k?1 ? x2k? ? ? axk)b1?(a12x1nna11k? ? ? axk)b2?(a21x2nna22k ? axk ? ? ? ak)bn?(an1xxn2nn?1? k?1xn ? ann五gauss seidel method1.迭代方程为kkb?(ax? ? ? axk?111221nn)x1? a11k?1kb?(ax? ? ? axk?122112nn)x2 ? a22?k?1k?1k?1 2.选择初始值判断是否能用0,x0,?,x0x1n2jacobi method或者gaussseidel method的充分条件(绝对对角占优原则)第四章插值与多项式逼近·第一节泰勒级数和函数计算一些常用函数的泰勒级数展开:for all x for all x for all x -1 -1 for篇二:如何学好数值分析怎样学好数值分析课程?提几点意见供参考:一、树立信心,克服怕的思想。

研究生数值分析(12)高斯-赛德尔(Gauss-Seidel)迭代法

研究生数值分析(12)高斯-赛德尔(Gauss-Seidel)迭代法


X (k1) (D L)1UX (k ) (D L)1b

BG (D L)1U
(称为高斯-赛德尔(Gauss-Seidel)迭代矩阵),
fG (D L)1b
则得 X (k 1) BG X (k ) fG 为高斯-赛德尔迭代法的矩阵表示形式。
我们用定理2来判断高斯-赛德尔迭代公式是否
x (k) n

b1)

x2(k
1)


1 a11
(a21 x1( k 1)

a23 x3( k )

a2n xn(k) b2 )



xi
(
k
1)


1 aii
(ai1 x1( k 1)

a x (k1) i2 2


a x (k1) i,i1 i1

a x (k) i,i1 i1
如在例8例9中,由于系数矩阵A是严格对角 占优,由定理4立即可断定用雅可比迭代法与高斯 -赛德尔迭代法求解时,迭代过程都收敛。
4 2 2
又如矩阵
A


2
2 3
2 3 14
是对称正定阵(实对称阵是正定阵的,如果实二次型
f (x1, x2 , , xn ) X T AX
我们先引入一个叫矩阵谱半径的概念的模的最大值称为矩阵a的谱半径记作前面我们在应用雅可比迭代法与高斯赛德尔迭代法解一阶线性方程组时判断各迭代公式是收敛还是发散都要计算雅可比迭代矩阵bj与高斯赛德尔迭代矩阵bg的特征值
2 高斯-赛德尔(Gauss-Seidel)迭代法
研究雅可比迭代法,我们发现在逐个求 X (k1)

研究生数值分析(11)雅可比(Jacobi)迭代法

研究生数值分析(11)雅可比(Jacobi)迭代法
10x1 2 x2 x3 3 2 x1 10 x2 x3 15 x 2 x 5 x 10 2 3 1
解:相应的雅可比迭代公式为
( k 1) 1 x1 (2 x2 ( k ) x3( k ) 3) 10 ( k 1) 1 x2 (2 x1( k ) x3( k ) 15) 10 ( k 1) 1 ( k ) x3 ( x1 2 x2 ( k ) 10) 5
则 AX=b 的系数矩阵 为A=D-L-U , 雅可比迭代公式的矩阵表示形式为 X ( k 1) D1 ( L U ) X ( k ) D 1b 其中 D 1 ( L U ) 称为雅可比迭代矩阵。 记为 BJ D 1 ( L U )
我们用定理2来判断雅可比迭代公式是否收敛
x1(0) x2(0) x3(0) 0 ,按迭代公式进行迭代, 取初值
得计算结果
k
0 1 2 3 4
x
(k ) 1
x2 ( k )
0 1.5000 1.7600 1.9260 1.9700
x3 ( k )
k
x1( k )
x2 ( k )
x3 ( k )
0 0.3000 0.8000 0.9180 0.9716
个方程解出得到一个同解方程组雅可比jacobi迭代法获得相应的迭代公式1121223132则axb的系数矩阵为adlu记为我们用定理2来判断雅可比迭代公式是否收敛需要考虑雅可比迭代矩阵上式左端为将系数矩阵a的对角元同乘以后所得新矩阵的行列式
1 雅可比(Jacobi)迭代法 由方程组 AX=b 的第 i 个方程解出 xi
获得相应的迭代公式
( k 1) 1 x1 (a12 x2 ( k ) a13 x3( k ) a1n xn ( k ) b1 ) a11 1 ( k 1) x2 (a21 x1( k ) a23 x3( k ) a2 n xn ( k ) b2 ) a22 (4) 1 ( k 1) xn (an1 x1( k ) an 2 x2 ( k ) an ,n 1 xn 1( k ) bn ) ann

数值分析 迭代法 二分法和迭代法原理

数值分析 迭代法 二分法和迭代法原理
| xk x*| L | xk1 x*| L2 | xk2 x*| Lk | x0 x*|
lim | xk x* | 0
k
即 lim xk x *.
k
(b) | xk1 x*| L | xk x*|
| xk 1 xk | | ( xk 1 x*) ( xk x*) | xk x * xk 1 x * (1 L) xk x * 1 xk x * xk 1 xk 1 L 又 | xk1 xk | ( xk ) ( xk1 ) | '( ) | | xk xk1 | L | xk xk1 |
等价变换
x = (x) 称为迭代函数
(x) 的不动点x*
不动点迭代
具体做法:
从一个给定的初值 x0 出发,计算 x1 = (x0), x2 = (x1), … x 若 k k 0 收敛,即存在 x* 使得 lim x k x *,则由 的连续
k
xk 1 lim xk 可得 x* = (x*),即 x* 是 的不 性和 lim k k
根的估计
引理3.1(连续函数的介值定理) 设f(x)在 [a,b]上连续,且f(a) f(b)<0,则存在x*(a,b) 使f(x*)=0。 例3.1 证明x33x1 = 0 有且仅有3个实根,并 确定根的大致位置使误差不超过 =0.5。 解:
单调性分析和解的位置 选步长h=2, 扫描节点函数值 异号区间内有根
ek 1 xk 1 x* ( xk ) ( x*) '( )ek e 取极限得 lim k 1 '( x*) 0 线性收敛. k e k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档