管道应力分析及计算
第6章管道的热应力计算

8
6.3.2管道活动支架的确定
6.3.2.1按强度条件确定活动支架的允许间距
15 w W L qd
6.3.2.2按刚度条件确定活动支架的允许间距
iEI L 53 qd
9
活动支架间管道变形示意图 1—管道按最大角变不大于 管道坡度条件下的变形线; 2—管道按允许最大挠度 y 条件下的变形线;3—支点。
6.6 直埋热水供热管网的应力计算
Et1 t 0 t A 106
Fmin
过渡段最 大长度 过渡段最 小长度
Lmax
Lmin
Et1 t 0 t A 106
Fmax
当量应力应满足 j 3 ,当不能满足要求时,管道系统中 不应有锚固段存在 ,且过渡段长度应满足:
– – –
⑴由于管道内的流体压力(简称内压力)作用所产 生的应力; ⑵管道在外部荷载作用下所产生的应力。 ⑶供热管道由于热胀和冷缩所产生的应力。
应力验算:计算供热管道在各种负荷的作用下所产
生的应力,校核其是否超过管材的许用应力
4
许用应力分类:
许用应力分为:额定许用应力[ ] ;外载许用综合 应力 ;许用合成应力 和许用补偿弯曲应力 等。 ⑴额定许用应力 。它取决于管材的强度特性, 它是应力验算中最基本的一个许用应力值。常用钢 管额定许用应力见表6-2 ⑵许用外载综合应力 。在热力管道强度计算中, 如只考虑外部荷载引起的综合应力,则不应大于规 定的许用外载综合应力值 。
适用范围:
内压产生的摩擦力
当DN=150~400mm时
公称直径DN (mm) 100~150 200~250 300~350 400~700
厚壁圆筒或管道中的应力计算

厚壁圆筒或管道中的应力计算(1)概述当厚壁管或圆柱体受到内部和外部压力时,会在壁中产生环箍和纵向应力。
(2)轴向方向应力σa = (p i r i2 - p o r o2 )/(r o2 - r i2) (1)σa=轴向应力(MPa,psi)pi=管道或圆柱体中的内部压力(MPa,psi)p o=管道或圆柱体中的外部压力(MPa,psi)r i=管道或圆柱体的内径(mm,in)r o=管子或圆柱体的外半径(mm,in)(3)周向应力-环向应力圆周方向上的应力——环向应力——在管或圆筒壁上的一点上可以表示为:σc = [(p i r i2 - p o r o2) / (r o2 - r i2)] - [r i2 r o2 (p o - p i) / (r2 (r o2 r i2))] (2)其中:σc=周向应力(MPa,psi)r=管道或圆筒壁中点的半径(mm,in)(r i<r<r o)r=r i时的最大应力(管道或圆柱体内部)(4)合成应力气缸壁中单个点的组合应力不能通过使用矢量加法的单个矢量来描述。
相反,可以使用描述两个物理向量之间的线性连接的应力张量(矩阵)。
径向应力管壁或圆筒壁中某一点处的径向应力可以表示为:σr= [(p i r i2 - p o r o2) / (r o2 - r i2)] + [r i2 r o2 (p o - p i) / (r2 (r o2 - r i2))] (3) r=r o时的最大应力(管道或圆柱体外部)(5)示例-厚壁圆筒中的应力在内径为200mm(半径为100mm)、外径为400mm(半径为200mm)的圆柱体中,相对于外部压力存在100MPa的压力。
轴向应力可计算为:σa=(((100 MPa)(100 mm)2-(0 MPa)(200 mm)2)/((200 mm =33.3 MPa内壁(100 mm)的周向应力(环向应力)可计算为:σc=[((100 MPa)(100 mm)2-(0 MPa)(200 mm)2)/(200 mm=167 MPa内壁(100 mm)的径向应力可计算为:σr=[((100 MPa)(100 mm)2-(0 MPa)(200 mm)2)/(200 mm=-100MPa。
管道应力分析计算书编制规定

中国石化集团上海工程有限公司标准
· 附录 6.6 加热炉管口受力校核表 2.7 法兰泄漏计算
法兰的泄漏计算详见附件7。
2.8 其它附图
其它附图是指应力计算时所需的各专业的条件。包括设备总装详图或小样图,膨胀节的示意图,转
动设备制造商提供的设备图和管口位移量等。
3 管道柔性分析和应力计算书的签署规定
管道应力分析报告的签署应按公司标准Q/SSEC ITE06-2003《压力管道设计管理制度》的规定签署。
Q/SSEC aabb00-2005
前 言
本标准是中国石化集团上海工程有限公司(简称SSEC)技术标准之一,属于配管室技术标准。 本标准由配管工程室提出。 本标准由配管工程室归口。 本标准主要起草人:方 立、史习庆、倪 钧。 本标准于2006年首次发布。
Q/SSEC aabb00-2005
Q/SSEC aabb00-2005
第 1 页 共 7 页
· 管道在偶发载荷(如风,地震)作用下的应力和一次应力组合后的最大偶发应力(OCC)和相
应的节点号。
· 各约束点在操作工况(OPE)和安装工况(SUS)下的受力。
· 各节点在操作工况(OPE)和安装工况(SUS)下的位移量。
管线号
管道 保温 流体 P1 P2 Pt T1 T2 T2 等级 型式,厚度 密度 MPa MPa MPa ℃ ℃ ℃
管道应力计算

3 推力计算
3.1 管道截面二次距
cm4
3.2 温度综合系数
3.3 管形系数
3.4 X向推力
N
3.5 Y向推力
N
3.6 合力
N
3.7 弯曲应力
Mpa
平面L型(90度)自然补偿推力和应力计算 符号或公式
数据
Do S L1; T1 T2
σ;取决于管道的材料和使用温度,见工业金属 管道设计规范
159.00 4.50 30.00
参数 1 基本参数 1.1 管道外径
管道壁厚 1.2 长臂长度L1 1.3 工作温度 1.4 环境温度 1.5 线性膨胀系数
1.6 钢管许用应力
平面L型(90度)自然补偿推力和应力计算 单位源自mm mm m °C °C /°C
Mpa
2 短臂必要长度计算
2.1 △L1
mm
2.2 短臂必要长度L2
m
2.3
120.00 0.00
0.00001266
105.00000000
△L1=L1*a*(T1-T2) L2min=1.1SQRT(△L1*Do/300) L2取值
I;动力管道设计手册,表9-4 C; L1/L2;用以在表9-5查Kx,Ky等 Kx Ky Kb Fx=9.8Kx*C*I/L1/L1 Fy=9.8Ky*C*I/L1/L1 F=SQRT(Fx*Fx+Fy*Fy) σb=0.098*Kb*C*Do/L1
45.576 5.41 5.00
652 0.288
6 52 16 825 106 33 111 12.34
管道热应力计算

管道热应力计算
管道热应力计算是指在高温、高压、高速的工程实际中,对管道受热引起的应力进行计算的过程。
由于管道在使用过程中会受到多种因素的影响,如温度、压力、自重等,因此需要考虑多种应力情况。
在管道热应力计算中,需要先进行管道的应力分析,包括弯曲应力、剪切应力、轴向应力、环向应力等。
接着,根据管道材料的特性和实际工作条件,计算管道的热膨胀量和热应力,以判断是否超过了管道的承载极限。
在计算热应力时,需要考虑管道的材料和形状,以及工作温度和压力等因素。
通常采用有限元法等计算方法,通过模拟管道在不同工作条件下的应力情况,得出管道的热应力。
管道热应力的计算对于保障管道的安全运行、延长管道的使用寿命具有重要意义。
因此,在实际工程中,需要根据具体情况进行合理的计算和分析,并采取相应的措施,保障管道的安全运行。
- 1 -。
石油化工设计中管道的应力分析

石油化工设计中管道的应力分析管道系统是石油化工设备中不可或缺的部分,其承载着输送介质和承受压力的重要任务。
在设计管道系统时,必须对其进行应力分析,以确保其安全稳定地运行。
本文将深入探讨石油化工设计中管道的应力分析,包括管道应力的来源、计算方法以及在设计中的应用。
管道应力的来源管道系统承受多种应力作用,主要包括内压力、外载荷、温度变化和地震等因素。
首先是内压力,即输送介质所施加的压力。
这种应力是管道系统中最主要的应力来源,其大小与介质的性质、流量、工作温度和管道尺寸等因素有关。
其次是外载荷,如管道上的悬挂支架、施工载荷等,也会对管道造成影响。
温度变化也是管道应力的重要来源,因为温度变化会引起管道的膨胀或收缩,从而产生应力。
地震等外部环境因素也会对管道系统造成应力影响。
计算管道应力的方法主要包括静力学方法和有限元分析方法。
在静力学方法中,常用的计算公式有Barlow公式、Lame's公式和Tresca's公式等。
这些公式可以通过管道的几何参数、介质的性质和工作条件等参数来计算得到。
而有限元分析方法则是通过数值模拟的方法,将整个管道系统划分为有限个单元,然后利用有限元软件对其进行力学分析,得出管道的应力分布和变形情况。
在进行管道应力计算时,需要考虑多种因素,如管道的材料、受力条件、支架布置等。
特别是对于石油化工设备中使用的高压管道系统来说,其设计要求更加严格,对管道应力的计算也更加复杂。
还需要考虑管道的疲劳寿命和安全系数等因素,以确保管道系统的安全可靠运行。
管道应力分析在设计中的应用管道应力分析在石油化工设备的设计中起着至关重要的作用。
通过合理的应力分析可以确定管道的尺寸和壁厚,以满足输送介质和承受压力的要求。
在设计中,需要根据管道的受力情况和使用条件,选择合适的材料和管道结构,以确保其安全可靠地运行。
管道应力分析还可以指导管道的支架布置和管道间的连接设计,避免管道出现挠曲、屈服或疲劳断裂等问题。
压力管道局部应力分析

I.
采用有限元法对特殊管件进行分析,得到应力集中系数;
II. 应力增大系数等于应力集中系数的一半。
应力增大系数应用的注意事项!
根据GB 50316、ASME B31.1和ASME B31.3的规定,计算二次应力时应 采用应力增大系数。这是由于采用应力增大系数的目的,是考虑局部应力 集中的影响,而局部应力集中主要对管件的疲劳破坏产生作用。因为局部 的高应力循环,将使材料产生裂纹并不断扩展,最终导致破坏。校核二次 应力的目的正是为了防止疲劳破坏,因此在计算二次应力时必须考虑应力 集中的影响,应该采用应力增大系数。另外,根据ASME B31.3的标准释 义,计算一次应力可不考虑应力增大系数。这主要是因为校核一次应力是 为了控制管道的整体破坏,局部的应力集中对管道的整体破坏影响不大。 另外一次应力采用弹性分析方法,认为某一点达到屈服管道失效,已经非 常保守,如果在考虑应力集中的影响将导致过分保守。
l 为了能够表示出WRC107、297计算的误差,使用有 限元分析软件(NozzlePro/FEpipe)来进行对比计算。
l 有限元法严格按照理论分析方法,结合ASME Ⅷ-2 中的应力分类来对特定结构进行应力计算,当满足 理想化假设条件时,其结果与真实应力十分接近, 并且有限元分析法不受任何几何条件的限制,计算 精度与网格划分的疏密程度相关。
可以提高至0.6
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC297应用范围及限制条件
l WRC297继承了WRC107的一些限制条件,另外,当连接区 域的接管壁厚小于补强壁厚时,其局部应力计算值可能过于 保守
管道应力计算指导

[转贴]压力管道应力分析部分第一章任务与职责1. 管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1) 因应力过大或金属疲劳而引起管道破坏;2) 管道接头处泄漏;3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4) 管道的推力或力矩过大引起管道支架破坏;2. 压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10) GB 150-1998《钢制压力容器》3. 专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4. 工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10) 设置、调整支吊架11) 设置、调整补偿器12) 评定管道应力13) 评定设备接口受力14) 编制设计文件15) 施工现场技术服务5. 工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1. 管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号 大 分 类
小分类 (1)刚性支吊架
用 途 用于无垂直位移的场合;
1
承重管架
(2)可调刚性支吊架 用于无垂直位移,但安装误差要求 严格的场合;
(3)可变弹簧支吊架 用于有少量垂直位移的场合;
(4)恒力弹簧架 (5)固定架 (6)限位架 用于垂直位移较大或要求支吊点的 荷载变化率不能太大的场合; 用于固定点处,不允许有线位移和 角位移的场合; 用于限制任一方向线位移的场合;
⑻ 夹套管(蒸汽、热油、热水)计算(端部强 度计算、内部导向翼板位置确定、同时 包括任何应力分析管道的所有内容); ⑼ 往复式压缩机、往复泵动力分析(四级); ⑽ 安全阀、爆破膜泄放反力计算; ⑾ 结构、建筑荷载条件; ⑿ 设备管口荷载、预焊件条件; ⒀ 编制弹簧架采购MR文件及弹簧架技术数据 表; ⒁ 编制柔性件(膨胀节、软管等)采购MR文件 及技术数据表;
注:此为原苏联标准
压力脉动值δ 2~ 8 % 2~ 6 % 2~ 5 % 2~ 4 %
支耳标高确定
(5)卧式容器固定端及立式设备支耳标高确定 — 提高管 道柔性,减小位移量,防止对设备管口的推力过大。 ⑹支管补强计算 — 降低局部应力 — 等面积补强 — WRC329
⑺ 动设备管口许用荷载校核 — API 610;API 617; NEMA SM 23; API 661。 a)管道计算 (8)夹套管 b)端部强度计算
b)管道跨距计算 c) 不考虑内压最大允许跨距 d)考虑内压最大允许跨距 e)大直径薄壁管道
10.2、管道跨距及导向间距
2)导向间距:
a)水平管 b)垂直 垂直管道的最大导向支架间距大致可按不 保温管充水的水平管道支架间距进行圆整。
二、管道应力分析基础知识
2.1、应力、应变及应力状态 2.2、材料的机械性能 2.3、强度理论 2.4、管道变形的基本形式 2.5、管道中的应力状态 2.6、管道应力分类 2.6.1、应力分类校核遵循的原则 2.6.2、管道应力分析中的应力分类 2.6.3、管道应力分析中一次和二次应力超标原因 2.7、管道应力分析所遵循的标准
6.3、各文件应包含的内容: ⑴ 工程规定内容 A、适用范围; B、概述; C、设计中采用的标准规范; D、计算程序(软件); E、设计温度、压力、安装温度(环境温度)、压力; F、设计荷载 — 风压值; — 地震烈度; — 雪荷载; — 土壤的力学性质; G、临界管线表的确定准则(哪些管线该做哪类的应力分 析); H、计算及安全性评定准则; I、应力分析工作流程。 J、其它
(2)通常W1应在W0(压缩机的吸入或吸出频率)的1.2 倍以上,设计时最好控制在1.5倍以上。
振幅
(3)激振力频率 W n 缸数 单( 双 )作用数(1 / 秒 ) 0 60 n = 转/分 — 压缩机转数
(4)控制压力脉动
P ≤5Kg/cm2 ≤5 ~100 Kg/cm2 ≤100 ~ 200Kg/cm2 ≤200 ~ 500Kg/cm2
Process Piping Liquid Transmission and Distribution piping systems Gas Transmission and Distribution piping systems
12、ASME/ANSI B31.8 13、API610 15、API617 16、API618 17、API661 -----
d 0.3 ~ 0.5 D 孔板厚度=3~5mm 孔板位置 — 在较大缓冲罐的进出口均可
d)减少激振力——减少弯头、三通、异径管等管件。 改90。为弯头45。弯头。 e)改变(提高)管线的固有频率,使其远离激振力频率。 (1)共振区域 β— 放大因子
W1— 固有频率(角频)
W0 — 激振频率(角频) 通 常 W1 应 避 开 0.8W0 ~1.2W0 的区域,在工程中 最好避开 0.5W0 ~1.5W0的 范围,这样振幅较小。
C、动力分析要点
a)
机器动平衡差 — 基础设计不当 气流脉动 — 气柱共振
振源
阻力、流速、流向变化 — 异径管、弯头、 阀门、孔板等附近产生激振力 共振 — 激振力频率等于或接近管线固有频 率
b) 机器动平衡差——修改基础设计
c)减少脉动和气柱共振的方法:
1)加大缓冲罐 — 依据API618计算缓冲罐的体积,一 般为气缸容积的10倍以上,使缓冲罐尽量靠近进出 口,但不能放在共振管长位置。 2)两台或三台压缩机的汇集总管截面积至少为进口管 截面积的三倍,且应使柱塞流的冲击力不增加。 3)孔板消振 — 在缓冲罐的出口加一块孔板。 孔径大小: d 4 V气体流速 U, U D V介质内的声速
五、管道机械专业(应力分析)常用的标准规范
1、GB50316-2000《工业金属管道设计规范》 2、HG/T20645-1998《化工装置管道机械设计规定》 3、SH/T3041-2002《石油化工企业管道柔性设计规范》
4、GB150《钢制压力容器》
5、JB/T8130.1-1999 《恒力弹簧支吊架》
2
限制性管架
(7)轴向限位架
(8)导向架
用于限制管道轴向线位移的场合;
用于允许有管道轴向位移,但不允 许有横向位移的场合 用于限制或缓和管道振动
3
减振支架 (9)减振器
10.2、管道跨距及导向间距
1)管道跨距 — 强度及刚度两项控制
a)力学模型
强度条件:连续敷设水平直管允许跨距强度条件是管 道中最大 纵向应力不得大于设计温度下的材 料的许用应力。
四、管道应力分析的职责
4.1、应力分析(静力分析、动力分析); 4.2、对重要管线的壁厚进行计算,包括特殊管件的应力 分析; 4.3、对动设备(机泵、空冷器、透平等)管口受力进行 校核计算; 4.4、管架设计; 4.5、审核供货商文件; 4.6、编制、修改相关规定; 4.7、编制应力分析及管架设计工程规定; 4.8、本专业人员培训; 4.9、进度、质量及人工时控制 ; 4.10、参加现场技术服务;
⑵ 壁厚计算 D0 A、当
t 6 t
且
P
t
0.385时
2 t 2YP
D0 或 P
PD 0
B、当
t 6
0.385时 t
t 的确定应根据断裂理论、疲劳、热应力及材
料特性等因素综合考虑确定。 C、外压直管的壁厚,应根据GB150规定的方法确定。 D、其它的管件(如Y型三通、孔板等)依据相应的规范 (GB50316-2000)公式进行计算。
七、管道应力分析中的特殊问题 7.1、夹套管应力分析
7.2、埋地管应力分析
7.3、高压管道应力分析
八、有限元法在管道应力分析中的应用
九、管道应力分析程序
9.1、CAESAR II软件的应用
9.2、AUTOPIPE软件的应用
十、管道支架设计
10.1、管道支架的分类及定义
按支架的作用分为三大类:承重架、限制性支架和减振 架。 1)承重架 : 用来承受管道的重力及其它垂直向下载荷的 支架(含可调支架)。
离心泵
14、NEMA SM23
--
透平
离心式压缩机 往复式压缩机 空冷器
18、ANSI/B31.1、APIRP520 -- 安全阀、爆破膜
六、工程设计阶段管机专业的任务
6.1、初步设计、基础设计阶段 ⑴ 编制工程设计规定(应力分析、管架设计) (四级签 署) ; (2) 参加设备布置工作; (3) 对主要管线的走向进行应力分析和评定。
⑶ 临界管线表
应力分析
管线 非应力分析 公式法:
D0 Y
计算机计算(BY COMPUTER) (350°C) 简单手算(公式法、图表法) (BY FORMULA) 目测法(BY VISUAL)
C
D(固定)
B D0 — 管外径(mm) Y — 管段总位移(mm) A(固定) Y=(Δ X2+Δ Y2 +Δ Z2)1/2 L — 管段两个固定点的展开长度(m) (AB+BC+CD) U — 管段两个固定点的直线距离(m) (AD间的直线距离) (依据ASME/ANSI B31.1及B31.3) 公式的适用范围
管端结构
c)内部导向翼板位置确定 ⑼ 往复式机泵动力分析
安全阀与爆破片
⑽ 安全阀,爆破膜泄放反力计算(见标准计算程序) ANSI/B 31.1(气体);API RP 520(气体、气混) ⑾结构,荷载条件: F≥1000Kgf,M≥750Kgf × Bf Bf — 梁翼缘宽度。
需提条件给土建 :沉降量的考虑;储罐抗震措施。
b)限位架:限位架的作用是限制线位移。在所限制的轴 线上,至少有一个方向被限制。
c)定值限位架:在任何一个轴线上限制管道的位移至所 要求的数值,称为定值限位架。 d)固定架:限制管道的全部位移。
3)减振架:用来控制或减小除重力和热膨胀作用以外的 任何力(如物料冲击、机械振动、风力及地震等外部荷载 )的作用所产生的管道振动的支架。 减振架有弹簧及油压和机械三种类型。
三、管道的柔性设计
3.1、柔性定义及柔性设计的方法和目的 a)定义 b)目的 c)设计方法 d)端点位移考虑 3.2、是否进行详细柔性设计的判别方法 a)应进行详细柔性设计的管道 b)可以不进行详细柔性设计的管道 c)判别式的使用方法与注意事项 3.3、管道的热补偿
三、道的柔性设计
3.4、应力增大因子 3.5、柔性分析方程 3.6、弹性模量随温度变化效应 3.7、柔性分析的另一规则
6、JB/T8130.2-1999 《可变弹簧支吊架》
7、GB 50251-2003 8、GB 50253-2003 《输气管道工程设计规范》 《输油管道工程设计规范》
9、ASME/ANSI B31.1 -- Power Piping
10、ASME/ANSI B31.3 11、ASME/ANSI B31.4