二维纳米材料-石墨烯.综述
新型纳米材料

新型纳米材料纳米材料是指至少在一维尺度上具有至少一个尺寸小于100纳米的材料。
由于其特殊的尺寸效应、表面效应和量子效应,纳米材料在光学、电子、磁学、力学和化学等方面表现出许多独特的性质,因此被广泛应用于材料科学、生物医学、环境保护等领域。
在过去的几十年里,科学家们不断探索新型纳米材料,并取得了许多重要进展。
一种重要的新型纳米材料是石墨烯,它是由碳原子构成的二维晶体结构。
石墨烯具有极高的导电性、热导率和机械强度,因此被认为是一种理想的材料用于电子器件、传感器、储能材料等领域。
此外,石墨烯还具有良好的透明性和柔韧性,因此在柔性电子、柔性显示器等方面也具有广阔的应用前景。
另一种备受关注的新型纳米材料是量子点,它是一种由几十个到几百个原子构成的纳米粒子。
由于其尺寸约在1到10纳米之间,量子点表现出许多特殊的光电性能,如发光、吸收、荧光等。
因此,量子点被广泛应用于显示技术、生物成像、光电器件等领域。
与传统的半导体材料相比,量子点具有更广泛的发光波长范围、更高的荧光量子产率和更好的光稳定性,因此备受研究者们的青睐。
此外,金属有机骨架材料(MOFs)也是一类备受关注的新型纳米材料。
MOFs 是一种由金属离子和有机配体组成的多孔晶体材料,具有高比表面积、可调控的孔径和丰富的化学功能团。
由于其独特的结构和性能,MOFs在气体吸附、分离、储存等方面具有广泛的应用前景。
此外,MOFs还可以用于催化、药物传递、光电器件等领域。
综上所述,新型纳米材料具有许多独特的性能和广阔的应用前景,对于推动材料科学和相关领域的发展具有重要意义。
随着科学技术的不断进步,相信新型纳米材料将会在更多的领域展现出其独特的魅力,为人类社会的发展做出更大的贡献。
石墨烯是什么材料

石墨烯是什么材料石墨烯是一种由碳原子形成的二维晶格结构的材料,被认为是科学界中的一项重大发现。
它具有许多出色的性质,使其成为研究、应用和开发各种技术的理想材料。
本文将介绍石墨烯的结构、性质和应用。
石墨烯的结构非常特殊。
它是由一个碳原子层构成的,碳原子形成了六边形的排列。
每个碳原子与周围三个碳原子形成共价键,形成一个稳定的二维晶格结构。
这种结构使石墨烯具有独特的性质。
首先,石墨烯具有优异的电子性能。
由于其二维结构,石墨烯的电子在平面内可以自由移动,表现出高度的导电性。
事实上,石墨烯的电子迁移率可以达到几百万cm2/V·s,远高于其他材料。
这使得石墨烯成为电子器件和传感器等领域的理想选择。
其次,石墨烯具有出色的力学性能。
虽然石墨烯只有一个碳原子层的厚度,但它的强度却相当高。
实验证明,石墨烯的强度是钢铁的200倍,同时也具有很高的柔韧性。
这种强度和柔韧性使石墨烯成为纳米复合材料和柔性电子设备的理想材料。
此外,石墨烯还具有很高的光学透明性。
它可以在可见光和红外光范围内实现高透射率,达到97.7%。
这使得石墨烯在显示技术和太阳能电池等领域有着广泛的应用前景。
石墨烯的应用非常广泛。
在电子领域,石墨烯可以用于制造高速电子器件、柔性电子设备和能量存储器件。
在材料领域,石墨烯可以用于制造轻质复合材料、高强度纤维和超薄薄膜。
在能源领域,石墨烯可以用于制造高效的太阳能电池和储能装置。
此外,石墨烯还可以用于制造高效的传感器、过滤器和催化剂等。
然而,尽管石墨烯具有如此出色的性质和应用潜力,但目前仍面临一些挑战。
首先,大规模合成石墨烯仍然是一个复杂和昂贵的过程。
其次,石墨烯的良好导电性和透明性容易受到氧化和杂质的影响,从而降低性能。
因此,石墨烯的制备和保护仍然需要进一步的研究和发展。
总之,石墨烯是一种由碳原子构成的二维晶格结构材料,具有出色的电子、力学和光学性能。
它在电子、材料和能源领域具有广泛的应用前景。
虽然石墨烯仍然面临挑战,但科学界对于其研究和开发仍抱有巨大的期望。
石墨烯简介

石墨烯1 石墨烯的概述石墨烯(Graphene,GE)是世界上最薄,最坚硬的纳米材料,也是其他石墨材料的基本单元,以碳六元环为基本结构组成周期蜂窝状的二维点阵结构,若翘曲便可成为零维的富勒烯,若将石墨烯卷成一维结构便成为碳纳米管(Carbon nano-tube,CB),若是多层堆积便成为了三维的石墨(Graphite)。
石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料。
平面六边形点阵结构是石墨烯最理想的结构,可以认为是单层石墨分子被从三维石墨结构中剥离出来形成的二维分子结构,所有碳原子均为sp2杂化,并且每个碳原子上均多出一个p轨道上的电子形成大π键,这个π电子可以自由移动,因此石墨烯具有良好的导电性。
因此二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本单元。
由于特殊的结构石墨稀因此拥有了很多的优异的性能,首先在电学方面,由于大π键的存在,石墨稀具有优异的导电性能,如超高的载流子迁移率,室温量子霍尔效应,弹道输运等等;而在光学方面,石墨烯具有超高的透光率,其透光率能达到97.7%的惊人数据。
力学性能方面,石墨稀是已知的具有最高强度和硬度的晶体结构,热学方面,石墨烯具有优异的导热性能,其导热是铜的很多倍。
由于这些优异的性能使得石墨稀不但成为科学界一颗明星,而且使得其拥有了极其广阔的应用前景。
石墨烯为六角型呈蜂巢晶格的平面薄膜,是由一种碳原子以sp2杂化轨道组成的,我们可以将它看成是其他石墨类材料组成的基本单元,所以石墨烯片在适当的条件下可以进行包裹和卷曲,分别可以形成零维和一维结构,层层堆叠起可以形成的是三维的石墨,零维和一维分别形成球状的富勒烯、管状的碳纳米管(见图1.1);它们和仅为单一碳原子厚度的二维碳材料作为为重要成员组成了碳纳米材料家族,它们之间通过包裹、卷曲和堆积相互进行转化。
2004年,K.S.Novoselov 等以天然鳞片石墨为原料,制得二维六角形平面原子石墨烯的方法为机械力剥离法。
石墨烯的表征方法

石墨烯的表征方法一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的物理、化学和机械性能,在科学研究和工业应用中均展现出巨大的潜力。
然而,要想充分发掘和利用石墨烯的这些特性,对其进行精确、全面的表征是至关重要的。
本文旨在探讨石墨烯的表征方法,包括其结构、电学性质、热学性质、力学性质以及化学性质等方面的表征技术。
我们将首先介绍石墨烯的基本结构和性质,以便读者对其有一个清晰的认识。
随后,我们将逐一分析并比较各种表征方法的优缺点,包括电子显微镜、原子力显微镜、拉曼光谱、电学测量等。
这些方法的介绍将侧重于它们的原理、操作过程以及在石墨烯表征中的应用实例。
我们还将讨论这些表征方法在石墨烯研究中的最新进展,以及它们在未来可能的发展趋势。
我们期望通过本文,读者能够对石墨烯的表征方法有更深入的了解,为石墨烯的基础研究和应用开发提供有益的参考。
二、石墨烯的结构与性质石墨烯,这种由单层碳原子紧密排列构成的二维材料,自其被发现以来,便因其独特的结构和性质在科学界引起了广泛关注。
其结构特点主要表现为碳原子以sp²杂化轨道组成六边形蜂巢状的二维晶体,每个碳原子通过σ键与相邻的三个碳原子相连,剩余的p轨道则垂直于面形成大π键,π电子可在石墨烯层内自由移动。
这种独特的结构赋予了石墨烯许多引人注目的物理性质。
石墨烯在电学性质上展现出极高的电导率,甚至超过了铜和银等金属,是室温下导电性最好的材料。
其热导率也极高,远超其他已知材料,这使得石墨烯在电子器件和散热材料等领域具有巨大的应用潜力。
在力学性能上,石墨烯的强度也极高,是已知强度最高的材料之一,这使得石墨烯在复合材料、航空航天等领域有着广阔的应用前景。
除了以上基础性质,石墨烯还具有一些特殊的性质,如量子霍尔效应、半整数量子霍尔效应等,这些性质使得石墨烯在基础科学研究领域也具有极高的研究价值。
石墨烯还具有很好的透光性,单层石墨烯几乎是完全透明的,这使得石墨烯在透明导电材料、太阳能电池等领域也有潜在的应用价值。
石墨烯光学性质以及二维材料的纳米光子学性质浅析

使光集中用于等离子体共振,从而使局部电场得到显著增强。在量子效 率方面得到巨大提高。但也会导致可操作宽带的范围减少。
② 整合量子点和石墨烯
用胶体量子点覆盖石墨烯可以获得具有能够获得具有 108 电子/光子的的超高光电探测和 107AW-1 的光响应的光电探测器。但由于需要长时间产生增益, 它们的运算速度也很低。
石墨烯等离激元学
由于石墨烯同时具有高的载流子迁移率和高导电性,它也成为了一种极具前 景的太赫兹到中红外等离子体器件应用的候选材料。等离子体具有高局域场 强度,广泛用于包括光学天线,近场光学显微镜,化学和生物传感器和亚波 长光学器件等。和传统等离子材料相比具有以下优点: ① 可以通过化学掺杂和门电压调控。 ② 具有更强的局域性 ③ 低损耗和长寿命 ④ 结晶度
过渡金属二硫化物光子学
过渡金属二硫化物(TMDCs)是化学公式为MX2的材料,M代表Mo、W、Nb、Re 这一类元素,X是硫元素。
TMDCs的层间相互作用是弱范德华力,而平面成键是强共价键。因此TMDCs 可以被剥离到类似石墨烯的薄膜结构,显著地扩展了二维材料的材料库。一 些二维的TMDCs,如钼和钨的硫化物,在多层的形式中有间接带隙,而在它们 的单层形式中成为直接带隙半导体。他们相当大的和可调带隙,不仅仅能产 生强的光致发光,也能打开像光电探测器,能量收集器,电致发光等光电器 件的大门。而且不同于石墨烯基器件,他具有可操作的光谱范围。另外,在 一些二维的TMDCs中已经证明了的奇异光学性质,如谷相干和谷选择性的圆二 色性,使这些材料非常有希望发现新的物理现象。
① 光与石墨烯的相互作用从能带跃迁的角度主要有两种:带间跃迁和带内跃 迁。远红外和太赫兹光谱区为带内跃迁,近红外及可见光光谱区主要是带 间跃迁;
二维材料-

石墨烯在发现前被认为是不 可能存在的
从统计物理出发可以证明 Mermin-Wagner 定理,这个定理讲的 是:任何具有连续对称性的二维热力学系统,在非零温下,其 连续对称性不可能发生自发破缺。
依据 Mermin-Wagner 定理,在非零温度下,这个情况是不可能 发生的。一个大致的物理解释是,在小于等于二维时,若出现 有序(即连续对称性破缺),Goldstone 玻色子的总能量会发散, 以至于破坏有序
气相分解法
纳
量产
化学气相反应法 气相合成法
气-固反应法
米
气相法
气体冷凝法 氢电弧等离子体法
粒
子 合
纳 米 粒
成
子
物理气相法
溅射法 真空沉积法
加热蒸发法
混合等离子体法
共沉淀法
沉淀法 化合物沉淀法
水热法 水解沉淀法
方 法
制 液相法 溶胶-凝胶法
备
冷冻干燥法 喷雾法
方
分
法
干式粉碎 粉碎法 湿式粉碎
类
热分解法
现实中没有完全严格的二维系统,大家也一般会说,这个条件 放松了,最多也就是定理对应的非零温这个条件放松一点—— 大概在相当低的温度下可能找到准二维晶格——但意想不到的 是,室温下就能找到石墨烯这种东西。
2010年10月5日,瑞典皇家科学院在斯德哥尔摩宣布, 将2010年诺贝尔物理学奖授予英国曼彻斯特大学科学家 安德烈・海姆和康斯坦丁・诺沃肖洛夫,以表彰他们在 石墨烯材料方面的卓越研究。
固相法 固相反应法
其它方法
锡烯,
超高导电效率
石墨烯。
单原子层厚
度的碳薄片柔韧、透明,比钢铁强度高、
比铜导电性好
过渡金属二硫族化合物(TMDC)
石墨烯

石墨烯石墨烯声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
详情>> 石墨烯(二维碳材料)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。
英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。
石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。
[1] 由于其十分良好的强度、柔韧、导电、导热、光学特性,在物理学、材料学、电子信息、计算机、航空航天等领域都得到了长足的发展。
作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。
极有可能掀起一场席卷全球的颠覆性新技术新产业革命。
中文名石墨烯外文名Graphene 发现时间2004年主要制备方法机械剥离法、气相沉积法、氧化还原法、SiC外延法主要分类单层、双层、少层、多层(厚层)基本特性强度柔韧性、导热导电、光学性质应用领域物理、材料、电子信息、计算机等目录1 研究历史2 理化性质? 物理性质? 化学性质3 制备方法? 粉体生产方法? 薄膜生产方法4 主要分类? 单层石墨烯? 双层石墨烯? 少层石墨烯? 多层石墨烯5 主要应用? 基础研究? 晶体管? 柔性显示屏? 新能源电池? 航空航天? 感光元件? 复合材料6 发展前景? 中国? 美国? 欧洲? 韩国? 西班牙? 日本研究历史编辑实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。
石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。
石墨烯的功能化及其相关应用

石墨烯的功能化及其相关应用一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功分离以来,便以其独特的电子、热学和机械性能,引起了全球科研人员的广泛关注。
由于其具有超高的电子迁移率、超强的导热性和极高的力学强度,石墨烯被誉为“黑金”,并有望引领新一轮的工业革命。
本文旨在深入探讨石墨烯的功能化方法,以及这些功能化后的石墨烯在各个领域的应用前景。
我们将从石墨烯的基本性质出发,详细阐述其功能化的基本原理和技术手段,包括化学修饰、物理掺杂等。
随后,我们将对石墨烯在能源、电子、生物医学、复合材料等领域的应用进行详细介绍,并分析其潜在的市场价值和挑战。
我们将对石墨烯功能化及其应用的未来发展趋势进行展望,以期能为相关领域的科研工作者和从业人员提供有益的参考和启示。
二、石墨烯功能化的方法石墨烯作为一种二维碳纳米材料,拥有出色的电学、热学和力学性能,这使得它在多个领域具有广泛的应用前景。
然而,原始石墨烯的化学稳定性较高,与大多数溶剂和分子的相容性较差,这限制了其在实际应用中的使用。
因此,对石墨烯进行功能化修饰,以提高其与其他材料的相容性和稳定性,成为了石墨烯研究领域的重要方向。
目前,石墨烯的功能化方法主要包括共价键功能化和非共价键功能化两大类。
共价键功能化是通过化学反应将官能团或分子共价连接到石墨烯的碳原子上。
这种方法可以精确控制石墨烯的化学性质,实现对其电子结构和性质的调控。
常见的共价键功能化方法包括重氮反应、环加成反应和自由基加成反应等。
通过这些方法,可以在石墨烯上引入羟基、羧基、氨基等官能团,从而改善其在溶剂中的分散性和与其他材料的相容性。
非共价键功能化则是通过物理相互作用,如π-π堆积、静电作用、氢键等,将分子或聚合物吸附到石墨烯表面。
这种方法不需要破坏石墨烯的碳碳共价键,因此可以在保持石墨烯原有性质的基础上,实现对其功能的拓展。
常见的非共价键功能化方法包括π-π堆积作用、表面活性剂包裹和聚合物吸附等。