植物生理学重点
植物生理学重点集锦

1、植物生理学的定义和内容定义:研究植物生命活动规律的科学.内容:植物的生命活动大致可分为生长发育与形态建成、物质与能量转化、信息传递和信号转导等几个方面。
2、信息传递:植物“感知”环境信息的部位与发生反应的部位可能不完全相同,从信息感受部位将信息传递到发生反应部位的过程。
信号转导:单个细胞水平上,信号与受体结合后,通过信号转导系统产生生理反应3、植物生理学发展的第一阶段是从探讨植物营养问题开始的。
第一个用柳条来探索植物养分来源的是荷兰人凡.海尔蒙。
植物生理学发展的第二阶段是以李比希的《化学在农业和生理学上的应用》一书于1840年问世为起始标志。
Sachs《植物生理学讲义》(1882年)的问世,Pfeffer巨著《植物生理学》的出版。
这两部著作标志着植物生理学成为一门独立的学科。
李继侗,罗宗洛,汤佩松.4、什么是水分代谢植物对水分的吸收、运输、利用和散失的过程。
植物体内的水分存在状态靠近胶粒并被紧密吸附而不易流动的水分,叫做束缚水;距胶粒较远,能自由移动的水分叫自由水。
1.水的生理作用(简答)1)水是细胞的主要组成成分2)水是植物代谢过程中的重要原料3)水是各种生化反应和物质吸收、运输和介质4)水能使植物保持固有的姿态5)水分能保持植物体正常的体温水的生态作用1)水对可见光的通透性2)水对植物生存环境的调节渗透作用—水分通过选择透性膜从高水势向低水势移动的现象。
根系吸水的途径有3条.(1)、质外体途径(2)、跨膜途径(3)、共质体途径根压产生的原因:由于根部细胞生理活动的作用,皮层细胞中的离子会不断通过内皮层细胞进入中柱,中柱内细胞的离子浓度升高,水势降低,便向皮层吸收水分。
这种由于水势梯度引起水分进入中柱后产生的压力叫根压。
气孔运动的机制✧淀粉-糖互变、钾离子的吸收和苹果酸生成学说.✧淀粉-糖转化学说:✧认为保卫细胞在光照下进行光下进行光合作用,消耗CO2,细胞质内的PH增高,促使淀粉磷酸化酶水解淀粉为可溶性糖,保卫细胞水势下降,表皮细胞或副卫细胞的水分便进入保卫细胞,气孔张开。
高中生物植物生理学知识点总结

高中生物植物生理学知识点总结高中生物中,植物生理学是一个重要的部分,它涵盖了植物生长、发育、代谢等多个方面的知识。
以下是对高中生物植物生理学相关知识点的详细总结。
一、植物的水分生理1、水在植物生命活动中的作用水是细胞的重要组成成分,约占细胞鲜重的 70% 90%。
它参与了植物的光合作用、呼吸作用、物质运输等多种生理过程。
水还是细胞内良好的溶剂,许多物质都能溶解在水中,从而使生化反应能够顺利进行。
2、植物细胞的吸水和失水植物细胞通过渗透作用吸水和失水。
当细胞液浓度高于外界溶液浓度时,细胞吸水;反之,细胞失水。
成熟的植物细胞有一个中央大液泡,主要通过渗透吸水。
3、植物根系对水分的吸收根系是植物吸收水分的主要器官。
根毛区的根毛数量众多,增大了吸收面积。
根系吸水的动力有蒸腾拉力和根压。
蒸腾拉力是由于叶片的蒸腾作用产生的向上的拉力,是植物吸水的主要动力。
根压则是由于根部细胞的代谢活动产生的压力,使根部能向地上部分输送水分。
4、蒸腾作用蒸腾作用是指植物体内的水分以水蒸气的形式通过气孔散失到大气中的过程。
蒸腾作用的意义在于降低植物体温,促进水分和无机盐的运输。
二、植物的矿质营养1、植物必需的矿质元素植物必需的矿质元素有 14 种,包括大量元素(氮、磷、钾、钙、镁、硫)和微量元素(铁、锰、硼、锌、铜、钼、氯)。
2、矿质元素的吸收植物根部细胞通过主动运输吸收矿质元素。
载体蛋白和能量是主动运输所必需的。
3、矿质元素的运输和利用矿质元素在植物体内通过导管向上运输。
有些元素(如氮、磷、钾)可以被多次利用,而有些元素(如钙、铁)在植物体内形成稳定的化合物,不能被再次利用。
三、光合作用1、光合作用的概念和意义光合作用是绿色植物利用光能,将二氧化碳和水转化为有机物并释放氧气的过程。
光合作用的意义在于为生物提供了物质和能量来源,维持了大气中氧气和二氧化碳的平衡。
2、叶绿体的结构和功能叶绿体是进行光合作用的场所,它由外膜、内膜、基粒(由类囊体堆叠而成)和基质组成。
植物生理学重点归纳

植物生理学重点归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第一章1.代谢是维持各种生命活动(如生长、繁殖、运动等)过程中化学变化(包括物质合成、转化和分解)的总称。
2.水分生理包括:水分的吸收、水分在植物体内的运输和水分的排出。
3.水分存在的两种状态:束缚水和自由水。
束缚水含量与植物抗性大小有密切关系。
4.水分在生命活动中的作用:1,是细胞质的主要成分2,是代谢作用过程的反映物质3是植物对物质吸收和运输的溶剂4,能保持植物的固有姿态5.植物细胞吸水主要有三种方式:扩散,集流和渗透作用。
6.扩散是一种自发过程,指分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩散是物质顺着浓度梯度进行的。
适合于短距离迁徙。
7.集流是指液体中成群的原子或分子在压力梯度下共同移动。
8.水孔蛋白包括:质膜内在蛋白和液泡膜内在蛋白。
是一类具有选择性、高效转运水分的跨膜通道蛋白,只允许水通过,不允许离子和代谢物通过。
其活性受磷酸化和水孔蛋白合成速度调节。
9.系统中物质的总能量分为;束缚能和自由能。
10.1mol物质的自由能就是该物质的化学势。
水势就是每偏摩尔体积水的化学势。
纯水的自由能最大,水势也最高,纯水水势定为零。
11.质壁分离和质壁分离复原现象可证明植物细胞是一个渗透系统。
12.压力势是指原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。
13.重力势是水分因重力下移与相反力量相等时的力量。
14.根吸水的途径有三条:质外体途径、跨膜途径和共质体途径。
15.根压;水势梯度引起水分进入中柱后产生的压力。
16.伤流:从受伤或折断的植物组织溢出液体的现象。
流出的汁液是伤流液。
17.吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。
由根压引起。
18.根系吸水的两种动力;根压和蒸腾拉力。
19.影响根系吸水的土壤条件:土壤中可用水分,通气状况,温度,溶液浓度。
植物生理学重点共16页文档

1、FMN:黄素单核苷酸2、PAA:聚丙烯酸3、ET、ETH:乙烯4、BR:油菜素甾类物质5、RQ、呼吸商 6 IPP:异戊烯焦磷酸:7、SOD:超氧化物歧化酶8、PSI:聚苯乙烯9、RUBP:1,5-二磷酸核酮糖10、Cytf:细胞色素fTIBA:三碘苯甲酸ACC:1-氨基环丙烷-1-羧酸JA:茉莉酸PP333:多效唑或氯丁唑CAM:景天科酸代谢LDP:长日植物MH:马来酰肼或青鲜素1,GA:赤霉素2,ABA:脱落酸3,GPP:牻牛儿焦磷酸4,PGA:三磷酸甘油酸5,PEP:磷酸烯醇式丙酮酸6,CAMP:环磷酸腺苷1.IAA:生长素即吲哚乙酸CTK:细胞分裂素2.PA:聚酰胺即尼龙SDP:短日照植物3.APS:过硫酸铵PPP:戊糖磷酸途径名词解释:植物激素:指一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的微量有机物。
春化作用:低温诱导植物开花的过程。
水分临界期:植物对水分不足特别敏感的时期,灌溉的最适时期。
光能利用率:是指植物光合作用所累积的有机物所含的能量,占照射在单位地面上的日光能量的比率。
巴斯德效应:在厌氧条件下,向高速发酵的培养基中通入氧气,则葡萄糖消耗减少,抑制发酵产物积累的现象称为巴斯德效应。
即呼吸抑制发酵的作用。
冷害:在零上低温时,虽无结冰现象,但能引喜温植物的生理障碍,使植物受伤甚至死亡,这种现象称为冷害自由水:距离胶粒较远而可以自由流动的水分光饱和点:在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。
呼吸商:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率冻害:当温度下降到0度以下,植物体内发生冰冻,因而受伤甚至死亡的现象。
束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。
光补偿点:同一叶子在同一时间内,光和过程中吸收的CO2与光呼吸和呼吸作用过程中放出的CO2等量时的光照强度。
植物生理学重点归纳

第一章代谢是维持各种生命活动(如生长、繁殖、运动等)过程中化学变化(包括物质合成、转化和分解)的总称。
水分生理包括:水分的吸收、水分在植物体内的运输和水分的排出。
水分存在的两种状态:束缚水和自由水。
束缚水含量与植物抗性大小有密切关系。
水分在生命活动中的作用:1,是细胞质的主要成分2,是代谢作用过程的反映物质3是植物对物质吸收和运输的溶剂4,能保持植物的固有姿态植物细胞吸水主要有三种方式:扩散,集流和渗透作用。
扩散是一种自发过程,指分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩散是物质顺着浓度梯度进行的。
适合于短距离迁徙。
集流是指液体中成群的原子或分子在压力梯度下共同移动。
水孔蛋白包括:质膜内在蛋白和液泡膜内在蛋白。
是一类具有选择性、高效转运水分的跨膜通道蛋白,只允许水通过,不允许离子和代谢物通过。
其活性受磷酸化和水孔蛋白合成速度调节。
系统中物质的总能量分为;束缚能和自由能。
1mol物质的自由能就是该物质的化学势。
水势就是每偏摩尔体积水的化学势。
纯水的自由能最大,水势也最高,纯水水势定为零。
质壁分离和质壁分离复原现象可证明植物细胞是一个渗透系统。
压力势是指原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。
重力势是水分因重力下移与相反力量相等时的力量。
根吸水的途径有三条:质外体途径、跨膜途径和共质体途径。
根压;水势梯度引起水分进入中柱后产生的压力。
伤流:从受伤或折断的植物组织溢出液体的现象。
流出的汁液是伤流液。
吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。
由根压引起。
根系吸水的两种动力;根压和蒸腾拉力。
影响根系吸水的土壤条件:土壤中可用水分,通气状况,温度,溶液浓度。
蒸腾作用:水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。
蒸腾作用的生理意义:1,是植物对水分吸收和运输的主要动力2,是植物吸收矿质盐类和在体内运转的动力3,能降低叶片的温度叶片蒸腾作用分为两种方式:角质蒸腾和气孔蒸腾。
植物生理学名词解释重点

自由水:据离胶体颗粒或渗透调节物质远,不被吸附或受到别的吸附力很小而自由移动的水分。
束缚水:在细胞中被蛋白质等亲水大分子组成的胶体颗粒或渗透物质所吸附的不易自由移动的水分。
水分临界期:植物在生活周期中对水分缺乏最敏感、最易受害的时期。
三羧酸循环:丙酮酸在有氧条件下进入线粒体,经过三羧酸循环等一系列物质转化,彻底氧化为水和CO2的循环过程。
氧化磷酸化:在生物氧化中,电子经过线粒体的电子传递链传递到氧,伴随ATP合成酶催化,使ADP和磷酸合成A TP的过程。
P/O:是指氧化磷酸化中每消耗1mol氧时所消耗的无机磷酸摩尔数之比,是代表线粒体氧化磷酸化活力的重要指标。
末端氧化酶:处于生物氧化一系列反应的最末端,把电子传递给O2的酶。
代谢源:是制造或输出同化物质的组织、器官或部位。
代谢库:是消耗或贮藏同化物质的组织、器官或部位。
植物激素:在植物体内合成,通常从合成部位运往作用部位,对植物的生长发育产生显著调节作用的微量有机物,生长素IAA、赤霉素GA、脱落酸ABA、乙烯ETH、细胞分裂素CTK.植物生长物质:是调节植物生长发育的微量化学物质。
乙烯的三重反应:是指含微量乙烯的气体中,豌豆黄化幼苗上胚轴伸长生长受到抑制,增粗生长受到促进和上胚轴进行横向生长、抑制伸长生长,促进横向生长,促进增粗生长。
偏向生长:上部生长>下部生长春化作用:低温诱导植物开花的过程。
光周期现象:植物感受白天和黑夜相对长度的变化,而控制开花的现象。
临界夜长:短日照植物开花所需的最小暗期长度或长日照植物开花所需的最大暗器长度。
呼吸骤变:当呼吸成熟到一定程度时,呼吸速率首先降低,然后突然升高,最后又下降现象。
休眠:成熟种子在合适的萌发条件下仍不萌发的现象。
衰老:细胞器官或整个植物生理功能衰退,最终自然死亡的过程。
脱落:植物细胞组织或器官与植物体分离的过程。
抗逆性:植物的逆境的抵抗和忍耐能力。
避逆性:植物通过物理障碍或生理生化途径完全排除或部分排除逆境对植物体产生直接有害效应。
植物生理学重点整理
² PSⅡ: • 反应中心 • 光收集复合物 • 放氧复合体
颗粒大,水裂解放氧,质体 kun 酉昆, ² PSⅠ:颗粒小,
光合电子传递链:非环式/环式/假环式/ 电子传递链 • 光合电子载体和它们的功能 • 光合磷酸化:化学渗透偶联假说,形成 ATP、NADPH 能量物质
ü 类胡萝卜素 不溶于水,溶于有机溶剂,胡萝卜素 :橙色,α-,β-,γ-叶黄素:黄色
功能:1. 收集和传递光能 2.防护叶绿素免受多余光照伤害
2.3 光合色素的光学特性 (1) 吸收光谱 : • 叶绿素:红光和蓝紫光; • 类胡萝卜素:蓝紫光
(2) 荧光现象和磷光现象 : ü 荧光现象:叶绿体色素溶液在透射光时呈绿色,反射光下呈红色的现象 ü 磷光现象:去掉光源后,叶绿素溶液还能继续辐射出微弱的红光。 (3) 叶片颜色 • 绿色:叶绿素多 • 黄色(秧苗变白):气温下降(衰老;矿质元素),叶绿素合成抑制,故类胡萝卜素多。 • 红色:花色素苷(红色)
5.2 光呼吸的生理功能 • 避免光抑制 • 回收碳,避免在有 O2 环境下丢失太多的 C
6 影响光合作用的因子 • 光合速率酸衡量光合作用的量的指标:指单位时间、单位叶面积吸收 CO2 的物质等量(或放出
氧气的物质的量,或积累干物质的质量,即 umol CO2/(m2*s)…… • 外部因素:光照、CO2、温度、矿质元素、水、(光合速率的)日变化
成 NH3,固氮酶只存在于原核生物细胞中 • 绿色植物: 非共生固氮微生物:好气性细菌;嫌气性细菌;蓝藻 共生固氮微生物:根瘤菌、放射菌
菌类固氮方式 • 通过在不同的细胞分别进行光合作用和生物固氮 • 通过形成特殊的结构进行生物固氮:异形胞 • 通过形成微氧环境进行生物固氮:蓝藻形成防氧进入的糖脂组成的外膜,从而避免氧对固氮
(整理)植物生理学章节重点知识汇总
《植物生理学》章节重点知识汇总第二章:植物的水分代谢一、名词解释类1.水势:指相同温度下,一个系统中1偏摩尔容积的混合溶液体系与1偏摩尔容积纯水之间自由能的差数。
2.压力势:由于细胞吸水膨胀,使原生质向外对细胞壁产生膨压,而细胞壁向内产生的反作用力—壁压的存在使细胞水势升高的数值,一般为正值。
初始质壁分离时压力势为0,植物剧烈蒸腾时,为负值,水势下降。
3.蒸腾作用:指水从植物地上部分以水蒸气状态向外界散失的过程。
蒸腾速率:指植物在单位时间内单位面积通过蒸腾作用所散失的水量,也成为蒸腾强度。
单位:(g·m-2·h-1或mg·dm-2·h-1)。
4.蒸腾比率:指植物每蒸腾1kg水生成干物质的克数,也称为蒸腾比率,单位(g·kg-1)。
5.水分临界期:指植物在生命周期中对水分缺乏最为敏感和最易受害的时期。
二:简答、论述、填空、选择、判断类1.简述水在植物生活中的作用★水是细胞原生质的主要成分。
★水是植物代谢过程中重要的反应物质。
★水是植物体内各种物质代谢的介质。
★水分能够保持植物的固有姿态。
★水分可以有效地降低植物的体温。
★水是植物原生质胶体良好的稳定剂。
2.水与细胞原生质的关系细胞原生质在水分充足的条件下,呈溶胶状态,细胞代谢强,植物合成与分解有序进行,生命活动正常。
若水分不足,则呈凝胶状态,细胞代谢弱,植物合成减慢,分解加快,消耗能量,导致植物死亡。
3.植物水势的组成植物水势=溶质势压力势衬纸势重力势;4.渗透作用的规律水势决定水分流动方向,溶液浓度高,水势低,水分总是由高水势向低水势的方向流动。
5.植物根系对水分的吸收主要在根毛区的原因■根毛区有许多根毛,增大了吸收面积。
■由于根毛细胞壁的外层有果胶质覆盖,粘性强,亲水性好,从而有利于和土壤胶体颗粒的粘着与吸收。
■根毛区的输导组织发达,对水分移动的阻力小,所以对水分转移的速度快。
6.植物受涝时出现缺水现象的原因土壤中水分过多,则通气不良,二氧化碳积累易造成根系无氧呼吸,产生和积累酒精,使根系细胞原生质中毒变性,根系吸水能力下降。
高中生物植物生理学知识点总结
高中生物植物生理学知识点总结植物生理学是研究植物生命活动规律的科学,在高中生物中是一个重要的组成部分。
以下是对高中生物植物生理学相关知识点的详细总结。
一、植物的水分生理1、水分在植物生命活动中的作用水是细胞的重要组成成分,参与各种代谢过程,是良好的溶剂,能维持细胞的膨压,帮助物质运输和调节植物体温。
2、植物细胞的吸水方式(1)渗透吸水:具有液泡的成熟植物细胞主要通过渗透作用吸水。
当细胞液浓度高于外界溶液浓度时,细胞吸水;反之,细胞失水。
(2)吸胀吸水:未形成液泡的细胞,如干种子,主要通过吸胀作用吸水。
3、植物根系对水分的吸收(1)根系吸水的部位:主要在根尖端,包括根毛区、伸长区和分生区。
其中根毛区的吸水能力最强。
(2)根系吸水的途径:有质外体途径、跨细胞途径和共质体途径。
4、蒸腾作用(1)蒸腾作用的概念和意义:蒸腾作用是指水分以气体状态从植物体内散失到体外的过程。
它可以促进植物对水分和矿物质的吸收和运输,降低植物体的温度。
(2)蒸腾作用的指标:常用的有蒸腾速率、蒸腾比率和水分利用效率。
5、影响蒸腾作用的因素(1)内部因素:气孔的数量、大小和开闭程度。
(2)外部因素:光照强度、温度、空气湿度和风速等。
二、植物的矿质营养1、植物必需的矿质元素(1)确定必需矿质元素的标准:不可缺少、不可替代、直接的生理作用。
(2)大量元素和微量元素:大量元素包括氮、磷、钾、钙、镁、硫等;微量元素包括铁、锰、锌、铜、硼、钼等。
2、矿质元素的吸收(1)吸收部位:主要是根毛区。
(2)吸收形式:多数以离子形式吸收。
(3)吸收方式:分为主动吸收和被动吸收。
主动吸收需要消耗能量,具有选择性;被动吸收不消耗能量,顺着浓度梯度进行。
3、矿质元素的运输(1)运输途径:通过木质部向上运输。
(2)运输动力:主要是蒸腾作用产生的拉力。
4、矿质元素的利用(1)可以再度利用的元素:如氮、磷、钾等,当缺乏时,老叶中的元素会转移到新叶。
(2)不可再度利用的元素:如钙、铁等,缺乏时,新叶先表现出症状。
植物生理学重点整理
重点Chapter 1 Water metabolism(植物的水分生理)1.水分在植物生命活动中的作用。
植物体内的水分以自由水和束缚水两种形态存在,两者的比例与植物的代谢强度和抗逆性强弱有着密切关系。
1.水是植物细胞原生质的重要组成成分,是新陈代谢能正常进行的基本环境。
细胞原生质含水量较多呈溶胶状态时,新陈代谢旺盛;反之则呈凝胶状态,生命活动大大减弱,如休眠种子。
2.水参与了植物体内的代谢。
水作为生物体内所有化学反应的环境,且是很多反应的反应物或生成物。
3.水是植物体吸收和运输物质的溶剂。
固态的无机物和有机物一般只有溶解在水中才能被吸收。
被根吸收的无机盐和植物自身制造的各种有机物等,都必须通过水来运输。
4.水分能保持植物体固有的姿态。
细胞含有一定的水分才能维持膨胀状态,使植物体挺拔、花朵绽放(利于传粉)。
2.植物细胞水势的组成,水分移动的方向。
每摩尔水的自由能就是水的化学势。
每摩尔体积水的化学势差除以水的偏摩尔体积所得的商就是水势。
水的偏摩尔体积指1mol水中加入1mol某溶液后,该1mol水占的有效体积。
纯水的水势最高,溶液的水势为负值。
植物细胞的水势Ψw由渗透势(溶质势)Ψs、压力势Ψp,重力势Ψg和衬质势Ψm组成:Ψw=Ψs+Ψp+Ψm+Ψg。
此式可以简化为Ψw=Ψs+Ψp。
细胞的水分移动方向,取决于两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动。
3.细胞对水分的吸收。
细胞吸水有渗透吸水、吸胀吸水以及降压吸水之分。
具有液泡的植物细胞以渗透吸水为主。
未形成液泡的嫩细胞和干燥种子的吸水主要靠吸胀吸水。
细胞与细胞之间的水分移动方向,决定于两处的水势差,水分总是从水势高处流向水势低处,直至两处水势差为零。
细胞吸水主要有三种方式:扩散:一种自发过程,指由于分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动。
扩散适合水分短距离的迁徙,不适合长距离迁徙(如树干导管)集流:指液体中成群的原子或分子在压力梯度下共同移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物生理学重点根冠比是指植物地下部分与地上部分的鲜重或干重的比值。
它的大小反映了植物地下部分与地上部分的相关性;在作物苗期,为了给作物创造良好营养生长条件,要促进根系生长,增大根冠比。
具体措施有:创造良好的土壤条件、中耕断根、蹲苗等措施,肥水措施是:施磷肥,控水。
地下部分(根)和地上部分(茎、叶)的相关性在植物的生活中,地下部分和地上部分的相互关系首先表现在相互依赖上。
地下部分的生命活动必须依赖地上部分产生的糖类、蛋白质、维生素和某些生长物质,而地上部分的生命活动也必须依赖地下部分吸收的水肥以及产生的氨基酸和某些生长物质。
地下部分和地上部分在物质上的相互供应,使得它们相互促进,共同发展。
“根深叶茂”、“本固枝荣”等就是对这种关系最生动的说明。
地下部分和地上部分的相互关系还表现在它们的相互制约。
除这两部分的生长都需要营养物质从而会表现竞争性的制约外,还会由于环境条件对它们的影响不同而表现不同的反应。
例如当土壤含水量开始下降时,地下部分一般不易发生水分亏缺而照常生长,但地上部分茎、叶的蒸腾和生长常因水分供不应求而明显受到抑制。
相互促进,相互抑制,信息传递如何调节(1)土壤水分土壤中常有一定的可用水,所以根系相对不易缺水。
而地上部分则依靠根系供给水分,又因枝叶大量蒸腾,所以地上部水分容易亏缺。
因而土壤水分不足对地上部分的影响比对根系的影响更大,使根冠比增大。
反之,若土壤水分过多,氧气含量减少,则不利于根系的活动与生长,使根冠比减少。
水稻栽培中的落干烤田以及旱田雨后的排水松土,由于能降低地下水位,增加土中含氧量而有利于根系生长,因而能提高根冠比。
(2)光照在一定范围内,光强提高则光合产物增多,这对根与冠的生长都有利。
但在强光下,空气中相对湿度下降,植株地上部蒸腾增加,组织中水势下降,茎叶的生长易受到抑制,因而使根冠比增大;光照不足时,向下输送的光合产物减少,影响根部生长,而对地上部分的生长相对影响较小,所以根冠比降低。
(3)矿质营养不同营养元素或不同的营养水平,对根冠比的影响有所不同。
氮素少时,首先满足根的生长,运到冠部的氮素就少,使根冠比增大;氮素充足时,大部分氮素与光合产物用于枝叶生长,供应根部的数量相对较少,根冠比降低。
磷、钾肥有调节碳水化合物转化和运输的作用,可促进光合产物向根和贮藏器官的转移,通常能增加根冠比。
(4)温度通常根部的活动与生长所需要的温度比地上部分低些,故在气温低的秋末至早春,植物地上部分的生长处于停滞期时,根系仍有生长,根冠比因而加大;但当气温升高,地上部分生长加快时,根冠比就下降。
(5)修剪与整枝修剪与整枝去除了部分枝叶和芽,当时效应是增加了根冠比。
然而其后效应是减少根冠比。
这是因为修剪和整枝刺激了侧芽和侧枝的生长,使大部分光合产物或贮藏物用于新梢生长,削弱了对根系的供应。
另一方面,因地上部分减少,留下的叶与芽从根系得到的水分和矿质(特别是氮素)的供应相应地增加,因此地上部分生长要优于地下部分的生长。
(6)中耕与移栽中耕引起部分断根,降低了根冠比,并暂时抑制了地上部分的生长。
但由于断根后地上部分对根系的供应相对增加,土壤又疏松通气,这样为根系生长创造了良好的条件,促进了侧根与新根的生长,因此,其后效应是增加根冠比。
苗木、蔬菜移栽时也有暂时伤根,以后又促进发根的类似情况。
(7)生长调节剂三碘苯甲酸、整形素、矮壮素、缩节胺等生长抑制剂或生长延缓剂对茎的顶端或亚顶端分生组织的细胞分裂和伸长有抑制作用,使节间变短,可增大植物的根冠比。
GA、油菜素内酯等生长促进剂,能促进叶菜类如芹菜、菠菜、苋菜等茎叶的生长,降低根冠比而提高产量。
在农业生产上,常通过肥水来调控根冠比,对甘薯、胡萝卜、甜菜(含马铃薯)等这类以收获地下部分为主的作物,在生长前期应注意氮肥和水分的供应,以增加光合面积,多制造光合产物,中后期则要施用磷、钾肥,并适当控制氮素和水分的供应,以促进光合产物向地下部分的运输和积累。
光形态建成光形态建成是植物依赖光来控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,即以光控制植物发育的过程,称为光形态建成(photomorphogenesis)。
光形态建成受体为光敏色素、隐花色素、紫外光-B受体光对植物生长的影响间接影响:主要通过光合作用,是一个高能反应。
直接影响:主要通过光形态建成,是一个低能反应。
光在此主要起信号作用。
1)光形态建成的概念:光控制植物生长、发育和分化的过程。
为光的低能反应。
光在此起信号作用。
信号的性质与光的波长有关。
植物体通过不同的光受体感受不同性质的光信号。
2)光形态建成的主要方面:(1)蓝紫光对植物的生长特别是对茎的伸长生长有强烈的抑制作用。
因此生长在黑暗中的幼苗为黄化苗。
光对植物生长的抑制与其对生长素的破坏有关。
(2)蓝紫光在植物的向光性中起作用。
(3)光(实质是红光)通过光敏色素影响植物生长发育的诸多过程。
如:需光种子的萌发;叶的分化和扩大;小叶运动;光周期与花诱导;花色素形成;质体(包括叶绿体)的形成;叶绿素的合成;休眠芽的萌发;叶脱落等。
3)光信号受体:光敏色素、隐花色素、UV-B受体。
一般是指单子叶植物必须经历一段时间的持续低温才能由营养生长阶段转入生殖阶段生长的现象,我们把这一现象称为春化作用春化与光周期很多二年生植物的成花,既要经过春化,又需要长日照。
其中某些植物,春化与光周期两种效应可以互相影响或代替。
如甜菜开花要求春化和长日,在长日下春化有效温度的上限可以提高;在连续光下,12~15℃也可开花。
另一方面,春化时间延长,则在短日下也能成花。
即春化与长日照二者可互相代替。
成花不需低温的长日植物菠菜,经低温处理后,在短日下也能开花春化作用在未完全通过前可因高温(25~40℃)处理而解除,称为脱春化。
脱春化后的种子还可以再春化。
有的植物在春化前热处理会降低其随后感受低温的能力,这种作用称为抗春化,或预先脱春化。
光周期及类型长日植物(long-dayplant,LDP)长光指在24h昼夜周期中,日照长度长于一定时数,才能成花的植物。
对这些植物延照可促进或提早开花,相反,如延长黑暗则推迟开花或不能成花。
属于长日植物的有:小麦、大麦、黑麦、油菜、菠菜、萝卜、白菜、甘蓝、芹菜、甜菜、胡萝卜、金光菊、山茶、杜鹃、桂花、天仙子等。
典型的长日植物天仙子必须满足一定天数的8.5~11.5h日照才能开花,如果日照长度短于8.5h它就不能开花。
短日植物(short-dayplant,SDP)指在24h昼夜周期中,日照长度短于一定时数才能成花的植物。
对这些植物适当延长黑暗或缩短光照可促进或提早开花,相反,如延长日照则推迟开花或不能成花。
属于短日植物的有:水稻、玉米、大豆、高粱、苍耳、紫苏、大麻、黄麻、草莓、烟草、菊花、秋海棠、腊梅、日本牵牛等。
如菊花须满足少于10h的日照才能开花。
日中性植物(day-neutralplant,DNP)这类植物的成花对日照长度不敏感,只要其他条件满足,在任何长度的日照下均能开花。
如月季、黄瓜、茄子、番茄、辣椒、菜豆、君子兰、向日葵、蒲公英等。
除了以上三种典型的光周期反应类型以外,还有一些其他类型:长-短日植物(long-shortdayplant)这类植物的开花要求有先长日后短日的双重日照条件,如大叶落地生根、芦荟、夜香树等。
短-长日植物(short-longdayplant)这类植物的开花要求有先短日后长日的双重日照条件,如风铃草、鸭茅、瓦松、白三叶草等。
中日照植物(intermediate-daylengthplant)只有在某一定中等长度的光周期日照条件下才能开花,而在较长或较短日照下均保持营养生长状态的植物,如甘蔗的成花要求每天有11.5~12.5h日照。
两极光周期植物(amphophotoperiodismplant)与中日照植物相反,这类植物在中等日照条件下保持营养生长状态,而在较长或较短日照下才开花,如狗尾草等。
休眠是指植物的整体或某一部分生长极为缓慢或暂停生长的现象。
种子休眠的破除1.机械破损2.1.沙藏法3.化学方法4.清水冲洗5.日晒或者高温处理6.光照处理7.干湿交错处理衰老:是指细胞、器官或整株植物生理功能衰退,导致植物自然死亡的一系列恶化过程。
生理生化变化:(1)细胞的结构逐渐解体,叶绿体完整性丧失,光合作用迅速下降。
(2)叶片失去绿色而呈现出红色、褐色或金黄色,也就是叶绿素降解,类胡萝卜素降解较晚。
(3)加剧蛋白质的降解,加剧脂类降解,促进编码核酸酶基因的表达,引起核酸的降解,RNA总量迅速下降。
(4)大部分有机物和矿质元素向外撤退,转运到幼嫩的叶片被再度利用。
(5)细胞膜质过氧化作用加剧,选择透性丧失。
(6)急速平衡发生变化,促进生长的IAA、GA、CTK含量减少,诱导衰老和成熟的ABA、ETH含量增加。
环境因素:(1)光照(2)温度(3)水分(4)矿质营养(5)氧气对植物生长发育不利的各种环境因素统称为逆境,又称胁迫植物对各种逆境因子的适应和抵抗能力,又称抗逆性交叉适应是指植物经历某种逆境后,能够提高对其他逆境的抵抗能力赤霉素 (GA) 促进麦芽糖的转化(诱导α—淀粉酶形成);促进营养生长(对根的生长无促进作用,但显著促进茎叶的生长),防止器官脱落和打破休眠等。
赤霉素最突出的作用是加速细胞的伸长(赤霉素可以提高植物体内生长素的含量,而生长素直接调节细胞的伸长),对细胞的分裂也有促进作用,它可以促进细胞的扩大(但不引起细胞壁的酸化)生长素促进营养器官的伸长生长素(IAA)对营养器官纵向生长有明显的促进作用;促进细胞分裂和根的分化;维持植物的顶端优势,抑制离区的形成,促进果实发育及单性结实.细胞分裂素(CK) 细胞分裂素的生理作用主要是引起细胞分裂,诱导芽的形成和促进芽的生长。
对组织培养的烟草髓或茎切段,细胞分裂素可使已停止分裂的髓细胞重新分裂。
这种现象曾被用于细胞分裂素的生物测定。
茎切段的分化常受细胞分裂素及生长素比例的调节。
当细胞分裂素对生长素的浓度比值高时,可诱导条的形成;反之则有促进生根的趋势。
如对抑制的腋芽局部施用细胞分裂素,可以解除顶端对腋芽的抑制。
天然的簇生植物(莲座状植物)或由于病害发生“丛枝病”的植物里,常含有较多的细胞分裂素。
细胞分裂素还有防止离体叶片衰老、保绿的作用,这主要是由于它能维持蛋白质和核酸的合成。
在叶片上局部施用细胞分裂素,能吸聚其他部分的物质向施用处运转和积累。