2020届高考数学选择题填空题专项练习(文理通用)06 数列01(含解析)
2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练【题型归纳】等差数列、等比数列的基本运算题组一 等差数列基本量的计算例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2−S n =36,则n = A .5 B .6 C .7 D .8【答案】D【解析】解法一:由题知()21(1)21n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2−S n =36得,(n +2)2−n 2=4n +4=36,所以n =8.解法二:S n +2−S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2−S n =36,解析为a n +2,发生错误。
题组二 等比数列基本量的计算例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即4220q q --=,解得q 2=2,∴4624a a q ==.【易错点】忘了条件中的正数的等比数列. 【思维点拨】等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.等差数列、等比数列的判定与证明题组一 等差数列的判定与证明例1设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项. (1)证明:数列{a n }为等差数列;(2)若b n =−n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值. 【答案】(1)见解析;(2) 当n =2或n =3时,{a n ·b n }的最大项的值为6. 【解析】(1)由已知可得2S n =a 2n +a n ,且a n >0, 当n =1时,2a 1=a 21+a 1,解得a 1=1; 当n ≥2时,有2S n −1=a 2n -1+a n −1,所以2a n =2S n −2S n −1=a 2n −a 2n -1+a n −a n −1,所以a 2n −a 2n -1=a n +a n −1,即(a n +a n −1)(a n −a n −1)=a n +a n −1,因为a n +a n −1>0, 所以a n −a n −1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列. (2)由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (−n +5)=−n 2+5n =−⎝⎛⎭⎫n -522+254, 因为n ∈N *,所以当n =2或n =3时,{a n ·b n }的最大项的值为6.【易错点】S n 是a 2n 和a n 的等差中项,无法构建一个等式去求解出a n 。
2020年高考数学选择、填空题专项训练(共40套)含答案

2020年高考数学选择、填空题专项训练(共40套)三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
2020年最新高考数学--以数列为背景的选择填空题(解析版)

专题一 压轴选择填空题 第5关 以数列为背景的选择填空题【名师综述】数列是高中数学的重要知识,是高中数学中等价转化思想的典型体现.近年来,高考对数列的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显利用数列考查数学能力的价值.【典例解剖】类型一 以数列为载体考查数学思想与方法典例1.(2020上海交大附中高三月考)已知数列和满足,,,,可证明数列与数列,一个是等差数列一个是等比数列,则数列的通项公式为 .【答案】【解析】依题意,①+②并化简得,而,所以,所以数列是首项为,公比为的等比数列,③.①-②并化简得,,所以数列是首项为,公差为的等差数列,④.③+④并化简得,故答案为:.【名师点睛】本小题主要考查根据递推关系求数列的通项公式,考查转化与化归的数学思想方法. 【举一反三】{}n a {}n b 11a =10b =1434n n n a a b +-=+1434n n n b b a +-=-{}n n a b +{}n n a b -{}n a 1122nn a n ⎛⎫=-+ ⎪⎝⎭11434434n n n n n n a a b b b a ++=-+⎧⎨=--⎩①②()1112n n n n a b a b +++=+111,0a b ==1110a b +=≠{}n n a b +12112n n n a b -⎛⎫+= ⎪⎝⎭()()112n n n n a b a b ++---=111a b -={}n n a b -1221n n a b n -=-1122n n a n ⎛⎫=-+ ⎪⎝⎭1122nn a n ⎛⎫=-+ ⎪⎝⎭已知等差数列的通项公式为,前项和为,若不等式恒成立,则的最小值为__________. 【答案】【解析】由题可知: 恒成立,即恒成立,设t=n+1,则,因为函数在,,所以,所以M 的最小值是.类型二 综合考查数列性质典例2.(2020上海奉贤区一模)由9个互不相等的正数组成的矩阵111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭中,每行中的三个数成等差数列,且111213a a a ++、212223a a a ++、313233a a a ++成等比数列,下列判断正确的有( ) ①第2列中的122232a a a 、、必成等比数列;②第1列中的112131a a a 、、不一定成等比数列;③12322123a a a a +>+;A .1个B .2个C .3个D .0个【答案】C 【解析】【分析】根据每行中的三个数成等差数列,可以把原来的矩阵变形,最后根据等比的数列的性质、基本不等式,举特例对三种说法逐一判断即可.【详解】因为每行中的三个数成等差数列,所以有222a a d a d b b m b m c c n c n ++⎛⎫⎪++ ⎪ ⎪++⎝⎭.111213a a a ++、212223a a a ++、313233a a a ++分别为:3(),3(),3()a d b m c n +++,它们成等比数列,因此有:2()()()b m a d c n +=++,因此说法①正确;{}n a n a n =n n S ()()2*13222Nn n S M n a a n ++≤+∈M 6259()()()()()2112232222n n n n n S Mn n +++=⇒≤++()()1322n M n n +≤++()()()()21131322311323132n t tn n t t t t t t+===++++++++31t t+(∞)递增()()5667565,6565f f ==<311259324366t t ++≥=6259()()2()a d c n b m +++>=+题中已知可知这九个数都不互相相等,故不取等号),因此说法③正确;当1232.54 5.56.589.5⎛⎫⎪⎪ ⎪⎝⎭显然符合已知条件,所以说法②正确.故选C . 【名师点睛】本题考查了等差数列的性质、等比数列的性质,考查了基本不等式的应用. 【举一反三】数列为单调递增数列,且 ,则的取值范围是__________.【答案】 【解析】要使数列为单调递增数列,则.当n <4时,必须单调递增,∴2t -3>0,即t >.①.当n ≥4时,也必须单调递增,∴t >1 ②另外,由于这里类似于分段函数的增减性,因而,即3(2t -3)-8t +14<,化简得+2t>5;③当时,+2t >5;当时,+2t >5;当时,+2t >5,故③式对任意恒成立,综上,解的取值范围是. 类型三 以生成数列为研究对象考查数学能力 典例3.定义nP 1+P 2+...+P n 为n 个正数P 1,P 2,...,P n 的“均倒数”.若已知数列{a n }的前n 项的“均倒数”为12n+3,又b n =a n +12,则1b 1b 2+1b 2b 3+...+1b 9b 10=________.【答案】17【解析】因为数列{a n }的前n 项的“均倒数”为12n+3,所以na1+a 2+⋯+a n=12n+3∴a 1+a 2+⋯+a n =n(2n +3),当n ≥2时a 1+a 2+⋯+a n -1=(n −1)(2n +1),作差得a n =4n +1,因为a 1=1×(2×1+3)=5=4×1+1,所以a n =4n +1,b n =a n +12=2n +1,1b 1b 2+1b2b 3+⋯+1b9b 10=13×5+15×7+⋯+119×21=12(13−15+15−17+⋯+119−121)=12(13−121)=17.{}n a ()23814,4,{log ,4n t t n t n a n n --+<=≥*t N ∈t 3,2⎛⎫+∞⎪⎝⎭{}n a 123a a a <<<⋅⋅⋅()23814n a t n t =--+32log n t a n =34a a <log 4t log 4t 322t <≤log 4t 522t <≤log 4t 52t >log 4t 32t >t 3,2⎛⎫+∞⎪⎝⎭【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如{can a n+1} (其中{a n }是各项均不为零的等差数列,c 为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n+1)(n+3)或1n(n+2).典例4.(2020上海建平中学高三期中考试)数列{}n a 为1、1、2、1、1、2、4、1、1、2、1、1、2、4、8、...,首先给出11a =,接着复制该项后,再添加其后继数2,于是21a =,32a =,然后再复制前面的所有项1、1、2,再添加2的后继数4,于是41a =,51a =,62a =,74a =,接下来再复制前面的所有项1、1、2、1、1、2、4,再添加8,...,如此继续,则2019a =( ) A .16 B .4C .2D .1【答案】D【解析】由数列{}n a 的构造方法可知11a =,32a =,74a =,158a =L ,,可得1212n n a --=, 所以数12n -首次出现于第21n -项,所以当21(121)n nm k k =-+≤≤-时,有(121)n m k a a k =≤≤-,故201999648523010340921a a a a a a a a ========.故选D . 【名师点睛】本题考查求数列项的值,求解时需要敏锐发现两个规律,一是1212n n a --=;二是当21(121)n n m k k =-+≤≤-时,有(121)n m k a a k =≤≤-,再利用递推关系得到2019a 的值.【举一反三】已知为数列的前项和,且,若,,给定四个命题①;②;③;④. 则上述四个命题中真命题的序号为____.【答案】②④【解析】构造函数为奇函数,且单调递增,依题意有n S {}n a n ()*112,2m m m a a a m N m -+=+∈≥()()()53222220172201822018a a a -+-+-=()()()53201720172017220172201822018a a a -+-+-=20174034S =20184036S =20172S S <201720a a -<()()5320172018,f x x x x f x =++Q又,故数列为等差数列,且公差故故①错误;故②正确;由题意知若,则而此时,不成立,故③错误; ,故④成立.即答案为②④.【精选名校模拟】1.(2020上海青浦中学高三月考)已知无穷等比数列{}n a 的各项的和为S ,则“10a <”是“0S <”的( ) A .充要条件 B .充分非必要条件 C .必要非充分条件 D .既非充分也非必要条件【答案】A 【解析】由题得11a S q=-,01q <<,∴10q ->,因为S <0,所以1a <0. ∴“10a <”是“0S <”的是充要条件.故答案为:A .2.(2020上海高三月考)对于正三角形T ,挖去以三边中点为顶点的小正三角形,得到一个新的图形,这样的过程称为一次“镂空操作“,设T 是一个边长为1的正三角形,第一次“镂空操作”后得到图1,对剩下的3个小正三角形各进行一次“镂空操作”后得到图2,对剩下的小三角形重复进行上述操作,设n A 是第n 次挖去的小三角形面积之和(如1A 是第1次挖去的中间小三角形面积,2A 是第2次挖去的三个小三角形面积之和),n S 是前n 次挖去的所有三角形的面积之和,则lim n n S →∞=( )()()()()22017220172201722018.22018,220,4f a f a f a f a a a -=-=-∴-+-=∴+=()*112,2m m m a a a m N m -+=+∈≥{}n a 0,d ≠()120172017201820172017,4034,2a a a a S +≠=≠()()12018220172018201820184036,22a a a a S ++===()22017201720182018112122,2,0,403644032,,a a d S S a a a S a a ><∴<=-=--=+=+20172S S <24032,a >()()()53222220172201822018a a a -+-+-=220172,2,a a ><∴Q 201720a a -<ABCD .12【答案】A【解析】依题意,A116=n ≥2时,A n 134n A -=,所以{A n }34为公比的等比数列,又因为公比不为1,所以Sn 3)34)3414n n ⎛⎤- ⎥⎛⎤⎝⎦==- ⎥⎝⎦-,所以:n lim →∞Sn 3)444n n lim →∞⎛⎤=-= ⎥⎝⎦.故选A . 3.(2020上海南洋中学高三月考)无穷等差数列{}n a 的首项10a >,公差0d <,{}n a 的前n 项的和为n S ,则( ) A .n S 单调递减 B .n S 单调递增 C .n S 有最大值 D .n S 有最小值【答案】C【解析】Q 无穷等差数列{}n a 的首项10a >,公差0d <,{}n a ∴是递减数列,且先正值,后负值;{}n a ∴的前n 项和为n S 先增加,后减小;n S ∴有最大值;故选C .4.(2020·上海格致中学高三月考)设数列{}n x 的各项都为正数且11x =,ABC ∆内的点()n P n N*∈均满足n P AB ∆和n P AC ∆的面积比为2:1,若()112102n n n n n P A x P B x P C ++++=u u u v u u u v u u u v v,则5x 的值为( )A .15B .17C .29D .31【答案】D【解析】由()112102n n n n n P A x P B x P C ++++=u u u r u u u r u u u r r 得:()11212n n n n n P A x P C x P B +++=-u u u r u u u r u u u r ,设(21)n n n P D x PC =+u u u u r u u u r,延长n BP 至1B ,使1n n BP P B =,则n P AB ∆与1n P AB ∆面积相等, 以线段n P A 、n P D 为邻边作平行四边形n P AED ,如图,则()11212n n n n n n P A x P C P E x P B +++==-u u u r u u u r u u u r u u u r ,所以112n n n P E x P B +=u u u r u u ur ,因此112n n P AE n P AB S x S ∆+∆=,又121n n n n P C P C AE x P D ==+u u u ru u u u r ,所以121n n n n P AC P AC P AD P AE nS S S S x ∆∆∆∆==+,则()112212n n P AC n P ABn S x S x ∆+∆==+,所以121n n x x +=+,因此112(1)n n x x ++=+,故数列{}1n x +是以2为首项,以2为公比的等比数列,所以4512232x +=⨯=,即531x =.故选D .5.(2020·上海高三月考)已知等差数列{}n a (公差不为零)和等差数列{}n b ,如果关于x 的实系数方程21291299()0x a a a x b b b -++⋅⋅⋅++++⋅⋅⋅+=有实数解,那么以下九个方程20i i x a x b -+=(1,2,3,,9i =⋅⋅⋅)中,无实数解的方程最多有( ) A .3个 B .4个 C .5个 D .6个【答案】B【解析】设等差数列{}n a 的公差为1d 不为零,等差数列{}n b 的公差为2d ,因为关于x 的实系数方程21291299()0x a a a x b b b -++⋅⋅⋅++++⋅⋅⋅+=有实数解,所以()()2129129490a a a b b b ∆=++⋅⋅⋅+-⨯++⋅⋅⋅+≥,即()()21919993622a a b b ++⎡⎤⎡⎤≥⨯⎢⎥⎢⎥⎣⎦⎣⎦,化简得2554a b ≥,所以第五个方程有解.设方程2110x a x b -+=与方程2990x a x b -+=的判别式分别为1∆和9∆,则()()()()21922191199194442a a ab a b b b +∆+∆=-+-≥-+()()2525552422402a b a b =-⨯=-≥,所以10∆<和90∆<至多一个成立,同理可知,20∆<和80∆<至多一个成立,30∆<和70∆<至多一个成立,40∆<和60∆<至多一个成立,所以在所给的9个方程中无实数解的方程最多4个.故选B . 6.(2020上海南模中学月考)已知数列{}n a 的通项公式为()()*11n a n N n n =∈+,其前n 项和910n S =,则双曲线2211x y n n-=+的渐近线方程为( )A.3y x =±B.4y x =±C.y x = D.y x = 【答案】C 【解析】由()11111n a n n n n ==-++得1111111 (11223111)n n S n n n n =-+-++-=-=+++. 又910n S =即9110n n =+,故9n =,故双曲线221109x y -=渐近线为y ==,故选C . 7.(2020·上海建平中学高三月考)已知数列{}n a 满足()2*110,n n n a a a a ta n N+=>=-+∈,若存在实数t ,使{}n a 单调递增,则a 的取值范围是( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】A【解析】由{}n a 单调递增,可得21n n n n a a ta a +=-+>,由10a a =>,可得0n a >,所以1n t a >+*()n N ∈.1n =时,可得1t a >+.①2n =时,可得21t a ta >-++,即()()()111a t a a -<+-.②若1a =,②式不成立,不合题意;若1a >,②式等价为1t a <+,与①式矛盾,不合题意.排除B ,C ,D ,故选A .8.(2020·上海第四中学高三期中考试)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若1lim 1n n nS S +→+∞=,则公比q 的取值范围是( ) A .01q << B .01q <≤C .1q >D .1q ≥【答案】B【解析】当01q <<时,1111(1)(1),,11n n n n a q a q q S q S ++--=∴=--111lim lim 11n n n n n n S q S q++→+∞→+∞-==-; 当1q =时,111,(1),n n S S na n a +=∴=+1lim lim li (1m 1)11n n n n n S S n n n+→+∞→+∞→+∞+=+==; 当1q >时,1111(1)(1),,11n n n n a q a q q S q S ++--=∴=--1111lim lim lim 1111n nn n n n n nn q S q q q S q q++→+∞→+∞→+∞--===>--; 综上:01q <≤,故选B .9.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.【答案】50 【解析】由题意可得51011912a a a a e ==,1220ln ln ln a a a ++⋅⋅⋅+=1050121920110ln()ln()ln 50a a a a a a e ===L ,填50.10.(2020·上海高三月考)已知数列{}n a 满足,621616n n n n a n a --≤⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,*n N ∈,其中a 为常数且1a >,若n S 为数列{}n a 的前n 项和,则lim n n S →∞=________. 【答案】1361a +- 【解析】当6n ≤时,2(121)2n n nS n +-==,当6n >时,66111[1()]1()3636111n n n a a a S a a----=+=+--,即lim n n S →∞=611()1lim[36]3611n n a a a -→∞-+=+--, 故答案为:1361a +-.11.在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 . 【答案】200【解析】等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x N ++⋯∈,遗漏的项为*+,x n a n N ∈且19,n ≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+,化简得4494352x n ≤=+≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯.12.已知数列{}n a 的通项公式为()()*12nnn a n n N =-⋅+∈,则这个数列的前n 项和nS=_____.【答案】1152,242,2n n n n n S n n +++⎧-⎪⎪=⎨-⎪+⎪⎩为奇数为偶数【解析】当n 为偶数时,S n =[(﹣1+2)+(﹣3+4)+...+(﹣n +1+n )]+(2+22+ (2))=()212212nn --=2n +1+2n ﹣2; 当n 为奇数时,S n =[(﹣1+2)+(﹣3+4)+…+(﹣n +2+n ﹣1)﹣n ]+(2+22+…+2n )=12n -﹣n +()21212n--=2n +1﹣2n ﹣52;综上所述,S n =1152,242,2n n n n n n +++⎧-⎪⎪⎨-⎪+⎪⎩为奇数为偶数13.(2020上海进才中学高三期中考试)已知函数1()f x x x=-,数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()f a f a f a f a f a a +++⋅⋅⋅++=-,则1a =_______.【答案】2【解析】设数列{}n a 的公比为0q >,则1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,由()()()()()1239101f a f a f a f a f a a +++⋅⋅⋅++=-得121011210111a a a a a a a ⎛⎫+++-+++=- ⎪⎝⎭L L ,即()10101111111111a q a q a q q⎛⎫-⎪-⎝⎭-=---①,由61a =,得511a q =②,联立①②解得1a =.14.(2020·上海控江中学高三月考)等比数列{}n a 的首项为1,公比为3,则极限122311221lim n n n n a a a a a a a a a +→∞-++⋅⋅⋅+++⋅⋅⋅+的值为_______. 【答案】94【解析】Q 等比数列{}n a 的首项为1,公比为3,∴13-=n n a ,∴121193333nn n n n n a a --+=⋅==, 1223119(19)3(19)n n n a a a a a a +-∴++⋯+=⋅-,21123211313n n a a a a ---+++⋯+=-,∴122311232111991999limlim()lim()34934419nn n n n n n n n na a a a a a a a a a +→∞→∞→∞--++⋯+-=⋅=⋅=+++⋯+--故答案为:94.15.(2020·上海高三月考)一个等差数列{}n a 中,2nna a 是一个与n 无关的常数,则此常数的集合为 .【答案】11,2⎧⎫⎨⎬⎩⎭【解析】设数列的首项为1a ,公差为d ,()()1211,21n n a a n d a a n d ∴=+-=+-,1212n n a a d nda a d nd-+∴=-+,2n n a a 是一个与n 无关的常数10a d ∴-=或0d =,所以比值常数为11,2⎧⎫⎨⎬⎩⎭16.(2020·上海格致中学高三月考开学考试)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋科学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有菱草垛、方垛、三角垛等等,某仓库中部分货物堆放成“菱草垛”,自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件,已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910,若这堆货物总价是9100200()10n -万元,则n 的值为________【答案】10【解析】由题意可得第n 层的货物的价格为a n =n •(910)n ﹣1, 设这堆货物总价是S n =1•(910)0+2•(910)1+3•(910)2+…+n •(910)n ﹣1,①,由①910⨯可得910S n =1•(910)1+2•(910)2+3•(910)3+…+n •(910)n ,②,由①﹣②可得110S n =1+(910)1+(910)2+(910)3+…+(910)n ﹣1﹣n •(910)n 91()109110n-=--n •(910)n =10﹣(10+n )•(910)n ,∴S n =100﹣10(10+n )•(910)n ,∵这堆货物总价是9100200()10n-万元,∴n =10,故答案为10.17.(2020·上海复旦附中高三月考)已知12,,,n a a a ⋅⋅⋅是1,2,,n ⋅⋅⋅满足下列性质T 的一个排列(2n ≥,n *∈N ),性质T :排列12,,,n a a a ⋅⋅⋅有且只有一个1i i a a +>({1,2,,1}i n ∈⋅⋅⋅-),则满足性质T 的所有数列的个数()f n =________【答案】21n n --【解析】考虑()f n 和(1)f n -之间的关系,为此考虑两种情况下的()f n :第一种为1到1n -符合性质T 排列,不妨设1i i a a +>,此时n 要么放在末尾要么放在i a 和1i a +之间,这一共有2(1)f n - 种情况; 第二种为1到1n -不符合性质T 排列,此时若想插入数n 使得序列满足性质T ,则前1n -个数只能递增排列,然后插入n ,有1n -种情况;故()2(1)1f n f n n =-+-,()2(1)1()12[(1)]f n f n n f n n f n n =-+-⇒++=-+,设1()12n n n a f n n a a -=++⇒=,易知22(2)14422n nn f a a -=⇒=⇒=⨯=,1())2(2n n f n n --≥=,故答案为:21n n --.18.(2020上海南模中学高三月考)已知数列{}n a 前n 项和为n S ,满2n S an bn =+(,a b 为常数),且92a π=,设函数()()22sin 22sin ,2n n xf x x y f a =+-=记,则数列{}n y 的前17项和为_____. 【答案】17【解析】因为2n S an bn =+,当2n ≥时,12n n n a S S an a b -=-=-+,又1a a b =+满足上式,即2n a an a b =-+,(1)n ≥, 即{}n a 是首项为+a b ,公差为2a 的等差数列, 因为92a π=,所以1792n n a a a π-+==, 因为()22sin 22sinsin 2cos 12xf x x x x =+-=++,因为()n n y f a =,所以171717sin 2cos 1sin 2cos 1n n n n n n y y a a a a ---+=+++++=sin 2cos sin 2()cos()2n n n n a a a a ππ++-+-+2=,即数列{}n y 的前17项和为217172⨯=,故答案为:17. 19.(2020·上海闵行中学高三期中考试)若数列{}n a 为等差数列,{}n b 为等比数列,且满足:12019a a π+=,120192b b ⋅=,函数()sin f x x =,则1009101110091011()1a af b b +=+________.【答案】2【解析】{}n a Q 是等差数列,,是等比数列,, ,. 20.(2020·上海闵行中学高三期中考试)设数列满足,,,,______.【答案】8073【解析】当为偶数时,; 当为奇数时,; 故当为奇数时,, 故,故答案为8073.21.(2020·上海复兴中学期末)已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________. 【答案】 【解析】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数; 1009101112019a a a a π∴+=+={}n b Q 12019100910112b b b b ∴⋅=⋅=10091011100910111123a ab b ππ+∴==++1009101110091011sin 1332a a ff b b ππ⎛⎫+⎛⎫∴===⎪ ⎪+⎝⎭⎝⎭{}n a 11a =24,a =39a =()1234n n n n a a a a n ---=+-≥2019a =n 123213n n n n a a a a a a ----=-=-=L n 123325n n n n a a a a a a ----=-=-=L n 11221111=++++5314322n n n n n n n a a a a a a a a n --------=⨯+⨯+=-L 20194201938073a =⨯-={}n a *n N ∈sin 1n a ={}n a q {}41,q q k k Z =+∈sin 1n a =2,2n a k k Z ππ=+∈(41),2n k a k Z π+=∈{}n a {}n b 1(41),2k b k Z π+=∈2(41),2q k b k Z π+=∈2{}n b a ∈q当时,,不符合;当时,,符合,此时公比 ;当时,,不符合;当时,,不符合;故:公比.22.(2020·上海大同中学高三月考)已知函数,数列满足,,则的值为________【答案】6【解析】因为函数为递增函数,且,所以,又, 所以数列是首项为,公比为的等比数列, 所以,所以.故答案为:. 23.(2020·上海西南位育中学高三期中考试)数列的通项公式,则________.【答案】【解析】,. 故答案为:. 4,q k k Z =∈224(4)2(41){}2n k k b k k a π+=+=∉41,q k k Z =+∈222(41)4(42)1{}22n k k k b a π+++==∈41,q k k Z =+∈42,q k k Z =+∈224(43)2(21)(41){}2n k k b k k a π++=++=∉43,q k k Z =+∈22(43)(41)4(44)3{}22n k k k k b a π++++==∉41,q k k Z =+∈()2xf x x =+{}n a 201912a =11()()()2n n f a f a n +=∈N*2019()f a ()2xf x x =+11()()()2n n f a f a n +=∈N*112n n a a +=201912a ={}n a 12019a =1220191201911()2a a -=⋅2019201822-=⋅2=22019()(2)226f a f ==+=6{}n a ()1,110021,10023nn n a n N n n n *⎧⎛⎫≤≤⎪ ⎪⎪⎝⎭=∈⎨+⎪>⎪-⎩lim n n a →∞=12()1,110021,10023nn n a n N n n n *⎧⎛⎫≤≤⎪ ⎪⎪⎝⎭=∈⎨+⎪>⎪-⎩Q 111101lim lim lim 3232022n n n n n n a n n →∞→∞→∞+++∴====---1224.(2020上海南模中学高三期中考试)在数列中,,,是数列的前项和,当不等式恒成立时,的所有可能取值为 . 【答案】1或2或4 【解析】由,得,即,所以数列是以为首项、为公比的等比数列,所以,由,,所以,即,当时,该不等式不成立,当时有恒成立, 当时,,,这时,当时,,,这时或,当时,不成立,所以的所有可能取值为或或.{}n a 11a =122133232(2)n n n n n a a n ----=-⋅+≥nS 1n a n +⎧⎫⎨⎬⎩⎭n *1(31)()1()3()m n mn S m m N S m ++-<∈-mn 122133232(2)n n n n n a a n ----=-⋅+≥1212213(1)3(1)33232(2)n n n n n n n a a n ------+=++--⋅+≥1213(1)3(1)2(2)n n n n a a n ---+=++≥{}13(1)n n a -+1113(1)2a -+=213(1)2n n a n -+=1123n n a n -+=12(1)133(1)1313nn nS ⨯-==--1111(31)[3(1)](31)()(3)33(3)33(3)323331113()(3)33(3)333[3(1)]3m mm n m n n m n n m m n m m n m mn n m S m m m m S m m m m +++++++--+---+----⋅-===+<-------(3)32330(3)33n m m n mm m +--⋅-<--3m =3m ≠233330133m nn m m⋅+--<--1m =19322n<<1n =1mn =2m =1321n <<1,2n =2mn =4mn =4m ≥233330133m nn m m⋅+--<--mn 124。
【精品整理】2020年高考数学(理)重难点专练01 数列(解析版)

重难点01 数列【高考考试趋势】高考中考查数列难度不大,知识点考查比较简单,也是高考中务必拿分题目,对于大部分人来说,数列这一知识点是不容失分的.本重点专题是通过对高考中常见高考题型对应知识点的研究而总结出来的一些题目,通过本专题的学习补充巩固,让你对高考中数列题目更加熟练,做高考数列题目更加得心应手. 【高考常见题型分类总结】通项公式的求法q pa a n n +=1-的形式,主要是利用)()(1-m a p m a n n +=+的形式进行转化对于11-++=n n p pa a n ,主要采用m p a p a n n n n =1-1--的形式进行转化运算对于11n-n n-n a =pa -a a 一般采用转化成=p a -a n-n 111的形式进行转化运算.对于求和问题裂项求和形如)12)(1-2(1+=n n a n 的形式一般采用裂项)121-1-21(21+=n n a n 的形式,注意前面的21此系数,是由系数只差确定与1212+n n-. 错位相减求和问题,本专题题目中有出现.分组求和问题,分为两种,一种是绝对值分组求和问题,另外一种是两种不同数列的分组求和问题.【常见题型限时检测】(建议用时:35分钟) 1.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( ) A .2 B .1C .12D .18【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒=,故 2112a a q ==,选C. 考点:本题主要考查等比数列性质及基本运算.2.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7 B .5C .5-D .7-【答案】D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=Q 或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【名师点睛】本题主要考查了等比数列的下标的性质,属于中档题.3.已知各项均不相等的等比数列{}2343,2,n a a a a ,若成等差数列,设n S 为数列{}n a 的前n 项和,则33S a 等于A .139B .79C .3D .1【答案】A 【解析】 【分析】设等比数列{a n }的公比为q ,由3a 2,2a 3,a 4成等差数列,可得2×2a 3=3a 2+a 4,4a 2q=3222a a q +, 解得q .利用通项公式与求和公式即可得出. 【详解】设等比数列{a n }的公比为q ,∵3a 2,2a 3,a 4成等差数列, ∵2×2a 3=3a 2+a 4,∵4a 2q=3222a a q +,化为q 2﹣4q+3=0,解得q=1或3.q=1时,33S a =3333a a =, q=3时,33S a =()31131133199a a --=⨯. 故选A . 【名师点睛】本题考查了等差数列与等比数列的求通项公式与和公式,考查了推理能力与计算能力,属于中档题.解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律.4.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A.4+ B .19 C .20 D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D.【名师点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.5.已知数列{}n a 满足()12323213nn a a a na n ++++=-⋅L .设4n nnb a =,n S 为数列{}n b的前n 项和.若n S λ<(常数),*n N ∈,则λ的最小值是( )A .32B .94C .3112D .3118【答案】C 【解析】 【分析】当2n ≥时,类比写出()()11231231233n n a a a n a n --++++-=-⋅L ,两式相减整理得143n n a -=⋅,当1n =时,求得1=34a ≠,从而求得数列{}n a 和{}n b 的通项公式.;再运用错位相减法求出n S ,结合n S 的性质,确定λ的最小值. 【详解】()12323213n n a a a na n ++++=-⋅Q L ∵当2n ≥时,类比写出()()11231231233n n a a a n a n --++++-=-⋅L ∵由∵-∵得 143n n na n -=⋅ ,即143n n a -=⋅.当1n =时,134a =≠,131432n n n a n -=⎧∴=⎨⋅≥⎩,141323n n n b nn -⎧=⎪⎪=⎨⎪≥⎪⎩210214231123333333333n n n n nS --=++++=+++++L L L L ∵ 23111123-1+3933333n n n n nS -=+++++L L ∵∵-∵得,023********+-39333333n n nn S -=+++++L L 11-23-1931-3n n n =+ 316931-124312n n n S +∴=<⋅Q n S λ<(常数),*n N ∈, ∴λ的最小值是3112故选C. 【名师点睛】本题考查数列通项公式的求法和数列前n 项和的计算方法,解题时要认真审题,仔细解答,注意公式的合理选用.1、已知数列{}n a 的前n 项和n S 与n a 的关系式,求数列的通项公式的方法如下: (1)当2n ≥时,用1n -替换n S 中的n 得到一个新的关系,利用1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式;(2)当1n =时, 11a S =求出1a ;(3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.2、错位相减法:若n n n c a b =⋅,其中{}n a 是等差数列,{}n b 是公比为1q ≠的等比数列,那么这个数列的前n 项和即可用此法来求.数列前n 项和1122-1-1n n n n n S a b a b a b a b =++++L L ,则12231n n n qS a b a b a b -=+++L L 1n n a b ++,两式错位相减并整理即得.二、填空题6.在数列{}n a 中,1253a a +=,()()11280n n n a na n N *+--+=∈,若()12n n n n b a a a n N *++=⋅⋅∈,则{}n b 的前n 项和取得最大值时n 的值为__________.【答案】10 【解析】 【分析】解法一:利用数列的递推公式,化简得122n n n a a a ++=+,得到数列{}n a 为等差数列,求得数列的通项公式313n a n =-,得到12100a a a >>>>L ,1112130a a a >>>>L ,得出所以1280b b b >>>>L ,90b <,100b >,1112130b b b >>>>L ,进而得到结论;解法二:化简得()128 11n n a a n n n n +-=---,令1n n a c n +=,求得11281n c c n ⎛⎫-=- ⎪⎝⎭,进而求得313n a n =-,再由0n b ≥,解得8n ≤或10n =,即可得到结论.【详解】解法一:因为()11280n n n a na +--+=∵ 所以()211280n n na n a ++-++=∵,∵-∵,得122n n n na na na ++=+即122n n n a a a ++=+,所以数列{}n a 为等差数列. 在∵中,取1n =,得1280a -+=即128a =,又1253a a +=,则225a =,所以313n a n =-.因此12100a a a >>>>L ,1112130a a a >>>>L所以1280b b b >>>>L ,99101180b a a a =⋅⋅=-<,10101112100b a a a =⋅⋅=>,1112130b b b >>>>L所以12389T T T T T <<L , 9101112T T T T >>L 又1089108T T b b T =++>,所以10n =时,n T 取得最大值.解法二:由()11280n n n a na +--+=,得()12811n n a a n n n n +-=---, 令1n n a c n +=,则11111282811n n c c n n n n -⎛⎫⎛⎫-=--=- ⎪ ⎪--⎝⎭⎝⎭,则11281n c c n ⎛⎫-=- ⎪⎝⎭,即1211281281n c c a n n ⎛⎫⎛⎫=+-=+-⎪ ⎪⎝⎭⎝⎭, 代入得()()1222812828n n a nc na n n a +==+-=+-,取1n =,得1280a -+=,解得128a =,又1253a a +=,则225a =,故1283n a n +=- 所以313n a n =-,于是()()()12313283253n n n n b a a a n n n ++=⋅⋅=---. 由0n b ≥,得()()()3132832530n n n ---≥,解得8n ≤或10n =, 又因为98b =-,1010b =,所以10n =时,n T 取得最大值. 【名师点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.7.在各项均为正数的等比数列{}n a 中,318a a -=,当4a 取最小值时,则数列2{}n na 的前n 项和为__________.【答案】(84)34nn S n =-+【解析】 【分析】根据等比数列通项公式及318a a -=,则34281q a q =-;求导函数,令导函数等于0,可求得当4a 取最小值时q 的值,进而求得1a 的值,得到通项公式,代入数列{}2n na 可得1163n n -⨯;结合错位相减法可求得前n 项和.【详解】等比数列{}n a 中,318a a -=,所以1281a q =- 3341281q a a q q ==- ,令()3281q f q q =-则()()()223422838''11q q q f q q q -⎛⎫== ⎪-⎝⎭-,令()'0f q =解得q = ,因为各项均为正数的等比数列{}n a所以q =当q <()'0f q <当q >()'0f q >所以在q =()34281q a f q q ==-取得最小值设2n n b na =,代入q =1163n n b n -=⨯所以12321n n n n S b b b b b b --=+++⋅⋅⋅++()()0123211613233323133n n n n S n n n ---⎡⎤=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯+⨯⎣⎦()()1232131613233323133n n nn S n n n --⎡⎤=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯+⨯⎣⎦两式相减得()123212161333333n n n n S n ---=++++⋅⋅⋅++-⨯13216313n n n S n ⎛⎫--=-⨯ ⎪-⎝⎭83434n n n S n =⨯-⨯+()8434n n S n =-⨯+【名师点睛】本题考查了等比数列通项公式的应用,错位相减法求和,导数在求最值中的综合应用,考查知识点较多,属于难题.8.已知数列{}n a 的前n 项和为n S (*n N ∈),且满足212n n S S n n ++=+,若对*1,n n n N a a +∀∈<恒成立,则首项1a 的取值范围是__________.【答案】13(,)44- 【解析】因为212n n S S n n ++=+,所以212(1)1,(2)n n S S n n n -+=-+-≥,两式作差得141,2n n a a n n ++=-≥,所以145,3n n a a n n -+=-≥,两式再作差得114,3n n a a n +--=≥,可得数列{}n a 的偶数项是以4为公差的等差数列,从3a 起奇数项也是以4为公差的等差数列.若对*1,n n n N a a +∀∈<恒成立,当且仅当1234a a a a <<<.又12213213,32,742a S a a a a a +=∴=-∴=-=+,4311172a a a =-=-,所以1111324272a a a a <-<+<-,解得:11344a -<<. 即首项1a 的取值范围是13,44⎛⎫- ⎪⎝⎭.三、解答题9.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和 【答案】(1)1232;2,212n n n n a b n n --==-⋯(=,,);(2)213312442n n T n n -=+-+.【解析】 【分析】(1)根据等比数列的性质得到7a =64,2a =2,进而求出公比,得到数列{a n }的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可. 【详解】(1)设等比数列{a n }的公比为q .由等比数列的性质得a 4a 5=27a a =128,又2a =2,所以7a =64.所以公比2q ===. 所以数列{a n }的通项公式为a n =a 2q n -2=2×2n -2=2n -1. 设等差数列{12n n b a +}的公差为d . 由题意得,公差221111113221122222d b a b a ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+⨯-+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以等差数列{12n n b a +}的通项公式为()()11113331122222n n b a b a n d n n ⎛⎫+=++-=+-⋅= ⎪⎝⎭.所以数列{b n }的通项公式为12313132222222n n n n b n a n n --=-=-⋅=-(n =1,2,…).(2)设数列{b n }的前n 项和为T n . 由(1)知,2322n n b n -=-(n =1,2,…). 记数列{32n }的前n 项和为A ,数列{2n -2}的前n 项和为B ,则 ()33322124n n A n n ⎛⎫+ ⎪⎝⎭==+,()1112122122nn B --==--. 所以数列{b n }的前n 项和为()1213133112242442n n n T A B n n n n --=-=+-+=+-+. 【名师点睛】这个题目考查了数列的通项公式的求法,以及数列求和的应用,常见的数列求和的方法有:分组求和,错位相减求和,倒序相加等.10.设数列{}n a 的前n 项和为n S ,12a =,()*12n n a S n +=+∈N . (1)求数列{}n a 的通项公式;(2)令()()11211n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.【答案】(1)2nn a =,*()n ∈N (2)见解析【解析】 【分析】(1)利用1n n n a S S -=-,(2,)n n N *≥∈,进行化简即可得到数列{}n a 的通项公式,注意检验1n =是否满足.(2)由(1)可得111122121n n n b +⎛⎫=- ⎪--⎝⎭,利用裂项相消求出前n 项和n T ,即可证明12n T <. 【详解】 (1)*1(2)n n a S n +=+∈N ,∵当1n =时,212a S =+,即24a =,当2n ≥时,12n n a S -=+,∵ 由∵—∵可得11n n n n a a S S +--=-,即12n n a a +=, ∵2222n n na a -=⨯=,2n ≥当1n =时,1122a ==,满足上式,∵2n n a =*()n ∈N(2)由(1)得()()1112111221212121n n n n n n b -++⎛⎫==- ⎪----⎝⎭∵11111111111123372121221n n n n T ++⎛⎫⎛⎫=-+-++-=- ⎪ ⎪---⎝⎭⎝⎭L∵12n T <【名师点睛】本题考查数列通项公式的求法以及利用裂项相消求数列前n 项和,考查学生的计算能力,属于中档题.11.已知正项数列{}n a 的前n 项和n S 满足222n n n S a a =+-.(∵)求数列{}n a 的通项公式;(∵)若()()*21n n nn b n na -=∈N ,求数列{}n b 的前n 项和n T . 【答案】(∵)()*1N n a n n =+∈;(∵)1221n n T n +=-+【解析】 【分析】(∵)当1n =时求得12a =;当2n ≥时,利用1n n n a S S -=-可将已知等式化为()()1110n n n n a a a a --+--=,根据{}n a 为正项数列可得到11n n a a --=,进而证得{}n a 为等差数列,利用等差数列通项公式得到结果;(∵)根据(∵)的结论可将n b 整理为1221n nn n+-+,通过裂项相消法可求得结果. 【详解】(∵)当1n =时,12a =当2n ≥时,()()()2211122222n n n nn n n a S S a a a a ---=-=+--+-⎡⎤⎣⎦ 整理可得:()()1110n n n n a a a a --+--=,0n a >Q 110n n a a -∴--=,即:11n n a a --={}n a ∴是以12a =为首项,1d =为公差的等差数列 ()()*2111n a n n n N ∴=+-⨯=+∈(∵)由(∵)得1n a n =+ ()()1212211n n nn n b n n n n +-∴==-++ 232112222222223211n n n n T n n n ++⎛⎫⎛⎫⎛⎫∴=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭【名师点睛】本题考查根据递推关系式求解数列通项公式、裂项相消法求解数列的前n 项和的问题,涉及到n a 与n S 关系的应用;求和的关键是能够将数列通项准确的裂为两式作差的形式,从而达到前后相消的效果.12.已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N ∗,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (∵)求q 的值和{a n }的通项公式; (∵)设b n =log 2a 2n−1a 2n,n ∈N ∗,求数列{b n }的前n 项和.【答案】(∵)q =2,a n ={2n−12,n 为奇数2n 2,n 为偶数;(∵)1−n+12n .【解析】 【分析】(∵)利用a2+a3,a3+a4,a4+a5成等差数列,列出关于q的方程,可求q的值,分类讨论可求{a n}的通项公式;(∵)由(∵)得b n=n−12n,利用错位相减法,结合等比数列求和公式可求数列{b n}的前n项和.【详解】(∵)由已知,有(a3+a4)−(a2+a3)=(a4+a5)−(a3+a4),即a4−a2=a5−a3所以a2(q−1)=a3(q−1).又因为q≠1,故a3=a2=2,由a3=a1⋅q,得q=2.当n=2k−1(k∈N∗)时,an=a2k−1=2k−1=2n−12;当n=2k(k∈N∗)时,a n=a2k=2k=2n2.所以,{a n}的通项公式为a n={2n−12,n为奇数2n2,n为偶数.(∵)由(∵)得b n=n−12n.设{b n}的前n项和为T n,则T n=021+122+223+⋯+n−12n,12T n=022+123+⋯+n−22n+n−12n+1,上述两式相减,得12T n=122+123+⋯+12n−n−12n+1=14(1−12n−1)1−12−n−12n+1整理得,12T n=12−12n−n−12n+1,12T n=12−n+12n+1,所以T n=1−n+12n.所以,数列{b n}的前n项和为T n=1−n+12n,n∈N∗.【名师点睛】本题主要考查等比数列的通项与求和公式,以及错位相减法求数列的前n项和,属于中档题.一般地,如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解, 在写出“S n ”与“qS n ” 的表达式时应特别注意将两式“错项对齐”以便下一步准确 写出“S n −qS n ”的表达式.13.已知数列{}n a 为等差数列,n S 为{}n a 的前n 项和,25852,25a a a S +== (1)求数列{}n a 的通项公式;(2)记14n n n c a a +=⋅,其前项和为n T ,求证:43n T …【答案】(1) 21n a n =- (2)见证明 【解析】 【分析】(1)先根据已知求出112a d =⎧⎨=⎩,即得数列{}n a 的通项公式;(2)先利用裂项相消求出12121n T n ⎛⎫=- ⎪+⎝⎭,再证明43nT …. 【详解】(1)设公差为d ,则由25852,25a a a S +==得,()1123545252a d dda ⎧+=⎪⎨⨯⨯+=⎪⎩解得112a d =⎧⎨=⎩. 所以21n a n =-.(2)144112(21)(21)2121n n n c a a n n n n +⎛⎫===⋅- ⎪⋅+--+⎝⎭1111112121335212121n T n n n ⎛⎫⎛⎫=-+-+⋯+-=- ⎪ ⎪-++⎝⎭⎝⎭易知n T 随着n 的增大而增大,所以1142133n T T ⎛⎫≥=-=⎪⎝⎭【名师点睛】本题主要考查等差数列的通项的求法,考查裂项相消法求和,意在考查学生对这些知识的 理解掌握水平和分析推理能力.14.已知等差数列{}n a 满足32421,7a a a =-=,等比数列{}n b 满足()35242b b b b +=+,且()2*22n n b b n =∈N.(1)求数列{}n a ,{}n b 的通项公式;(2)记数列{}n a 的前n 项和为n S ,若数列{}n c 满足()*1212n n nc c c S n b b b ++⋯+=∈N ,求{}n c 的前n 项和为n T . 【答案】(1) 21n a n =-,12n n b -= (2) n T (23)23n n =-+.【解析】 【分析】(1) 根据等差数列等比数列的通项公式列方程组求解即可; (2) 由等差数列求出2n S n =,求出1(21)2n nc n -=-,利用错位相减法可以求和.【详解】(1)设{}n a 的首项为1a ,公差为d ,则有1122()1a d a d +=+-,137a d +=, 解得1a 1,d 2==所以21n a n =-,设11n nb b q -=,由已知35242()b b b b +=+,可得2q =,由222n n b b =可得,21121122(2)n n b b --=,可得11b =,所以12n n b -=,(2)由(1)知,2(211)2n n n S n -+==,所以21212n n c c c n b b b +++=L ,2112121(1)(2)n n c c c n n b b b --+++=-≥L , 两式相减可得,21nnc n b =-, 当1n =时,11c =满足上式,所以1(21)2n n c n -=-,0111232(21)2n n T n -=⋅+⋅++-L ,1221232(21)2n n T n =⋅+⋅++-L两式相减可得,2122(21)2n nn T n -=+++--L212(12)1(21)212n n n --=+---(32)23n n =--所以n T (23)23nn =-+. 【名师点睛】本题主要考查了等差数列,等比数列的通项公式,等差数列的求和公式,错位相减法,属于中档题.。
(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题参考答案

(3) 2 2 列联表如下:
人次 400
空气质量不好
33
空气质量好
22
人次 400 37 8
K2
100 338 37 222
5.820 3.841 ,
55 45 70 30
因此,有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考
根据题意画出图形,如图
理科数学参考答案 7
| BP || BQ | , BP BQ , PMB QNB 90 ,
又 PBM QBN 90 , BQN QBN 90 ,
PBM BQN , 根据三角形全等条件“ AAS ”, 可得:△PMB △BNQ ,
x2 16 y2 1 , 25 25
【解析】 【分析】
(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、 2 、 3 、 4 的概率; (2)利用每组的中点值乘以频数,相加后除以100 可得结果;
(3)根据表格中的数据完善 2 2 列联表,计算出 K2 的观测值,再结合临界值表可得结论.
【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为 2 16 25 0.43 , 100
(2)由错位相减法求解即可.
【详解】(1)由题意可得 a2 3a1 4 9 4 5 , a3 3a2 8 15 8 7 ,
由数列an 的前三项可猜想数列an 是以 3 为首项,2 为公差的等差数列,即 an 2n 1,
证明如下:
当 n 1 时, a1 3成立;
假设 n k 时, ak 2k 1 成立.
机密★启用前
2020 年普通高等学校招生全国统一考试
2020年全国统一高考数学试卷(文科)含答案

2020年全国统一高考数学试卷(文科)含答案一、选择题(共12小题).1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A.B.2+C.﹣2D.2﹣6.记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.9.设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.B.C.1D.12.若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。
2020届高考数学选择题填空题专项练习(文理通用)06 数列02(含解析)
2020届高考数学选择题填空题专项练习(文理通用)06数列02第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·广东高三期末)记n S 为等差数列{}n a 的前n 项和,若23a =,59a =,则6S 为( )A .36B .32C .28D .24【答案】A 【解析】【分析】利用等差数列的求和公式及其性质即可得出. 【详解】16256256()6()3()22a a a a S a a ++===+=36. 【点睛】本题考查了等差数列的求和公式及其性质,还考查了推理能力与计算能力.2.(2020·陕西高三)设数列{a n }是正项等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则公比q =( )A .13B .3C .12D .2【答案】C 【解析】【分析】结合等比数列的通项公式及求和公式即可求解.【详解】由a 2a 4=1,S 3=7,可知公比q ≠1,则()241311171a q a q q⎧=⎪-⎨=⎪-⎩,联立方程可得,q =12或a =﹣13 (舍),【点睛】本题主要考查等比数列的通项公式及求和公式,还考查了运算求解的能力,属于基础题. 3.(2020·福建高三模拟)已知等差数列{}n a 的前n 项和为n S ,公差为-2,且7a 是3a 与9a 的等比中项,则10S 的值为( )A .-110B .-90C .90D .110【答案】D 【解析】【分析】根据等比中项的定义得2739a a a =,结合公差可求出首项,从而可得答案.【详解】∵7a 是3a 与9a 的等比中项,∴2739a a a =,又数列{}n a 的公差为2-,∴2111(12)(4)(16)a a a -=--,解得120a =,∴20(1)(2)222n a n n =+-⨯-=-,∴1101010()5(202)1102a a S +==⨯+=,故选:D .【点睛】本题主要考查等差数列的前n 项和,考查等比中项的应用,属于基础题.4.(2020·定远县育才学校高三)在等比数列{}n a 中,182n a a +=,3281n a a -=,且前n 项和121n S =,则此数列的项数n 等于( )A .4B .5C .6D .7【答案】B 【解析】【分析】由等比数列的性质得出181n a a =,结合182n a a +=,得出1a 和n a 的值,并设等比数列{}n a 的公比为q ,由11211n n a a qS q-==-,求出q 的值,然后利用等比数列的通项公式可求出n 的值.【详解】设等比数列{}n a 的公比为q ,由等比数列的性质可得:13281n n a a a a -==,又182n a a +=,1a ∴和n a 是方程282810x x -+=的两根,解方程得1x =或81x =.若等比数列{}n a 递增,则11a =,81n a =, 121n S =Q ,118112111n a a q qq q--==--,解得3q =,18113n -∴=⨯,解得5n =;若等比数列{}n a 递减,则181a =,1n a =,121n S =Q ,18112111n a a q q q q --==--,解得13q =,118113n -⎛⎫∴=⨯ ⎪⎝⎭,解得5n =. 则此数列的项数n 等于5,选:B.【点睛】本题考查等比数列项数的计算,涉及等比数列性质和等比数列前n 项和的计算,解题的关键就是求出等比数列的公比,考查运算求解能力,属于中等题.5.(2020·四川高三月考)已知等差数列}{n a 满足1592a a a π++=,则28cos()a a +=( )A .12-B .C .12D .2【答案】A 【解析】【分析】利用等差数列的性质求得28a a +的值,由此求得28cos()a a +的值.【详解】由于等差数列}{n a 满足15955232,3a a a a a ππ++===,所以28cos()a a +=()541cos 2coscos cos 3332a ππππ⎛⎫==+=-=- ⎪⎝⎭. 【点睛】本小题主要考查等差数列的性质,考查诱导公式,属于基础题.6.(2020·山西高三开学考试)已知数列{}n a 的通项公式为()370.9nn a n =+⨯,则数列{}n a 的最大项是( )A .5aB .6aC .7aD .8a【答案】C 【解析】【分析】先讨论出数列{}n a 的单调性,根据单调性得出答案.【详解】由1310913710n n a n a n ++=⨯>+,解得203n <,又*n N ∈,所以6n ≤.于是127a a a <<<L , 当7n ≥时,11n na a +<,故78a a >>L ,因此最大项为7a .故选:C 【点睛】本题考查求数列的最大项和数列的单调性,属于中档题. 7.(2020·山西高三月考)公差不为零的等差数列{}n a 中,367,,a a a 成等比数列,则46a a =( ) A .72- B .73C .213-D .137【答案】B 【解析】【分析】设{}n a 的公差为()d d ≠0,根据367,,a a a 成等比数列,可得2637a a a =,化简求得1a d ,的关系再求解.【详解】设{}n a 的公差为()d d ≠0,由367,,a a a 成等比数列,可得2637a a a =,即2111(5)(2)(6)a d a d a d +=++,即1213a d =-,故4613+6713103a d d a d d -==-+.故选:B【点睛】本题主要考查等差数列与等比数列的基本运算,还考查运算求解的能力,属于基础题.8. (2020·福建高三月考)已知等差数列{}n a 的前n 项和为n S ,且1310a a +=,972S =.数列{}n b 的首项为3,且13n n b b +=-,则210020a b =( )A .3-B .13C .3D .13-【答案】D 【解析】【分析】由等差数列可得132195122210993672a a a a d S a a d +==+=⎧⎨==+=⎩,解得141a d =⎧⎨=⎩,即可求得10a ,再由13n n b b +=-可得数列{}n b 是周期数列,求得2020b ,即可求解.【详解】由题,因为132195122210993672a a a a d S a a d +==+=⎧⎨==+=⎩,所以141a d =⎧⎨=⎩,即()413n a n n =+-=+,所以1013a =, 又13b =,且13n n b b +=-,则21b =-,33b =,所以数列{}n b 是周期为2的数列,则202021b b ==-,所以20201013a b =-,故答案为:13-【点睛】本题考查等差数列的通项公式的应用,考查数列的周期性的应用,考查运算能力. 9. (2020·四川省泸县第二中学高三)设等比数列{}n a 的前n 项和为n S .若637S S =-,则4332a a a a +=+( )A .2-B .2C .1 或2-D .3【答案】A 【解析】【分析】先根据637S S =-求出等比数列{}n a 的公比q ,然后化简4332a a a a ++可得结果.【详解】设等比数列{}n a 的公比为q .①当1q =时,637S S =-不成立.②当1q ≠时,由637S S =-得61317(1)(1)11a a q q q q =--⨯---,整理得317q +=-,即38q =-,解得2q =-.所以43333222(1)2(1)q q a a a a q a a a a ++===+=-+.【点睛】利用公式求等比数列的前n 项和时,在公比q 不确定的情况下,一定要注意对公比取值的分类讨论,即解题时分为1q =和1q ≠两种情况求解,考查计算能力,属于基础题.10. (2020·江苏高三开学考试)已知等差数列{}n a 的前n 项和为S n ,若366,8S S ==-,则9S =____.A .42B .24C . 42-D .24-【答案】C【解析】【分析】由3S ,63S S -,96S S -成等差数列,代入366,8S S ==-可得9S 的值.【详解】由等差数列的性质可得:3S ,63S S -,96S S -成等差数列,可得:633962()S S S S S -=+-,代入366,8S S ==-,可得:942S =-。
2020届高考数学选择题填空题专项练习(文理通用)04 数学文化01(含解析)
2020届高考数学选择题填空题专项练习(文理通用)04数学文化01第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·安徽六安一中高三月考(理))《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( )A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸【答案】B 【解析】【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解.【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==,所以410.5a =,所以公差541d a a =-=-,所以1257 2.5a a d =+=尺。
故选:B .【点睛】本题考查等差数列应用问题,考查等差数列的前n 项和与通项公式的基本量运算,属于中档题. 2.(2019·湖南长沙一中高三月考(理))公元263年左右,我国数学家刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 的值为( )( 1.732≈,sin150.2588︒≈,sin7.50.1305︒≈)A .12B .24C .48D .96【答案】B 【解析】【分析】列出循环过程中S 与n 的数值,满足判断框的条件即可结束循环. 【详解】模拟执行程序,可得336,3sin 602n S ︒===,不满足条件 3.10,12,6sin 303S n S ︒≥==⨯=, 不满足条件 3.10,24,12sin15120.2588 3.1056S n S ︒≥==⨯=⨯=,满足条件 3.10S ≥,退出循环,输出n 的值为24.故选:B.【点睛】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.3.(2020·江西高三(理))中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( )A .15B .14C .13D .12【答案】D 【解析】【分析】总共有10种结果,其中相生的有5种,由古典概型的计算公式计算出概率即可【详解】从五种不同属性的物质中随机抽取2种,共2510C =种,而相生的有5种,则抽到的两种物质不相生的概率511102P =-=故选:D 【点睛】本题考查的是计算古典概型的概率,较简单.4.(2020·江西高三(理))太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗⋯⋯,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为()()()2222224,11110x y A x y x y x y x ⎧⎫⎧+≤⎪⎪⎪⎪⎪⎪=+-≤++≥⎨⎨⎬⎪⎪⎪≤⎪⎪⎪⎩⎩⎭或,设点(,)∈x y A ,则2z x y =+的取值范围是( )A .[25--,25]B .[25-,25]C .[25-,25]+D .[4-,25]+ 【答案】C 【解析】【分析】结合图形,平移直线2z x y =+,当直线与阴影部分在上方相切时取得最大值.【详解】如图,作直线20x y +=,当直线上移与圆22(1)1y x +-=相切时,2z x y =+取最大值,此时,圆心(0,1)到直线2z x y =+的距离等于1,即15=,解得z 的最大值为:25+,当下移与圆224x y +=相切时,2x y +取最小值,同理25=,即z 的最小值为:25-,所以[25,25]z ∈-+.故选:C .【点睛】本题考查线性规划的数据应用,考查转化思想以及计算能力;考查分析问题解决问题的能力. 5.(2020宁夏银川一中高三月考(理))《张丘建算经》是中国古代的数学著作,书中有一道题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺布”,则第30天织布( )A .7尺B .14尺C .21尺D .28尺【答案】C 【解析】【详解】依题意可知,织布数量是首项为15a =,公差5d =的等差数列,且13030303902a a S +=⨯=,即()30155390a ⨯+=,解得3021a =(尺).故选:C【点睛】本小题主要考查等差数列的前n 项和公式,考查中国古代数学文化,属于基础题.6. (2019·湖南长沙一中高三月考(文))南宋数学家秦九韶在《数书九章》中提出的秦九韶算法至今仍是多项式求值比较先进的算法.已知201720162018201721f x x x x =++⋅⋅⋅++()),下列程序框图设计的是求0f x ()的值,在“”和“”中应填入的执行语句分别是 ( )A .2016i ≤和n i =B .2017i ≤和1n i =+C .2016i ≤?和2017n i =-D .2017i ≤?和2018n i =-【答案】D 【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】初始值1i =,2018=n .2018S =,该程序的计算方式:第一步:计算020182017S x =+,中的结果应为2017n =;第二步:计算20000201820172016201820172016S x x x x =++=++(),中的结果应为2016n =;…;故处可填2017i ≤?,处应填2018n i =一,故选D.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.2020·山西高三月考(文))《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( )A .47尺 B .16 29尺C .8 15尺D .16 31尺【答案】B【解析】由题可知女子每天织布尺数呈等差数列,设为{}n a ,首项为15a =,30390S =,可得30295303902d ⨯⨯+=,解之得1629d =. 8. (2019·安徽高三月考(文))长方、堑堵、阳马、鳖臑这些名词出自中国古代数学名著《九章算术·商功》,其中阳马和鳖臑是我国古代对一些特殊椎体的称呼.取一长方,如图长方体1111ABCD A B C D -,按平面11ABC D 斜切一分为二,得到两个一模一样的三棱柱,称该三棱柱为堑堵,再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个,其中与矩形为底另有一棱与底面垂直的三棱锥1D ABCD -称为阳马,余下的三棱锥11D BCC -是由四个直角三角形组成的四面体称为鳖臑,已知长方体1111ABCD A B C D -中2AB =,3BC =,14AA =,按以上操作得到阳马,则阳马的最长棱长为( )A.B .5 CD.【答案】C 【解析】【分析】阳马的最长棱长为长方体的体对角线,计算得到答案.【详解】根据题意知阳马的最长棱长为长方体的体对角线,∴= C. 【点睛】本题考查了立体几何中线段的最值问题,意在考查学生的空间想象能力.9.(2020·福建高三(理))中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法一二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):函数()y f x =在1x x =,2x x =,()3123x x x x x =<<处的函数值分别为()11y f x =,()22y f x =,()33y f x =则在区间[]3,i x x 上()f x 可以用二次函数来近似代替:()()()111212()f x y k x x k x x x x =+-+--,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-,若令10x =,22x π=,3x π=,请依据上述算法,估算2sin 5π是( ) A .35B .1625C .1725D .2425【答案】D【解析】【分析】先阅读题意,再结合过两点的直线的斜率公式求解即可.【详解】函数()sin y f x x ==在0x =,2x π=,x π=处的函数值分别为1(0)0y f ==,212y f π⎛⎫== ⎪⎝⎭,3()0y f π==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--.故2222444()2f x x x x x x πππππ⎛⎫=--=-+ ⎪⎝⎭,即2244sin x x x ππ≈-+,22224(2)4224sin 55525πππππ≈-⨯+⨯=,【点睛】本题考查了斜率公式,重点考查了阅读理解能力,属中档题.10. (2020·四川省泸县第一中学高三月考(文))2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为( )A .13B .25C .23D .35【答案】C 【解析】【分析】先设这6位外国人分别记为a ,A ,B ,C ,D ,E ,其中a 未关注此次大阅兵,列举出从这6位外国人中任意选取2位的基本事件总数,再选出2位都关注大阅兵的基本事件数,代入古典概型公式即可求得概率. 【详解】这6位外国人分别记为a ,A ,B ,C ,D ,E ,其中a 未关注此次大阅兵,则基本事件有(),a A ,(),a B ,(),a C ,(),a D ,(),a E ,(),A B ,(),A C ,(),A D ,(),A E ,(),B C ,(),B D ,(),B E ,(),C D ,(),C E ,(),D E ,共15个,其中被采访者都关注了此次大阅兵的基本事件有10个,故所求概率为102153=.故选:C 【点睛】本题考查古典概型,考查运算求解能力.11.(2020·河南高三期末(理))“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )A .56383B .57171C .59189D .61242【答案】C 【解析】【分析】根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前n 项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为5735⨯=的等差数列,记数列{}n a 则()233513512n a n n =+-=- ,令35122020n a n =-≤,解得25835n ≤.,故该数列各项之和为5857582335591892⨯⨯+⨯=.故选:C. 【点睛】本题考查等差数列的应用,属基础题。
2020年全国各地高中数学真题分类汇编—数列(含答案)
2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.参考答案与试题解析⼀.选择题(共8⼩题)1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b8【解答】解:在等差数列{a n}中,a n=a1+(n﹣1)d,∴a2=a1+d,a4=a1+3d,a8=a1+7d,b n+1=S2n+2﹣S2n,∴b2=S4﹣S2=a3+a4,b4=S8﹣S6=a7+a8,b6=S12﹣S10=a11+a12,b8=S16﹣S14=a15+a16,A.2a4=a2+a6,根据等差数列的性质可得A正确,B.若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=(a3+a12)+(a4+a11),成⽴,B正确,C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合≤1,C正确;D.若b42=b2b8,则(a7+a8)2=(a3+a4)(a15+a16),即4a12+52a1d+169d2=4a12+68a1d+145d2,得16a1d=24d2,∵d≠0,∴2a1=3d,不符合≤1,D错误;故选:D.2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项【解答】解:设等差数列{a n}的公差为d,由a1=﹣9,a5=﹣1,得d=,∴a n=﹣9+2(n﹣1)=2n﹣11.由a n=2n﹣11=0,得n=,⽽n∈N*,可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值.可知T1=﹣9<0,T2=63>0,T3=﹣315<0,T4=945>0为最⼤项,⾃T5起均⼩于0,且逐渐减⼩.∴数列{T n}有最⼤项,⽆最⼩项.故选:B.3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【解答】解:{a n}是等⽐数列,且a1+a2+a3=1,则a2+a3+a4=q(a1+a2+a3),即q=2,∴a6+a7+a8=q5(a1+a2+a3)=25×1=32,故选:D.4.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.15【解答】解:若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦,即有i=1,j=5,k=8;i=2,j=6,k=9;i=3,j=7,k=10;i=4,j=8,k=11;i=5,j =9,k=12,共5个;若k﹣j=4且j﹣i=3,则a i,a j,a k为原位⼩三和弦,可得i=1,j=4,k=8;i=2,j=5,k=9;i=3,j=6,k=10;i=4,j=7,k=11;i=5,j =8,k=12,共5个,总计10个.故选:C.5.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…【解答】解:对于A选项:序列1101011010C(1)=a i a i+1=(1+0+0+0+0)=,C(2)=a i a i+2=(0+1+0+1+0)=,不满⾜C(k)≤(k=1,2,3,4),故排除A;对于B选项:序列1101111011C(1)=a i a i+1=(1+0+0+1+1)=,不满⾜条件,排除;对于C选项:序列100011000110001C(1)=a i a i+1=(0+0+0+0+1)=,C(2)=a i a i+2=(0+0+0+0++0)=0,C(3)=a i a i+3=(0+0+0+0+0)=0,C(4)=a i a i+4=(1+0+0+0+0)=,符合条件,对于D选项:序列1100111001C(1)=a i a i+1=(1+0+0+0+1)=不满⾜条件.故选:C.6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣1【解答】解:设等⽐数列的公⽐为q,∵a5﹣a3=12,∴a6﹣a4=q(a5﹣a3),∴q=2,∴a1q4﹣a1q2=12,∴12a1=12,∴a1=1,∴S n==2n﹣1,a n=2n﹣1,∴==2﹣21﹣n,故选:B.7.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.5【解答】解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴,则数列{a n}是以2为⾸项,以2为公⽐的等⽐数列,则,∴a k+1+a k+2+…+a k+10==215﹣25,∴k+1=5,即k=4.故选:C.8.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块【解答】解:⽅法⼀:设每⼀层有n环,由题意可知从内到外每环之间构成等差数列,且公差d=9,a1=9,由等差数列的性质可得S n,S2n﹣S n,S3n﹣S2n成等差数列,且(S3n﹣S2n)﹣(S2n﹣S n)=n2d,则n2d=729,则n=9,则三层共有扇⾯形⽯板S3n=S27=27×9+×9=3402块,⽅法⼆:设第n环天⽯⼼块数为a n,第⼀层共有n环,则{a n}是以9为⾸项,9为公差的等差数列,a n=9+(n﹣1)×9=9n,设S n为{a n}的前n项和,则第⼀层、第⼆层、第三层的块数分别为S n,S2n﹣S n,S3n﹣S2n,∵下层⽐中层多729块,∴S3n﹣S2n=S2n﹣S n+729,∴﹣=﹣+729,∴9n2=729,解得n=9,∴S3n=S27==3402,故选:C.⼆.填空题(共6⼩题)9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【解答】解:根据题意,等差数列{a n}满⾜a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=25.【解答】解:因为等差数列{a n}中,a1=﹣2,a2+a6=2a4=2,所以a4=1,3d=a4﹣a1=3,即d=1,则S10=10a1=10×(﹣2)+45×1=25.故答案为:2511.(2020•浙江)已知数列{a n}满⾜a n=,则S3=10.【解答】解:数列{a n}满⾜a n=,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为3n2﹣2n.【解答】解:将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}是以1为⾸项、以6为公差的等差数列,故它的前n项和为n×1+=3n2﹣2n,故答案为:3n2﹣2n.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是4.【解答】解:因为{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),因为{a n}是公差为d的等差数列,设⾸项为a1;{b n}是公⽐为q的等⽐数列,设⾸项为b1,所以{a n}的通项公式a n=a1+(n﹣1)d,所以其前n项和S==n2+(a1﹣)n,当{b n}中,当公⽐q=1时,其前n项和S=nb1,所以{a n+b n}的前n项和S n=S+S=n2+(a1﹣)n+nb1=n2﹣n+2n﹣1(n∈N*),显然没有出现2n,所以q≠1,则{b n}的前n项和为S==+,所以S n=S+S=n2+(a1﹣)n+﹣=n2﹣n+2n﹣1(n∈N*),由两边对应项相等可得:解得:d=2,a1=0,q=2,b1=1,所以d+q=4,故答案为:4.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=7.【解答】解:由a n+2+(﹣1)n a n=3n﹣1,当n为奇数时,有a n+2﹣a n=3n﹣1,可得a n﹣a n﹣2=3(n﹣2)﹣1,…a3﹣a1=3•1﹣1,累加可得a n﹣a1=3[1+3+…+(n﹣2)]﹣=3•=;当n为偶数时,a n+2+a n=3n﹣1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+…+a16=92.∴a1+a3+…+a15=448.∴=448,∴8a1=56,即a1=7.故答案为:7.三.解答题(共8⼩题)15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等⽐数列{b n}的公⽐为q,由a1=1,a5=5(a4﹣a3),则1+4d=5d,可得d=1,∴a n=1+n﹣1=n,∵b1=1,b5=4(b4﹣b3),∴q4=4(q3﹣q2),解得q=2,∴b n=2n﹣1;(Ⅱ)证明:法⼀:由(Ⅰ)可得S n=,∴S n S n+2=n(n+1)(n+2)(n+3),(S n+1)2=(n+1)2(n+2)2,∴S n S n+2﹣S n+12=﹣(n+1)(n+2)<0,∴S n S n+2<S n+12(n∈N*);法⼆:∵数列{a n}为等差数列,且a n=n,∴S n=,S n+2=,S n+1=,∴==<1,∴S n S n+2<S n+12(n∈N*);(Ⅲ),当n为奇数时,c n===﹣,当n为偶数时,c n==,对任意的正整数n,有c2k﹣1=(﹣)=﹣1,和c2k==+++…+,①,由①×可得c2k=++…++,②,①﹣②得c2k=+++…+﹣﹣,∴c2k=﹣,因此c2k=c2k﹣1+c2k=﹣﹣.数列{c n}的前2n项和﹣﹣.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.【解答】解:(1)设等⽐数列{a n}的公⽐为q(q>1),则,∵q>1,∴,∴.(2)a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1=23﹣25+27﹣29+…+(﹣1)n﹣1•22n+1,==.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.【解答】解:(1)k=1时,a n+1=S n+1﹣S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)﹣=,则an+1=S n+1﹣S n=(﹣)•(+)=•(+),因此+=•,即=,Sn+1=a n+1=(S n+1﹣S n),从⽽S n+1=4S n,⼜S1=a1=1,可得S n=4n﹣1,a n=S n﹣S n﹣1=3•4n﹣2,n≥2,综上可得a n=,n∈N*;(3)若存在三个不同的数列{a n}为“λ﹣3”数列,则S n+1﹣S n=λa n+1,则S n+1﹣3S n+1S n+3S n+1S n﹣S n=λ3a n+1=λ3(S n+1﹣S n),由a1=1,a n≥0,且S n>0,令p n=()>0,则(1﹣λ3)p n3﹣3p n2+3p n﹣(1﹣λ3)=0,λ=1时,p n=p n2,由p n>0,可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯⼀,不存在三个不同的数列{a n},λ≠1时,令t=,则p n3﹣tp n2+tp n﹣1=0,则(p n﹣1)[p n2+(1﹣t)p n+1]=0,①t≤1时,p n2+(1﹣t)p n+1>0,则p n=1,同上分析不存在三个不同的数列{a n};②1<t<3时,△=(1﹣t)2﹣4<0,p n2+(1﹣t)p n+1=0⽆解,则p n=1,同上分析不存在三个不同的数列{a n};③t=3时,(p n﹣1)3=0,则p n=1,同上分析不存在三个不同的数列{a n}.④t>3时,即0<λ<1时,△=(1﹣t)2﹣4>0,p n2+(1﹣t)p n+1=0有两解α,β,设α<β,α+β=t﹣1>2,αβ=1>0,则0<α<1<β,则对任意n∈N*,=1或=α3(舍去)或=β3,由于数列{S n}从任何⼀项求其后⼀项均有两种不同的结果,所以这样的数列{S n}有⽆数多个,则对应的数列{a n}有⽆数多个.则存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0,综上可得0<λ<1.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.【解答】解:(1)设{a n}是公⽐q不为1的等⽐数列,a1为a2,a3的等差中项,可得2a1=a2+a3,即2a1=a1q+a1q2,即为q2+q﹣2=0,解得q=﹣2(1舍去),所以{a n}的公⽐为﹣2;(2)若a1=1,则a n=(﹣2)n﹣1,na n=n•(﹣2)n﹣1,则数列{na n}的前n项和为S n=1•1+2•(﹣2)+3•(﹣2)2+…+n•(﹣2)n﹣1,﹣2S n=1•(﹣2)+2•(﹣2)2+3•(﹣2)3+…+n•(﹣2)n,两式相减可得3S n=1+(﹣2)+(﹣2)2+(﹣2)3+…+(﹣2)n﹣1﹣n•(﹣2)n=﹣n•(﹣2)n,化简可得S n=,所以数列{na n}的前n项和为.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)∵a2+a4=20,a3=8,∴+8q=20,解得q=2或q=(舍去),∴a1=2,∴a n=2n,(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,∴2n≤m,∴n≤log2m,故b1=0,b2=1,b3=1,b4=2,b5=2,b6=2,b7=2,b8=3,b9=3,b10=3,b11=3,b12=3,b13=3,b14=3,b15=3,b16=4,…,可知0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,…,由<100,>100可知b63=5,b64=b65=…=b100=6.∴数列{b m}的前100项和S100=0+1×2+2×4+3×8+4×16+5×32+6×37=480.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.【解答】解:(1)设公⽐为q,则由,可得a1=1,q=3,所以a n=3n﹣1.(2)由(1)有log3a n=n﹣1,是⼀个以0为⾸项,1为公差的等差数列,所以S n=,所以+=,m2﹣5m﹣6=0,解得m=6,或m=﹣1(舍去),所以m=6.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.【解答】(Ⅰ)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2﹣q﹣1=0,解得q=﹣(舍去),或q=,∴c n+1=•c n=•c n=•c n=•c n=4•c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1•4n﹣1=4n﹣1,n∈N*.∴a n+1﹣a n=c n=4n﹣1,则a1=1,a2﹣a1=1,a3﹣a2=41,•••a n﹣a n﹣1=4n﹣2,各项相加,可得a n=1+1+41+42+…+4n﹣2=+1=.(Ⅱ)证明:依题意,由c n+1=•c n(n∈N*),可得b n+2•c n+1=b n•c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n==•=(1+)•=(1+)(﹣),⼜∵b1=1,d>0,∴b n>0,∴c1+c2+…+c n=(1+)(﹣)+(1+)(﹣)+…+(1+)(﹣)=(1+)(﹣+﹣+…+﹣)=(1+)(﹣)=(1+)(1﹣)<1+,∴c1+c2+…+c n<1+,故得证.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.【解答】解:(1)数列{a n}为公差为d的等差数列,S10=70,a1=1,可得10+×10×9d=70,解得d=,则a n=1+(n﹣1)=n﹣;(2)数列{a n}为公⽐为q的等⽐数列,a4=,a1=1,可得q3=,即q=,则a n=()n﹣1,S n==2﹣()n﹣1,S n>100a n,即为2﹣()n﹣1>100•()n﹣1,即2n>101,可得n≥7,即n的最⼩值为7.考点卡⽚1.数列的函数特性【知识点的认识】1、等差数列的通项公式:a n=a1+(n﹣1)d;前n项和公式S n=na1+n(n﹣1)d或者S n=2、等⽐数列的通项公式:a n=a1q n﹣1;前n项和公式S n==(q≠1)3、⽤函数的观点理解等差数列、等⽐数列(1)对于等差数列,a n=a1+(n﹣1)d=dn+(a1﹣d),当d≠0时,a n是n的⼀次函数,对应的点(n,a n)是位于直线上的若⼲个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为S n,则S n=pn2+qn(p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可⽤⼆次函数的⽅法解决等差数列问题.(2)对于等⽐数列:a n=a1q n﹣1.可⽤指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等⽐数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等⽐数列{a n}是递减数列.当q=1时,是⼀个常数列.当q<0时,⽆法判断数列的单调性,它是⼀个摆动数列.【典型例题分析】典例1:数列{a n}满⾜a n=n2+kn+2,若不等式a n≥a4恒成⽴,则实数k的取值范围是()A.[﹣9,﹣8]B.[﹣9,﹣7]C.(﹣9,﹣8)D.(﹣9,﹣7)解:a n=n2+kn+2=,∵不等式a n≥a4恒成⽴,∴,解得﹣9≤k≤﹣7,故选:B.典例2:设等差数列{a n}满⾜a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最⼤值是()A.310B.212C.180D.121解:∵等差数列{a n}满⾜a1=1,a n>0(n∈N*),设公差为d,则a n=1+(n﹣1)d,其前n项和为S n=,∴=,=1,=,=,∵数列{}也为等差数列,∴=+,∴=1+,解得d=2.∴S n+10=(n+10)2,=(2n﹣1)2,∴==,由于为单调递减数列,∴≤=112=121,故选:D.2.等差数列的通项公式【知识点的认识】等差数列是常⻅数列的⼀种,数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,已知等差数列的⾸项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代⼊2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第⼀项这个数列是等差数列,但如果把⾸项放进去的话就不是等差数列,题中a n的求法是数列当中常⽤到的⽅式,⼤家可以熟记⼀下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为⾸项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的⼀个重要性质,即等差中项的特点,通过这个性质然后解⽅程⼀样求出⾸项和公差即可.【考点点评】求等差数列的通项公式是⼀种很常⻅的题型,这⾥⾯往往⽤的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】等差数列是常⻅数列的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字⺟d表示.其求和公式为S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出⾸项a1的值,然后套⽤公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运⽤.其实⽅法都是⼀样的,要么求出⾸项和公差,要么求出⾸项和第n项的值.【考点点评】等差数列⽐较常⻅,单独考察等差数列的题也⽐较简单,⼀般单独考察是以⼩题出现,⼤题⼀般要考察的话会结合等⽐数列的相关知识考察,特别是错位相减法的运⽤.4.等⽐数列的性质【等⽐数列】(⼜名⼏何数列),是⼀种特殊数列.如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,这个数列就叫做等⽐数列,因为第⼆项与第⼀项的⽐和第三项与第⼆项的⽐相等,这个常数叫做等⽐数列的公⽐,公⽐通常⽤字⺟q表示(q≠0).注:q=1时,a n 为常数列.等⽐数列和等差数列⼀样,也有⼀些通项公式:①第n项的通项公式,a n=a1q n﹣1,这⾥a1为⾸项,q为公⽐,我们发现这个通项公式其实就是指数函数上孤⽴的点.②求和公式,S n=,表示的是前⾯n项的和.③若m+n=q+p,且都为正整数,那么有a m•a n =a p•a q.例:2,x,y,z,18成等⽐数列,则y=.解:由2,x,y,z,18成等⽐数列,设其公⽐为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运⽤了等⽐数列第n项的通项公式,这也是⼀个常⽤的⽅法,即知道某两项的值然后求出公⽐,继⽽可以以已知项为⾸项,求出其余的项.关键是对公式的掌握,⽅法就是待定系数法.【等⽐数列的性质】(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.5.等⽐数列的通项公式【知识点的认识】1.等⽐数列的定义如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐值等于同⼀个常数,那么这个数列叫做等⽐数列,这个常数叫做等⽐数列的公⽐,通常⽤字⺟q表示(q≠0).从等⽐数列的定义看,等⽐数列的任意项都是⾮零的,公⽐q也是⾮零常数.2.等⽐数列的通项公式设等⽐数列{a n}的⾸项为a1,公⽐为q,则它的通项a n=a1•q n﹣13.等⽐中项:如果在a与b中间插⼊⼀个数G,使a,G,b成等⽐数列,那么G叫做a与b的等⽐中项.G2=a•b(ab≠0)4.等⽐数列的常⽤性质(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.6.等⽐数列的前n项和【知识点的知识】1.等⽐数列的前n项和公式等⽐数列{a n}的公⽐为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等⽐数列前n项和的性质公⽐不为﹣1的等⽐数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等⽐数列,其公⽐为q n.7.数列的应⽤【知识点的知识】1、数列与函数的综合2、等差数列与等⽐数列的综合3、数列的实际应⽤数列与银⾏利率、产品利润、⼈⼝增⻓等实际问题的结合.8.数列的求和【知识点的知识】就是求出这个数列所有项的和,⼀般来说要求的数列为等差数列、等⽐数列、等差等⽐数列等等,常⽤的⽅法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等⽐数列前n项和公式:③⼏个常⽤数列的求和公式:(2)错位相减法:适⽤于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等⽐数列.(3)裂项相消法:适⽤于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所⽤的⽅法,就是将⼀个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常⻅的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满⾜:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使⽤裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第⼆问⽤的关键⽅法就是裂项求和法,这也是数列求和当中常⽤的⽅法,就像友情提示那样,两个等差数列相乘并作为分⺟的⼀般就可以⽤裂项求和.【解题⽅法点拨】数列求和基本上是必考点,⼤家要学会上⾯所列的⼏种最基本的⽅法,即便是放缩也要往这⾥⾯考.9.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前⼏项),且任⼀项a n与它的前⼀项a n﹣1(或前⼏项)间的关系可以⽤⼀个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容⼀个重点,要认真掌握.注意:(1)⽤a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成⽴的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统⼀为⼀个式⼦.(2)⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等⽐数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,⽤作差法:a n=.⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,⽤作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,⽤累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,⽤累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以⽤构造法(构造等差、等⽐数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以⽤待定系数法转化为公⽐为k的等⽐数列后,再求a n.②形如a n=的递推数列都可以⽤倒数法求通项.(7)求通项公式,也可以由数列的前⼏项进⾏归纳猜想,再利⽤数学归纳法进⾏证明.10.等差数列与等⽐数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与⾸末两端“等距离”的两项和相等,并且等于⾸末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第⼆项开始起,每⼀项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(⾸项不⼀定选a1).2、等⽐数列的性质.(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.31。
2020高考数学分项汇编专项06数列(含解析)文
1 ,求 b3;
3 1 ,求数列 { bm} 的前 2m项和公式;
〔Ⅲ〕是否存在 p 和 q,使得 bm 3m 2( m N ) ?如果存在,求 p 和 q 的取值范围;如果不存在,请说
明理由 .
14. 【 2019 高考北京 文第 15 题】 ( 本小题共 13 分) an 是等差数列,满足 a1 3, a4 12 ,数列 bn 满 足 b1 4 , b4 20 ,且 bn an 是等比数列 . 〔 1〕求数列 an 和 bn 的通项公式; 〔 2〕求数列 bn 的前 n 项和 .
(备战 2020)(北京版)高考数学分项汇编 专项 06 数列(含解 析)文
1. 【 2018 高考北京文第 7 题】等差数列 an 中, a2 6 , a5 15 ,假设 bn a2n ,那么数列 bn 的前 5
项和等于〔 A、 30 【答案】 C
〕 B、 45
C、 90
D、 186
2. 【 2019 高考北京文第 6 题】 { an} 为等比数列.下面结论中正确的选项是 (
17. 【 2019 高考北京,文 16】〔本小题总分值 13 分〕等差数列 an 满 足 a1 a2 10 , a4 a3 2 . 〔 I 〕求 an 的通项公式; 〔 II 〕设等比数列 bn 满足 b2 a3 , b3 a7 ,问: b6 与数列 an 的第几项相等?
;
前 8 项的和 S8
.
〔用数字作答〕
8. 【 2018 高考北 京文第
12 题】 在等比数 列 an 中, 假设 a1
1 , a4 2
4, 那么 公比 q
;
a1 a2
an
【答案】 2
2n 1 1 2
【解析】:由 an 是等比数列得 a4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高考数学选择题填空题专项练习(文理通用)06数列01第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·四川省泸县第一中学高三月考(文、理))已知等差数列{a n }的前n 项和为S n ,且a 2=4,a 4=2,则S 6=( )A .0B .10C .15D .30【答案】C 【解析】【分析】根据等差数列的性质,根据244,2a a ==,求出a 1,d ,代入等差数列的前n 项和公式即可. 【详解】数列{a n }是等差数列,a 2=4=a 1+d ,a 4=2=a 1+3d ,所以a 1=5,d=-1,则S 6=6a 1+()6512⨯⨯-=15. 【点睛】本题考查等差数列的通项公式,前n 项和公式,属于基础题.2.(2020·海南中学高三月考文、理)等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( )A B .2CD .3【答案】B 【解析】【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±,若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q =,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B .【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.3.(2020·黑龙江哈九中高三期末(文))已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =( )A .2B .7C .14D .28【答案】C 【解析】【分析】利用等差数列通项的性质,将已知条件转化为关于4a 的方程,由此解得4a 的值,利用等差数列前n 项和的性质,求得7S 的值.【详解】5632a a a +=+Q ,44422a d a d a d ∴++=++-,解得:42a =,()177477142a a S a +∴===.【点睛】本小题主要考查等差数列通项的性质,考查等差数列前n 项和公式,考查化归与转化的数学思想方法,属于基础题.4.(2020·河南高三(文、理))已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.5.(2020·四川棠湖中学高三月考(文、理))公差不为零的等差数列{}n a 的前n 项和为4,n S a 是37a a 与的等比中项,832S =,则S 10等于( )A .18B .24C .60D .90【答案】C 【解析】【详解】依题意可得,2437a a a =,设等差数列{}n a 的公差为d ,则0d ≠.由2437a a a =,832S =可得21111(3)(2)(6)278322a d a d a d a d ⎧+=++⎪⎨+⨯=⎪⎩,解得13{2a d =-=,所以1102910602a d S +=⨯=,故选C 。
6. (2020·广东佛山一中高三期中(文、理))等差数列{}n a 的前n 项和为n S ,已知151015192a a a a a ---+=,则19S 的值为( )A .38B .-19C .-38D .19【答案】C【解析】由等差数列的性质可知()1510151911951510102a a a a a a a a a a a ---+=+-+-=-=.即102a =-.()11919101919382a a S a +===-.故本题答案选C.7.(2020·河南高三(文、理))已知各项都是正数的数列{}n a 满足()*12n n a N a n n +-=∈,若当且仅当4n =时,na n取得最小值,则( ) A .1012a <<B .11220a <<C .112a =D .120a =【答案】B 【解析】【分析】根据递推关系,利用累加法求出21n a n n a =-+,进而得到11n a an n n=-+,再利用对勾函数的单调性,即可得答案.【详解】由题意得当2n ≥时,122n n a a n --=-,122124,,2n n a a n a a ---=--=L ,累加得21n a a n n -=-,故21n a n n a =-+,当1n =时,该式也成立,则11n a a n n n=-+,因为当且仅当4n =时,na n 取得最小值, 10a >,所以由“对勾两数”的单调性可知4343a a <且4545a a <, ∴11413143a a -+<-+且11415145a a-+<-+,解得11220a <<.故选:B. 【点睛】本题考查累加法求数列通项公式、对勾函数的应用,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意n 为整数的特殊性.8. (2020·广东高三月考(文、理))设等比数列{}n a 的前n 项和为n S ,120a a <,135627S a a =+,则36935a a a a 的值为( )A .127- B .127C .18D .18或127-【答案】A 【解析】【分析】由120a a <得公比0q <,然后由()1356S a a =+求出q ,即可计算出36935a a a a . 【详解】∵120a a <,∴公比0q <,∵135627S a a =+,∴24111627a a q a q =+,219q =,又0q <, ∴13q =-,∴36935a a a a 333663551()27a a q a a ====-.故选:A. 【点睛】本题考查等比数列的通项公式和等比数列的性质,掌握等比数列通项公式是解题关键. 9.(2020·上海高三)“三个实数,,a b c 成等差数列”是“2b a c =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】【分析】根据充要条件及等差数列的定义判断即可.【详解】若“a ,b ,c 成等差数列”,则“2b =a +c ”,即“a ,b ,c 成等差数列”是“2b =a +c ”的充分条件; 若“2b =a +c ”,则“a ,b ,c 成等差数列”,即“a ,b ,c 成等差数列”是“2b =a +c ”的必要条件,综上可得:“a ,b ,c 成等差数列”是“2b =a +c ”的充要条件,故选:C .【点睛】本题考查的知识是充要条件的判断,正确理解并熟练掌握充要条件的定义,是解答的关键. 10. 2020·湖北高三月考(文))已知数列{}n a 为等差数列,若1598a a a ++=π,则()28cos a a +的值为( )A .-12B. C .12D【答案】A 【解析】【分析】利用等差数列的性质可知,1952a a a += ,求出5a ,再由2852a a a +=即可求解.【详解】∵数列{}n a 为等差数列,1598a a a ++=π,∴由等差数列的性质可得,1952a a a +=,所以538a π=,即583a π=,因为2852a a a +=,所以28163a a π+=,∴281621cos()cos cos 332a a ππ+===-.故选:A【点睛】本题考查等差数列的性质和三角函数的诱导公式;属于基础题.11.(2020·广东高三月考(理、文))在等比数列{}n a 中,2a ,14a 是方程2860x x ++=的根,则3138a a a 的值为( ).A.4-+ BC.D.【答案】C 【解析】【分析】根据等比数列的性质结合韦达定理求出:2214214313880,6a a a a a a a +=-<===,讨论8a 的符号即可求得.【详解】在等比数列{}n a 中,2a ,14a 是方程2860x x ++=的根,6424400∆=-=>,由韦达定理:21421480,6a a a a +=-<=,所以214,a a 同为负数,等比数列所有偶数项符号相同,所以80a <,根据等比数列的性质:221431386a a a a a ===,8a =,所以3138a a a ==C 【点睛】此题考查等比数列的性质,结合二次方程韦达定理解决项的关系.12.(2020·北京市十一学校高三月考(理))已知等比数列{}n a 的前n 项和为n S ,则下列结论中一定成立的( )A .若50a >,则20190S <B .若50a >,则20190S >C .若60a >,则20180S <D .若60a >,则20180S >【答案】B 【解析】【分析】根据50a >,可得10a >,然后对公比分情况讨论,当1q =时,可知2019S 符号;当1q ≠时,()20191201911a q S q-=-,根据20191,1qq --同号,可得结果.【详解】由数列{}n a 是等比数列,所以4510a a q =>,则可知10a >,当1q =时,该等比数列为常数列,则20190S >,当1q ≠时,()20191201911a q S q-=-,又10a >且20191,1q q --同号,可知20190S >,故A 错,B 对,由5610a a q =>,1,a q 同号,若1,a q 均为正,则20180S >,若1,a q 均为负, ()20181201811a q S q-=-,当10q -<<时20180S <,当1q <-时20180S >,当1q =-时20180S =,故C ,D 不对故选:B【点睛】本题考查等比数列的通项公式以及前n 项和的应用,难点在于对首项和公比的符号的判断,属基础题.第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。