数学高考大题题型归纳必考

合集下载

数学高考大题题型归纳必考题型例题(最新整理)

数学高考大题题型归纳必考题型例题(最新整理)

数学高考大题题型归纳必考题型例题1数学高考大题题型有哪些必做题:1.三角函数或数列(必修4,必修5)2.立体几何(必修2)3.统计与概率(必修3和选修2-3)4.解析几何(选修2-1)5.函数与导数(必修1和选修2-2)选做题:1.平面几何证明(选修4-1)2.坐标系与参数方程(选修4-4)3.不等式(选修4-5)2数学高考大题题型归纳一、三角函数或数列数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

二、立体几何高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习(附答案)

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习(附答案)

2023届高考数学专项(充分、必要、充要问题)题型归纳与练习【题型归纳】题型一 、充分、不要条件的判断充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.例1、(1)【2021年理科数学甲卷】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件(2)【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件题型举一反三1、(2021∙天津高三二模)设x ∈R ,则“230x x -<”是“12x <<”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件题型举一反三2、(2021∙山东济宁市高三二模)“直线m 垂直平面α内的无数条直线”是“m α⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必安条件题型举一反三3、(2021∙河北张家口市高三三模)“0a >”是“点()0,1在圆222210x y ax y a +--++=外”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件题型举一反三4、(2021∙辽宁高三模拟)设1z ,2z 为复数,“120z z ->”是“12z z >”( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件题型举一反三5、(2021∙浙江高三二模)已知P 、A 、B 、C 、D 是空间内两两不重合的五个点,PAB △在平面α内,PCD 在平面β内,αβ⊥,则“AB β⊥”是“AB CD ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件题型举一反三6、(2021∙浙江温州市高三模拟)已知α∈R ,则“1sin 2cos 25αα+=”是“sin 2cos αα=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 题型举一反三7、(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“990S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件题型二、根据充分、必要条件判断含参的问题解决此类问题要注意以下两点:(1)把充分、不要条件转化为集合之间的关系;(2)根据集合之间的关系列出关于参数的不等式。

新课标高考数学题型全归纳

新课标高考数学题型全归纳

新课标高考数学题型全归纳一、选择题1.单选题单选题是高考数学中常见的题型,考查学生对知识点的掌握和理解能力。

通常题目会给出一个数学问题,然后列出4个选项,要求学生从中选择出符合问题要求的正确答案。

2.多选题多选题与单选题的不同之处在于,多选题给出的选项数量比单选题多,考生需要在几个选项中选择出全部符合问题要求的答案。

3.判断题判断题是另一种常见的选择题类型,考生需要根据题目给出的判断,判断其正误,并选择正确与否。

二、填空题填空题是另一种常见的高考数学题型,通常题目给出一个数学问题,要求学生填写一个或多个空缺的数字或符号,使得答案符合问题要求。

三、解答题1.计算题计算题是高考数学中常见的解答题类型,要求考生根据题目给出的数值或公式进行计算,并给出最终的数值结果。

2.证明题证明题是高考数学中的难点题型,要求考生根据已知条件和数学定理,推导出答案,并给出详细的证明过程。

3.应用题应用题是高考数学中考查学生综合运用多个数学知识点解决实际问题的题型,通常题目设定在某个具体的场景中,要求学生根据已知条件和所学知识解答问题。

四、选择计算题选择计算题是一种综合性高考数学题型,题目包括选择题和计算题的特点,要求学生根据给出的问题和数据进行计算,并从几个选项中选择出符合要求的最终答案。

五、应用分析题应用分析题是高考数学中难度较大的题型,要求考生综合运用数学知识解决复杂的实际问题,并给出详细的分析和解释过程。

综上所述,新课标高考数学题型涵盖了选择题、填空题、解答题等多个类型,考查学生的数学知识掌握、理解和运用能力。

在备考过程中,学生需对不同类型的题目有充分的了解和练习,以提高应对各种题型的能力,从而在高考中取得优异的成绩。

高考数学题型全归纳

高考数学题型全归纳

高考数学题型全归纳1高考数学必考七个题型第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

2高考数学题型全归纳题型1、集合的基本概念题型2、集合间的基本关系题型3、集合的运算题型4、四种命题及关系题型5、充分条件、必要条件、充要条件的判断与证明题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假题型8、含有一个量词的命题的否定题型9、结合命题真假求参数的范围题型10、映射与函数的概念题型11、同一函数的判断题型12、函数解析式的求法题型13、函数定义域的求解题型14、函数定义域的应用题型15、函数值域的求解题型16、函数的奇偶性题型17、函数的单调性(区间)题型18、函数的周期性题型19、函数性质的综合题型20、二次函数、一元二次方程、二次不等式的关系题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题题型23、指数运算及指数方程、指数不等式题型24、指数函数的图像及性质题型25、指数函数中的恒成立的问题题型26、对数运算及对数方程、对数不等式题型27、对数函数的图像与性质题型28、对数函数中的恒成立问题题型29、幂函数的定义及基本性质题型30、幂函数性质的综合应用题型31、判断函数的图像题型32、函数图像的应用题型33、求函数的零点或零点所在区间题型34、利用函数的零点确定参数的取值范围题型35、方程根的个数与函数零点的存在性问题题型36、函数与数列的综合题型37、函数与不等式的综合题型38、函数中的创新题题型39、导数的定义题型40、求函数的导数题型41、导数的几何意义题型42、利用原函数与导函数的关系判断图像题型43、利用导数求函数的单调区间题型44、含参函数的单调性(区间)题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解题型47、方程解(函数零点)的个数问题题型48、不等式恒成立与存在性问题题型49、利用导数证明不等式题型50、导数在实际问题中的应用题型51、终边相同的角的集合的表示与识别题型52、等分角的象限问题题型53、弧长与扇形面积公式的计算题型54、三角函数定义题题型55、三角函数线及其应用题型56、象限符号与坐标轴角的三角函数值题型57、同角求值---条件中出现的角和结论中出现的角是相同的题型58、诱导求值与变形题型59、已知解析式确定函数性质题型60、根据条件确定解析式题型61、三角函数图像变换题型62、两角和与差公式的证明题型63、化简求值题型64、正弦定理的应用题型65、余弦定理的应用题型66、判断三角形的形状题型67、正余弦定理与向量的综合题型68、解三角形的实际应用题型69、共线向量的基本概念题型70、共线向量基本定理及应用题型71、平面向量的线性表示题型72、平面向量基本定理及应用题型73、向量与三角形的四心题型74、利用向量法解平面几何题型75、向量的坐标运算题型76、向量平行(共线)、垂直充要条件的坐标表示题型77、平面向量的数量积题型78、平面向量的应用题型79、等差、等比数列的通项及基本量的求解题型80、等差、等比数列的求和题型81、等差、等比数列的性质应用题型82、判断和证明数列是等差、等比数列题型83、等差数列与等比数列的综合题型84、数列通项公式的求解题型85、数列的求和题型86、数列与不等式的综合题型87、不等式的性质题型88、比较数(式)的大小与比较法证明不等式题型89、求取值范围题型90、均值不等式及其应用题型91、利用均值不等式求函数最值题型92、利用均值不等式证明不等式题型93、不等式的证明题型94、有理不等式的解法题型95、绝对值不等式的解法题型96、二元一次不等式组表示的平面区域题型97、平面区域的面积题型98、求解目标函数的最值题型99、求解目标函数中参数的取值范围题型100、简单线性规划问题的实际运用题型101、不等式恒成立问题中求参数的取值范围题型102、函数与不等式综合题型103、几何体的表面积与体积题型104、球的表面积、体积与球面距离题型105、几何体的外接球与内切球题型106、直观图与斜二测画法题型107、直观图/三视图题型108、三视图/直观图---简单几何体的基本量的计算题型109、三视图/直观图---简单组合体的基本量的计算题型110、部分三视图/其余三视图题型111、证明"点共面"、"线共面"或"点共线"及"线共点"题型112、异面直线的判定题型113、证明空间中直线、平面的平行关系题型114、证明空间中直线、平面的垂直关系题型115、倾斜角与斜率的计算题型116、直线的方程题型117、两直线位置关系的判定题型118、有关距离的计算题型119、对称问题题型120、求圆的方程题型121、直线系方程和圆系方程题型122、与圆有关的轨迹问题题型123、圆的一般方程的充要条件题型124、点与圆的位置关系判断题型125、与圆有关的最值问题题型126、数形结合思想的应用题型127、直线与圆的相交关系题型128、直线与圆的相切关系题型129、直线与圆的相离关系题型130、圆与圆的位置关系题型131、椭圆的定义与标准方程题型132、离心率的值及取值范围题型133、焦点三角形题型134、双曲线的定义与标准方程题型135、双曲线的渐近线题型136、离心率的值及取值范围题型137、焦点三角形题型138、抛物线的定义与方程题型139、与抛物线有关的距离和最值问题题型140、抛物线中三角形、四边形的面积问题题型141、直线与圆锥曲线的位置关系题型142、中点弦问题题型143、弦长与面积问题题型144、平面向量在解析几何中的应用题型145、定点问题题型146、定值问题题型147、最值问题题型148、已知流程框图,求输出结果题型149、根据条件,填充不完整的流程图题型150、求输入参量题型151、算法综合应用题型152、算法案例题型153、古典概型题型154、几何概型的计算题型155、抽样方式题型156、茎叶图与数字特征题型157、直方图与数字特征题型158、频(数)率表与数字特征题型159、统计图表与概率综合题型160、线性回归方程题型161、独立性检验题型162、归纳推理题型163、类比推理题型164、综合法与分析法证明题型165、反证法证明题型166、复数的分类、代数运算和两个复数相等的条件题型167、复数的几何意义题型168、相似三角形题型169、相交弦定理、切割线定理及其应用题型170、四点共圆题型171、空间图形问题转化为平面问题题型172、参数方程化普通方程题型173、普通方程化参数方程题型174、极坐标方程化直角坐标方程题型175、含绝对值的不等式题型176、不等式的证明。

高考数学常考题型和答题技巧

高考数学常考题型和答题技巧

高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

4.换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。

②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。

③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。

新数学高考六道大题题型

新数学高考六道大题题型

新数学高考六道大题题型一、解析几何1. 平面几何定理题目:已知直角三角形ABC中,∠C=90°,且AC=5,BC=12。

求AB 的长度。

解题思路:根据勾股定理,可以得到AB的长度。

即AB=√(AC²+BC²)=√(25+144)=√169=13。

2. 空间几何定理题目:已知四棱锥的底面是一个菱形,底面边长为6,四个脚顶点在菱形对角线的两端,且离底面中心的距离都是3。

求这个四棱锥的体积。

解题思路:根据四棱锥的体积公式,可以得到体积V=(1/3)*底面面积*高。

由菱形的对角线长和底面边长可求得底面面积为18,而高等于脚顶点到底面中心的距离,即3。

带入公式可得V=(1/3)*18*3=18。

二、函数与方程3. 函数求值题目:设函数f(x)满足f(x+2)-2f(x+1)+f(x)=x,且f(1)=1,f(2)=4。

求f(3)的值。

解题思路:将x分别取1和2代入已知的方程,可以得到两个方程:f(3)-2f(2)+f(1)=1 和f(4)-2f(3)+f(2)=2。

再结合已知条件f(1)=1和f(2)=4,可以得到一个关于f(3)的一元二次方程,解方程可得f(3)=2。

4. 方程求根题目:解方程x²-5x+6=0。

解题思路:这是一个一元二次方程,可以使用求根公式进行求解。

根据求根公式,方程的根分别是x=(5±√(5²-4*1*6))/(2*1)。

带入公式可得x₁=3,x₂=2。

三、概率与统计5. 概率计算题目:甲、乙、丙三个人独立地制作产品A的过程中,每个人的失误率分别是0.1、0.2和0.3。

其中甲独立制作30件,乙制作50件,丙制作20件。

现从中随机抽取一件产品,求抽出的产品是失误的概率。

解题思路:根据独立事件的概率公式,可以将问题化简为分别求甲、乙、丙制作的产品中出现失误的概率,然后将三个概率相加。

甲独立制作30件,失误的概率是0.1,所以甲制作的产品中失误的数量是30*0.1=3;同理,乙和丙的失误数量分别是10和6。

高考数学题型归纳汇总

高考数学题型归纳汇总

高考数学题型归纳汇总一、排列组合篇1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8. 会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

三、数列问题篇1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高考数学大题题型归纳 高考数学必考五大题型

高考数学大题题型归纳 高考数学必考五大题型

高考数学大题题型归纳高考数学必考五大题型
对于高中数学的学习,聪明的智慧是一方面,另一方面的归纳和总
结也是有效的方式之一。

下文小编就给即将高考的你归纳总结了高考数学必
考的几种大题题型,请考生们抓紧查阅吧!
 高考数学必考五大题型 一、排列组合题型二、立体几何题型三、数列
问题题型四、导数应用题型五、解析几何题型(圆锥曲线)
 高考数学立体几何题答题技巧 1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体
的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

 高考数学大题解析几何剖析 1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的
问题;2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这幺一个结论,那就是解决高考
解析几何问题无外乎做两项工作:1、几何问题代数化。

2、用代数规则对代
数化后的问题进行处理。

高考解析几何解题套路及各步骤操作规则步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出
来(翻译);口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:点用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;2、见
直线化直线:直线用二元一次方程表示,只要是题目中提到的直线都要加以
方程化;3、见曲线化曲线:曲线(圆、椭圆、抛物线、双曲线)用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;步骤二:(二代)把题目中的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学高考大题题型归纳必考题型例题
数学高考大题题型归纳必考题型例题
1数学高考大题题型有哪些
必做题:
1.三角函数或数列(必修4,必修5)
2.立体几何(必修2)
3.统计与概率(必修3和选修2-3)
4.解析几何(选修2-1)
5.函数与导数(必修1和选修2-2)
选做题:
1.平面几何证明(选修4-1)
2.坐标系与参数方程(选修4-4)
3.不等式(选修4-5)
2数学高考大题题型归纳
一、三角函数或数列
数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步
实施,立体几何考题正朝着多一点思考,少一点计算的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

3数学高考大题常考题型
三角函数常考题型。

相关文档
最新文档