MEMS介绍

合集下载

mems 工艺流程

mems 工艺流程

mems 工艺流程MEMS(Micro-Electro-Mechanical Systems,微电子机械系统)是集成电路技术与微机械技术相结合的一种新型技术,能够将微小的机电结构、传感器、执行器和电路等集于一体,成为一种具有微小尺寸、高度集成度和多功能性的系统。

MEMS技术的广泛应用使得 MEMS 工艺流程愈发重要,下面我们将详细介绍 MEMS 工艺流程。

MEMS工艺流程主要分为六个阶段:晶圆准备、芯片前端加工、芯片背面加工、封装与封装测试、器件测试和后封测试。

第一阶段是晶圆准备阶段。

晶圆通常用硅(Si)材料,首先要清洗晶圆,去除表面的污垢,然后用化学气相沉积(CVD)方法在晶圆上生长一层二氧化硅(SiO2),形成绝缘层。

随后,还需要完成一系列的光刻步骤,即利用光刻胶和光掩模将图案转移到晶圆上,以形成预期的结构和形状。

第二阶段是芯片前端加工阶段。

这个阶段主要涉及到利用湿法和干法的化学刻蚀方法来去除不需要的材料,并在晶圆上的金属层中创造出微小的结构和连接线。

此外,还可以利用离子注入和扩散工艺来调整电阻、电导率或阈值电压等特性。

第三阶段是芯片背面加工阶段。

这个阶段主要涉及到将晶圆从背面进行背面研磨和化学机械抛光,以使芯片变得更加薄,并且可以通过背面晶圆连接器连接到其他系统。

第四阶段是封装与封装测试阶段。

此阶段的主要任务是将制造好的 MEMS 芯片进行封装,以保护并提供使其正常运行所需的外部连接。

封装的方法包括胶封、承载式封装和芯片柔性封装。

随后,对封装后的芯片进行测试以确认其性能和质量。

第五阶段是器件测试阶段。

在这个阶段,将芯片插入到测试设备中,对其进行各种电学、力学或物理特性的测试。

测试可以包括压力测试、温度测试、震动测试等,以验证 MEMS 芯片的性能和可靠性。

最后一个阶段是后封测试阶段。

在这个阶段,将经过器件测试的芯片进行再次封装,以保护芯片不受外界环境的影响,并进行最后的测试以确保其正常运行。

mems微振镜作用

mems微振镜作用

mems微振镜作用mems微振镜是一种具有微小尺寸和快速振动特性的光学器件,广泛应用于光学投影、激光扫描、光学通信等领域。

本文将介绍mems微振镜的工作原理、应用以及未来的发展趋势。

一、工作原理mems微振镜是利用微机电系统技术制造的一种微小尺寸的振动镜片。

其核心部分是由单个或多个微小反射镜组成的结构,通过外部施加电压或电磁场的方式使其产生微小振动。

这种振动可以实现反射面的精确定位和改变,从而实现光束的精确控制。

mems微振镜的振动是通过压电效应或电磁效应实现的。

在压电型mems微振镜中,施加电压会使得振动片上的压电材料发生形变,从而引起反射镜的振动。

而在电磁型mems微振镜中,施加电流会在磁场作用下产生力矩,驱动反射镜振动。

二、应用领域1. 光学投影:mems微振镜被广泛应用于投影仪中,可以实现图像的快速扫描和定位,提高投影质量和分辨率。

同时,由于mems微振镜具有小尺寸和轻量化的特点,可以使得投影仪的体积更小、更便携。

2. 激光扫描:mems微振镜可以用于激光扫描系统中,实现激光束的快速扫描和定位。

通过控制振镜的振动频率和幅度,可以实现高速、高精度的激光扫描,广泛应用于3D打印、激光雕刻等领域。

3. 光学通信:mems微振镜可以用于光路的切换和光束的定位,实现光纤通信系统的快速切换和精确控制。

同时,mems微振镜的小尺寸和低功耗特点也使其成为光学通信系统中的重要组件。

4. 生物医学:mems微振镜在生物医学领域有广泛的应用,可以用于显微成像、细胞操作和组织切割等。

通过控制mems微振镜的振动,可以实现高分辨率的显微成像和精确的细胞操作,为生物医学研究和临床诊断提供了有力的工具。

三、发展趋势随着微纳技术的不断发展和进步,mems微振镜在尺寸、性能和应用方面都将得到进一步的提升和拓展。

未来,mems微振镜将更加小型化、高性能化和多功能化。

1. 小型化:随着微纳制造技术的不断发展,mems微振镜的尺寸将进一步缩小,可以实现更高的分辨率和更精确的控制。

mems制造工艺及技术

mems制造工艺及技术

MEMS制造工艺及技术的深度解析一、引言微机电系统(Micro-Electro-Mechanical Systems,简称MEMS)是一种将微型机械结构与电子元件集成在同一芯片上的技术。

由于其体积小、功耗低、性能高等特点,MEMS技术已被广泛应用于各种领域,如汽车、医疗、消费电子、通信等。

本文将详细介绍MEMS的制造工艺及技术,以帮助读者更深入地了解这一领域。

二、MEMS制造工艺1. 硅片准备MEMS制造通常开始于一片硅片。

根据所需的设备特性,可以选择不同晶向、电阻率和厚度的硅片。

硅片的质量对最终设备的性能有着至关重要的影响。

2. 沉积沉积是制造MEMS设备的一个关键步骤。

它涉及到在硅片上添加各种材料,如多晶硅、氮化硅、氧化铝等。

这些材料可以用于形成机械结构、电路元件或牺牲层。

沉积方法有多种,包括化学气相沉积(CVD)、物理气相沉积(PVD)和电镀等。

3. 光刻光刻是一种利用光敏材料和模板来转移图案到硅片上的技术。

通过光刻,我们可以在硅片上形成复杂的机械结构和电路图案。

光刻的精度和分辨率对最终设备的性能有着重要影响。

4. 刻蚀刻蚀是一种通过化学或物理方法来去除硅片上未被光刻胶保护的部分的技术。

它可以用来形成机械结构、电路元件或通孔。

刻蚀方法有湿法刻蚀和干法刻蚀两种。

湿法刻蚀使用化学溶液来去除材料,而干法刻蚀则使用等离子体或反应离子刻蚀(RIE)来去除材料。

5. 键合与封装键合是将两个或多个硅片通过化学键连接在一起的过程。

它可以用于制造多层MEMS设备或将MEMS设备与电路芯片集成在一起。

封装是将MEMS设备封装在一个保护壳内以防止环境对其造成损害的过程。

封装材料可以是陶瓷、塑料或金属。

三、MEMS制造技术挑战与发展趋势1. 尺寸效应与可靠性问题随着MEMS设备的尺寸不断减小,尺寸效应和可靠性问题日益突出。

例如,微小的机械结构可能因热膨胀系数不匹配或残余应力而导致失效。

为了解决这些问题,研究人员正在开发新型材料和制造工艺以提高MEMS设备的可靠性。

微机电系统(MEMS)技术介绍

微机电系统(MEMS)技术介绍

微机电系统(MEMS)技术介绍微机电系统(MEMS),在欧洲也被称为微系统技术,或在日本被称为微机械,是一类器件,其特点是尺寸很小,制造方式特殊。

MEMS是指采用微机械加工技术批量制作的、集微型传感器、微型机构、微型执行器以及信号处理和控制电路、接口、通讯等于一体的微型器件或微型系统。

MEMS 器件的特征长度从1毫米到1微米--1微米可是要比人们头发的直径小很多。

MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。

然而,MEMS器件加工技术并非机械式。

相反,它们采用类似于集成电路批处理式的微制造技术。

今天很多产品都利用了MEMS技术,如微换热器、喷墨打印头、高清投影仪的微镜阵列、压力传感器以及红外探测器等。

MEMS技术可以用于制造压力传感器、惯性传感器、磁力传感器、温度传感器等微型传感器,这些传感器以及它们的部分信号处理电路都可以在只有几毫米或更小的芯片上实现。

与传统的传感器相比,MEMS传感器不仅体积更小、功耗更低,而且它们往往会比传统传感器更加准确、更加灵敏。

随着人们对海洋观测的需求不断增加和海洋观测技术的不断发展,MEMS技术也在逐渐进入海洋观测技术研究领域。

一、MEMS概念“他们告诉我一种小手指指甲大小的电动机。

他们告诉我,目前市场上有一种装置,通过它你可以在大头针头上写祷文。

但这也没什么;这是最原始的,只是我打算讨论方向上的暂停的一小步。

在其下是一个惊人的小世界。

公元2000年,当他们回顾当前阶段时,他们会想知道为何直到1960年,才有人开始认真地朝这个方向努力。

”——理查德·费曼,《底部仍然存在充足的空间》发表于1959年12月29日于加州理工大学(Caltech)举办的美国物理学会年会。

但我们可能会问:为什么要在这样一个微小尺上生成这些对象?MEMS器件可以完成许多宏观器件同样的任务,同时还有很多独特的优势。

这其中第一个以及最明显的一个优势就是小型化。

MEMS的简介

MEMS的简介

当今的微机电系统(Micro Electro Mechanical System,简称MEMS)产业重点不断从单个的微机电系统器件向微机电系统产品转移,而且其中的机械、热、电、静电及电磁间耦合作用与机理日趋复杂,一些传统的工程设计方法(如经验设计法等)无法满足微系统的设计要求。

对微机电系统产品开发而言,这种反复尝试的设计方法、长设计周期以及微系统原型机的高昂费用导致了一种效率极为低下的、不切实际的情况。

目前,针对微机电系统的现代设计理论与方法已日益受到微机电系统CAD厂商以及高等院校的相关研究机构的重视,但对微机电系统大规模生产阶段的自动装配系统的研究较少。

微装配作为MEMS产业化过程中的一项重要技术理应受到重视。

在研究的过程中,我们查阅了大量国内外各方面的资料,发现迄今为止还没有一本书来系统讲解微装配的过程,于是我们项目组萌生了编写一本介绍微装配的书籍,希望对MEMS感兴趣的人在获取这方面知识的时候能够比我们来的容易些。

在现代产品设计过程中,装配技术作为检验设计质量的一个重要环节显得越来越重要。

而这个过程通常是用各种CAD设计软件来实现的,于是又出现了仿真的问题。

具体到MEMS,微装配与仿真更是一个有机的整体。

在设计MEMS时,要检验MEMS的可装配性,于是就要把MEMS系统进行建模仿真。

因此,有必要将两者联合起来进行论述。

“国家大学生创新性实验计划”作为教育部、财政部高等学校本科教学质量与教学改革工程的重要组成部分,是培养高素质创新型人才的重要举措之一。

该计划的实施,旨在培养大学生从事科学研究和探索未知的兴趣,从而激发大学生的创新思维和创新意识,锻炼大学生思考问题、解决问题的能力,培养其从事科学研究和创造发明的素质。

2007年,教育部批准了首批60所高校实施该计划项目,西安电子科技大学作为实施该计划项目的高校之一,已经有40个项目被正式列入“国家大学生创新性实验计划”,“MEMS自动装配系统的虚拟化研究”项目有幸成为其中之一。

压电MEMS传感器介绍及原理解析

压电MEMS传感器介绍及原理解析

压电MEMS传感器介绍及原理解析当外界施加压力或作用力到传感器上时,压电材料会发生形变,导致材料内部电荷分布发生改变。

这种电荷分布的变化可以通过连接在传感器上的电极来测量。

根据电荷量的变化,可以推导出传感器受到的压力、力量或其他机械量。

压电MEMS传感器的尺寸通常很小,可以制作成微型芯片。

这种微小尺寸的设计使得传感器可以在各种应用中得到广泛应用,例如汽车安全、医疗器械、工业自动化等。

此外,压电MEMS传感器还具有高灵敏度、高频响应和低功耗的优点。

原理解析:1.压电效应:压电效应是指一些材料在受到机械应力时会产生电荷分布的现象。

这些材料被称为压电材料,常见的包括压电陶瓷和压电聚合物。

当压力施加到压电材料上时,材料内的晶格结构发生变化,导致正负电荷分布不均衡,从而产生电势差。

2.压电材料选择:传感器的灵敏度和性能与选择的压电材料密切相关。

铅锆钛酸钡(PZT)是最常见的压电陶瓷材料,具有良好的压电性能和稳定性。

而压电聚合物材料则具有更高的柔韧性和可塑性,适用于柔性传感器的应用。

3.微结构设计:传感器的微结构常常采用悬臂梁、柱状结构或薄膜结构等形式。

这些微结构用于将外界施加的压力或力量转换为压电材料的变形。

设计合理的微结构能够增加传感器的敏感度和响应速度。

4.电极连接和信号测量:为了测量传感器中电荷分布的变化,需要将电极与压电材料连接起来。

一般情况下,电极通过金属线缆连接到传感器芯片的外部电路中。

在外部电路中,电荷的变化可以转化为电压或电流信号,进而进行放大、滤波和处理。

mems加速度传感器原理

mems加速度传感器原理加速度传感器是一种常见的MEMS(微机电系统)传感器,用于测量物体在三个轴向上的加速度。

它是由微小的机械结构和敏感器件组成,通过测量物体对这些结构的力的变化来确定加速度大小。

本文将介绍mems加速度传感器的工作原理及其应用。

一、mems加速度传感器的工作原理mems加速度传感器通常由质量块、弹簧和电容等组件构成。

当物体受到加速度作用时,质量块会受到力的作用而发生位移,而弹簧会受到拉伸或压缩。

这些位移和变形将导致电容的改变,从而通过电容变化来测量加速度。

具体来说,mems加速度传感器利用了电容的变化来测量加速度。

传感器中的质量块被固定在一个支撑结构上,并与支撑结构之间通过弹簧连接。

当物体受到加速度作用时,质量块会发生位移,而弹簧则会产生相应的拉伸或压缩。

这种位移和变形将导致质量块与支撑结构之间的电容发生变化。

mems加速度传感器中的电容通常由两个金属板构成,它们分别与质量块和支撑结构相连。

当质量块发生位移时,金属板之间的距离会发生改变,进而改变了电容的值。

这种电容的变化可以通过电路进行测量和分析,从而得到加速度的值。

二、mems加速度传感器的应用mems加速度传感器具有体积小、功耗低、成本低等优点,因此在许多领域得到广泛应用。

1. 汽车安全系统:mems加速度传感器可用于汽车的安全气囊系统和车辆稳定性控制系统。

通过测量车辆的加速度,可以及时触发气囊的放出,以保护乘客的安全。

同时,加速度传感器还可以监测车辆的姿态和动态参数,为车辆稳定性控制提供依据。

2. 手机和智能设备:mems加速度传感器广泛应用于手机和智能设备中,用于实现自动旋转屏幕、晃动动作识别、步数计数等功能。

通过测量设备的加速度,可以实现多种智能交互方式,提升用户体验。

3. 工业监测和控制:mems加速度传感器可用于工业设备的监测和控制。

例如,可以用于测量机械设备的振动和冲击,从而判断设备的工作状态和健康状况,及时进行维护和修理。

mems典型工艺流程

mems典型工艺流程MEMS(微机电系统)是一种的技术,将微机电技术与集成电路技术相结合,制造出微小尺寸的机械系统和传感器。

在MEMS的制造过程中,需要经过一系列的工艺流程。

下面将介绍一般MEMS的典型工艺流程。

首先,MEMS的工艺流程通常从硅片的制备开始。

通常采用的是单晶硅片,其表面经过化学洗涤和高温氧化处理,以去除杂质和形成氧化硅层作为基底。

接下来是光刻工艺。

这一步骤通过将光刻胶涂覆在硅片上,然后使用特定的光掩膜进行照射,从而在光刻胶上形成需要的图案。

通过光刻工艺,可以制造出细小的结构和器件形状。

然后是刻蚀工艺。

刻蚀工艺使用化学或物理方法,将不需要的硅片或氧化层材料进行去除。

根据需要,可以采用湿法刻蚀或干法刻蚀。

刻蚀后,可以得到所需的MEMS结构和通道。

接下来是薄膜沉积工艺。

薄膜沉积工艺是将需要的材料沉积到硅片表面,以形成薄膜层。

这种工艺可以用于制造电极、传感器和阻尼材料等。

根据需要,可以采用热氧化、电镀或化学气相沉积等方法进行薄膜沉积。

然后是光刻和刻蚀重复多次的步骤。

这是因为MEMS设备通常需要复杂的结构,需要多次重复进行光刻和刻蚀,以形成所需的形状和结构。

这一步骤可能需要多次光刻胶涂覆、暴露和刻蚀,以实现所需的器件形状和功能。

最后是封装工艺。

封装工艺将制造好的MEMS器件封装到适当的壳体中,保护器件免受外界环境的干扰。

封装工艺可根据具体情况选择不同的方法,例如焊接、粘接或压接等。

总的来说,MEMS的典型工艺流程包括硅片制备、光刻、刻蚀、薄膜沉积、光刻和刻蚀重复多次以及封装。

通过这些工艺步骤,可以制造出各种微小尺寸的MEMS结构和传感器。

MEMS的制造工艺流程非常复杂,需要对微纳米材料和工艺参数进行精确控制和处理。

这些MEMS器件在航天、汽车、医疗和消费电子等领域具有广泛的应用前景。

MEMS陀螺仪的简要介绍

MEMS陀螺仪的简要介绍MEMS陀螺仪(Micro-Electro-Mechanical System gyroscope)是一种基于微机电系统技术的陀螺仪,具有小尺寸、低功耗、高灵敏度等特点。

它广泛应用于无人机、手机、平衡车等设备中,用于测量角速度和方向。

首先,我们来看一下MEMS陀螺仪的性能参数。

主要包括灵敏度、测量范围、精确度和稳定性。

1.灵敏度:指陀螺仪对角速度变化的感知程度,通常以每秒多少度/秒来表示。

灵敏度越高,陀螺仪对角速度变化的检测越精准。

2.测量范围:指陀螺仪能够测量的角速度的最大值和最小值。

通常以度/秒为单位,在不同应用场景下需根据需求选择合适的测量范围。

3.精确度:指陀螺仪测量结果与真实值之间的偏差。

精确度越高,陀螺仪的测量结果越接近真实值。

4.稳定性:指陀螺仪在长时间使用过程中保持测量精度的能力。

稳定性包括零漂、温漂等参数,可通过校准等方法来提高。

1.姿态控制:MEMS陀螺仪被广泛应用于飞行器、导航设备等需要进行姿态控制的设备中。

通过测量角速度变化,可以帮助设备实时检测自身的姿态,从而进行调整和控制。

2.稳定平台:MEMS陀螺仪可以用于制作稳定平台,如相机防抖系统。

通过补偿相机的晃动,可以提高拍摄的稳定性和图像质量。

3.导航定位:MEMS陀螺仪可以与其他传感器(如加速度计、磁力计)结合使用,用于导航和定位应用。

通过测量角速度和加速度,可以估计设备的位置和方向。

4.虚拟现实和增强现实:MEMS陀螺仪可以用于虚拟现实和增强现实设备中,如头戴式显示器和手持设备。

通过检测用户头部的旋转动作,可以实现对虚拟场景的观察和交互。

5.运动追踪:MEMS陀螺仪可以用于运动追踪设备中,如运动手柄和运动传感器。

通过测量角速度和加速度,可以捕捉用户的运动,实现与设备的交互。

综上所述,MEMS陀螺仪是一种小尺寸、低功耗、高灵敏度的陀螺仪,广泛应用于姿态控制、稳定平台、导航定位、虚拟现实和运动追踪等领域。

MEMS工艺技术

MEMS工艺技术MEMS(Micro-Electro-Mechanical Systems)是一种将微型机械、电子元件和传感器集成在一起的技术,它具有体积小、功耗低、性能优良等优势。

MEMS工艺技术是制造MEMS器件所需的工艺流程,下面将介绍一下MEMS工艺技术的主要内容。

首先是薄膜沉积技术。

由于MEMS器件的尺寸很小,因此需要采用薄膜沉积技术来制造薄膜结构。

常见的薄膜沉积技术有化学气相沉积(CVD)和物理气相沉积(PVD)等。

CVD采用气体在一定条件下发生化学反应,产生固态薄膜,常用于制备多晶硅和二氧化硅等材料。

PVD则是利用高能量粒子轰击靶材,使靶材的原子或分子从靶表面剥离,随后沉积在基片上形成薄膜。

其次是光刻技术。

光刻是MEMS工艺中的重要步骤,用于制作图案。

它利用紫外光照射感光胶,在感光胶上形成图案,然后通过后续的腐蚀或沉积等工艺步骤将图案转移至基片上。

光刻技术需要借助于掩膜,即光刻胶膜上的透光性与所需图案的形状相对应,通过控制光刻胶膜的曝光和显影,就能制作出所需的图案。

另外一个重要的工艺是湿法腐蚀。

湿法腐蚀是对特定区域的材料表面进行腐蚀,形成所需的结构。

常用的湿法腐蚀液有氢氟酸、氢氧化钠等,通过控制腐蚀时间和温度,可以得到所需的结构形状。

此外,还有离子注入、金属沉积、表面湿化等工艺,这些工艺技术在MEMS器件的制造中都起到了重要的作用。

离子注入用于改变材料的性质,比如使其导电性变化;金属沉积常用于制作电极和连接器;表面湿化用于改变材料表面的能量特性。

综上所述,MEMS工艺技术是制造MEMS器件所必需的技术,涵盖了薄膜沉积、光刻、湿法腐蚀等多个工艺步骤。

这些工艺技术的运用,使得MEMS器件具备了体积小、功耗低、性能优良等优势,广泛应用于生物医学、环境监测、智能手机等领域。

随着微纳技术的不断发展,相信MEMS工艺技术也将不断完善,为制造更加先进的MEMS器件提供更多可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 What’s happening in the world of MEMS?MEMS are separate and distinct from the hypothetical vision of molecular nanotechnology or molecular electronics. MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre (i.e. 0.02 to 1.0 mm). They usually consist of a central unit that processes data (the microprocessor) and several components that interact with the surroundings such as micro-sensors.[1]At these size scales, the standard constructs of classical physics are not always useful. Because of the large surface area to volume ratio of MEMS, surface effects suchas electrostatics and wetting dominate over volume effects such as inertia or thermal mass.The potential of very small machines was appreciated before the technology existed that could make them—see, for example, Richard Feynman's famous 1959 lecture There's Plenty of Room at the Bottom. MEMS became practical once they could be fabricated using modified semiconductor device fabrication technologies, normally used tomake electronics. These include molding and plating, wet etching (KOH, TMAH) and dry etching (RIE and DRIE), electro discharge machining (EDM), and other technologies capable of manufacturing small devices. An early example of a MEMS device is the resonistor – an electromechanical monolithic resonator.Applications∙Inkjet printers, which use piezoelectrics or thermal bubble ejection to deposit ink on paper.∙Accelerometers in modern cars for a large number of purposesincluding airbag deployment in collisions.∙Accelerometers and MEMS gyroscopes in radio controlled, or autonomous, helicopters, planes and multirotors (also known as drones), used for automatically sensing and balancing flying characteristics of roll, pitch and yaw.∙Accelerometers in consumer electronics devices such as game controllers (Nintendo Wii), personal media players / cell phones (Apple iPhone, various Nokia mobile phone models, various HTC PDA models)[16] and a number of Digital Cameras (various Canon Digital IXUS models). Also used in PCs to park the hard disk head when free-fall is detected, to prevent damage and data loss.∙MEMS gyroscopes used in modern cars and other applications to detect yaw; e.g., to deploy a roll over bar or trigger dynamic stability control[17]∙MEMS microphones in portable devices, e.g., mobile phones, head sets and laptops. ∙Silicon pressure sensors e.g., car tire pressure sensors, and disposable blood pressure sensors∙Displays e.g., the DMD chip in a projector based on DLP technology, which has a surface with several hundred thousand micromirrors or single micro-scanning-mirrors also called micro-scanners∙Optical switching technology, which is used for switching technology and alignment for data communications∙Bio-MEMS applications in medical and health related technologies from Lab-On-Chip to Micro Total Analysis (biosensor, chemosensor), or embedded in medical devicese.g. stents.[18]∙Interferometric modulator display (IMOD) applications in consumer electronics (primarily di splays for mobile devices), used to create interferometric modulation − reflective display technology as found in mirasol displays∙Fluid acceleration such as for micro-cooling∙Micro-scale Energy harvesting including piezoelectric,[19] electrostatic and electromagnetic micro harvesters.∙Micromachined Ultrasound Transducer including Piezoelectric Micromachined Ultrasonic Transducers[20][21] and Capacitive Micromachined Ultrasonic Transducers.2.How did MEMS impact on this application in performance ,cost, or volume production?SizeSize reduction is achieved by significantly reducing the bond padsand their required overhead, (e.g. ESD protection) from the die realestate. This is accomplished with MEMS vias that ohmically connectthe MEMS to the underlying CMOS directly. The vias shown in Figure4 are only 3 µm in diameter. In a typical comparison such as thatshown in Table 2, the integrated approach can have four times fewerbond pads than a two-chip approach.PerformanceIn sensors that respond with a change in position (e.g. accelerometer, gyroscope, pressure), the preferred method of measuring that change in applications that are sensitive to powerconsumption is to measure a changein capacitance. Approaches that measure a change in resistance or frequency tend towards higher power consumption. A second consideration in the performance of the device is the parasitic coupling of interfering signals. Whether the objective is to reduce the EMI cross section or shield from coupling to undesired signals like clock orcommunication, the MEMS via approach has a significant advantage over running long traces to bond wires between two chips. The intimate coupling of the MEMS to CMOS is inherently much easier to safeguard against interference.ConclusionThe integrated monolithic, single-chip process and structural design enables m-Cube to ship the world’s smallest integrated accelerometer in volume. It can achieve this size without sacrificing performance or features. The savings from reduced size, lower testing costs, and lower assembly costs also enable this integrated approach to be very cost effective. While this approach has some advantages in the smartphone and gaming-market, it offers an attractive path of continued innovation especially for designers of wearable and smart clothing.。

相关文档
最新文档