高考数学解题技巧大揭秘 专题19 概率、随机变量及其分布列
高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列知识点1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11=∑=ni ip3.常见的离散型随机变量的分布列 (1)两点分布若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.题型一离散型随机变量的理解【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数XB .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度XC .某超市一天中来购物的顾客数XD .小马登录QQ 找小胡聊天,设X =⎩⎪⎨⎪⎧1,小胡在线0,小胡不在线【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ;(2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数.【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6D .ξ≤5【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25【过关练习】1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度.2.某人射击的命中率为p (0<p <1),他向一目标射击,若第一次射中目标,则停止射击,射击次数的取值是( ) A .1,2,3,…,n B .1,2,3,…,n ,… C .0,1,2,…,nD .0,1,2,…,n ,…3.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________.4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.5.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ, (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.题型二 离散型随机变量分布列的求法及性质【例1】某一随机变量ξ的概率分布列如表,且m +2n =1.2,则m -n2的值为( )A.-0.2 C .0.1D .-0.1【例2】已知离散型随机变量X 的分布列如下:则P (X =10)A.239 B.2310 C.139 D.1109 【例3】已知随机变量X 只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围为________.【过关练习】1.随机变量ξ的分布列如下:则ξ为奇数的概率为2.若离散型随机变量X 的分布列为:则常数c 的值为( ) A.23或13 B.23 C.13D .13.由于电脑故障,随机变量X 的分布列中部分数据丢失,以代替,其表如下: 0.50.1根据该表可知题型三 两种特殊分布的应用【例1】某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X 表示4人中的团员人数,则P (X =3)=( ) A.421 B.921 C.621 D.521【例2】一个袋中有形状、大小完全相同的3个白球和4个红球.从中任意摸出两个球,用“X =0”表示两个球全是白球,用“X =1”表示两个球不全是白球,求X 的分布列.【过关练习】1.从装有除颜色外其余均相同的3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,随机变量ξ的概率分布列如下:则x 1,x 2,x 3的值分别为________.2.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.课后练习【补救练习】1.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( ) A .6 B .7 C .10D .252.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________.3.在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X 的分布列.【巩固练习】1.设实数x ∈R ,记随机变量ξ=⎩⎪⎨⎪⎧1,x ∈(0,+∞),0,x =0,-1,x ∈(-∞,0).则不等式1x≥1的解集所对应的ξ的值为( )A .1B .0C .-1D .1或02.若P (ξ≤n )=1-a ,P (ξ≥m )=1-b ,其中m <n ,则P (m ≤ξ≤n )等于( ) A .(1-a )(1-b ) B .1-a (1-b ) C .1-(a +b )D .1-b (1-a )3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)4.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab ,则这名运动员投中3分的概率是________5.在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场. (1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.【拔高练习】1.随机变量ξ的概率分布列为P (ξ=n )=an (n +1),n =1,2,3,4,其中a 是常数,则P ⎝⎛⎭⎫12<ξ<52的值为( ) A.23 B.34 C.45D.562.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),每个问题回答正确与否相互之间没有影响,用X 表示小王所获奖品的价值,写出X 的所有可能取值及每个值所表示的随机试验的结果.。
新高考数学一轮复习第十一章计数原理概率随机变量及其分布:离散型随机变量及其分布列pptx课件人教B版

【解析】选B.由分布列的性质知2q2+ 11 -3q+ 1 =1,解得q=1或q= 1 ,
6
6
2
又因为2q2<1,0< 11 3q <1,所以舍去q=1,
6
所以q= 1 .
2
3.(选修2-3 P47习题2-1BT2改编)设随机变量X的概率分布列为
X
1
2
3
4
P
1
m
1
1
3
4
6
则P(|X-3|=1)=________.
④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机 变量的是 ( ) A.①② B.①③ C.①④ D.①②④
2.若随机变量X的概率分布列为
X
x1
x2
P
p1
p2
且p1=
1 2
p2,则p1等于
(
)
A. 1
B. 1
C. 1
D. 1
2
3
4
6
3.某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加
n
pi
=1.
i1
2.常见的两类分布列 (1)两点分布: 若随机变量X服从两点分布,即其分布列为
X
0
1
P
_1_-_p_
p
其中p= _P_(_X_=_1_)_称为成功概率.
(2)超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=
C C k nk M NM
,
CnN
k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.
【解析】选C.因为P(X=1)= 1 ,所以A,B不正确;
【高三数学】二轮复习:专题五 第2讲 概率、随机变量及其分布

1
感染的,于是假定他受 A 和 B 感染的概率都是2.同样也假定 D 受 A,B 和 C
1
感染的概率都是3.在这种假定下,B,C,D 中恰有两人直接受 A 感染的概率是
(
)
1
A.6
1
B.3
1
C.2
2
D.3
(2)(2021·河北张家口一模)某大学进行“羽毛球”“美术”“音乐”三个社团选拔.
三局.若甲抽到的三张扑克牌分别是A1,A2,A3,乙抽到的三张扑克牌分别是
B1,B2,B3,且这六张扑克牌的大小顺序为A1>B1>B2>A2>A3>B3,则三局比赛
结束后甲得4分的概率为(
1
6
A.
1
3
B.
)
1
2
C.
2
3
D.
(2)(2021·山东泰安三模)已知大于3的素数只分布在{6n-1}和{6n+1}两数
[例2-4](2021·江苏苏州中学园区校月考)甲、乙两队进行篮球决赛,采取七
场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,
甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,
客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概
率是
.
1
次的概率为2,现有一个该型号的充电宝已经循环充电超过 500 次,则其能够
循环充电超过 1 000 次的概率是(
3
A.4
2
B.3
)
1
C.2
1
D.3
2023年高考数学(理科)一轮复习——离散型随机变量及其分布列

感悟提升
分布列性质的两个作用 (1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性. (2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机 变量在某个范围内的概率.
索引
考点二 离散型随机变量的分布列
例1 (12分)某市某超市为了回馈新老顾客,决定在2022年元旦来临之际举行 “庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活 动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小 组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色, 再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记 它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.
索引
6.(2021·郑州检测)设随机变量X的概率分布列为
X1 2 34
P
1 3
m
1 4
1 6
5 则P(|X-3|=1)=___1_2____.
解析 由13+m+14+16=1,解得 m=14, P(|X-3|=1)=P(X=2)+P(X=4)=14+16=152.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
索引
P(ξ=1)=CC13·C29 16=1386=12, P(ξ=2)=CC23·C29 06=336=112.
所以ξ的分布列为
ξ 012
P
5 12
1 2
1 12
索引
感悟提升
1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超 几何分布的特征是: (1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查 某类个体数X的概率分布. 2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古 典概型.
高中数学高考二轮复习随机变量及其分布列教案(全国专用)

1.(2014·课标Ⅱ,5,易)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.451.A设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)=P(AB)P(A)=0.60.75=45=0.8,故选A.2.(2015·湖南,18,12分,中)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X .求X 的分布列和数学期望.2.解:(1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球}, B 1={顾客抽奖1次获一等奖}, B 2={顾客抽奖1次获二等奖}, C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.3.(2014·山东,18,12分,中)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.3.解:记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.(1)记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得 P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.4.(2013·课标Ⅰ,19,12分,中)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 4.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=416×116+116×12=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为E(X)=400×1116+500×116+800×14=506.25.相互独立事件的概率是高考的常考考点,是解决复杂问题的基础,一般情况下,一些较为复杂的事件可以拆分为一些相对简单事件的和或积,这样就可以利用概率公式转化为互斥事件和独立事件的组合,通常以解答题出现,与数学期望等知识结合,难度中等.1(2015·北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)(1)甲的康复时间不少于14天→甲是A组的第5人或第6人或第7人→每人康复时间互斥→互斥事件概率加法公式 (2)甲康复时间比乙长→相互独立事件同时发生→列举每种情况→互斥事件加法求解【解析】 设事件A i 为“甲是A 组的第i 个人”,事件B j 为“乙是B 组的第j 个人”,i ,j =1,2, (7)由题意可知P (A i )=P (B j )=17,i ,j =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6. 因为P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049. (3)a =11或a =18.(2014·大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C , P (B )=0.6,P (C )=0.4, P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C )=P (A 1BC )+P (A 2B )+P (A 2B -C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38, X 的分布列为数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.相互独立事件概率的求法(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),正确区分“互斥事件”与“对立事件”.当且仅当事件A 和事件B 相互独立时,才有P (AB )=P (A )·P (B ).(2)A ,B 中至少有一个发生:A ∪B .①若A ,B 互斥:P (A ∪B )=P (A )+P (B ),否则不成立.②若A ,B 相互独立(不互斥),则概率的求法:方法一:P (A ∪B )=P (AB )+P (AB -)+P (A -B );方法二:P (A ∪B )=P (A )+P (B )-P (AB )=1-P (A -)P (B -).(3)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.条件概率在高考中经常作为解答题的一小问,或以选择题、填空题出现,难度较小,一般以直接考查公式的应用为主,分值约为5分.2(2015·湖北荆门模拟,20,12分)某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件.求: (1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【解析】 设“第一次抽到次品”为事件A ,“第二次抽到次品”为事件B ,事件A 和事件B 相互独立.依题意得:(1)第一次抽到次品的概率为P (A )=520=14. (2)第一次和第二次都抽到次品的概率为P (AB )=520×419=119.(3)方法一:在第一次抽到次品的条件下,第二次抽到次品的概率为P (B |A )=P (AB )P (A )=119÷14=419.方法二:第一次抽到次品后,还剩余产品19件,其中次品4件,故第二次抽到次品的概率为P (B )=419.(2015·湖北荆州质检,13)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 【解析】 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37. 【答案】 37,条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).注意:事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清P (AB )的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).1.(2016·湖北荆门一模,6)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.181.A 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·河北石家庄质检,9)小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有两次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第二次考试,若第二次考试通过则进入操作考试环节,第二次未通过则直接被淘汰.在操作考试环节,若第一次考试通过,则直接获得证书;若第一次未通过,则进行第二次考试,若第二次考试通过则获得证书,第二次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是( ) A.13 B.38 C.23 D.342.B 设小明本次电工考试中共参加3次考试为事件A ,小明本次电工考试中第一次理论考试没通过,第二次理论考试通过,第一次操作考试通过为事件B ,小明本次电工考试中第一次理论考试通过,第一次操作考试没通过为事件C ,则P (A )=P (B ∪C )=P (B )+P (C ),又P (B )=⎝ ⎛⎭⎪⎫1-34×34×23=18,P (C )=34×⎝ ⎛⎭⎪⎫1-23=14,所以P (A )=18+14=38.3.(2015·河南郑州一模,10)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( ) A.1127 B.1124 C.1627 D.9243.A 方法一:记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知:P (B )=42+4=23,P (B -)=1-23=13;由条件概率公式知P (A |B )=3+18+1=49,P (A |B -)=38+1=39.从而P (A )=P (AB )+P (AB -)=P (A |B )·P (B )+P (A |B -)·P (B -)=1127,选A.方法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则这种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23.此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.则从2号箱中取出红球的概率是19+827=1127.4.(2016·江苏扬州一模,4)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.4.【解析】 方法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.方法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. 【答案】 135.(2016·江苏盐城二模,10)如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.5.【解析】 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件AB -C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (AB -C )=P (A )P (B -)P (C )=12×12×12=18.【答案】 186.(2016·湖南常德一模,18,12分)某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相等的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望. 6.解:(1)甲、乙所付费用可以为10元、20元、30元, 甲、乙两人所付费用都是10元的概率为P 1=13×12=16. 甲、乙两人所付费用都是20元的概率为P 2=12×13=16.甲、乙两人所付费用都是30元的概率为P 3=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故甲、乙两人所付费用相等的概率为P =P 1+P 2+P 3=1336. (2)随机变量ξ的取值可以为20,30,40,50,60. P (ξ=20)=12×13=16. P (ξ=30)=13×13+12×12=1336.P (ξ=40)=12×13+⎝ ⎛⎭⎪⎫1-12-13×13+⎝ ⎛⎭⎪⎫1-13-12×12=1136.P (ξ=50)=12×⎝ ⎛⎭⎪⎫1-12-13+⎝ ⎛⎭⎪⎫1-13-12×13=536. P (ξ=60)=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故ξ的分布列为∴ξ的数学期望是Eξ=20×16+30×1336+40×1136+50×536+60×136=35. 7.(2016·山东德州一模,18,12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为45,34,23.(1)对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(2)该项目要求实验A ,B 各做两次,实验C 做三次,如果A 实验两次都成功则进行实验B 并获奖励10 000元,两次B 实验都成功则进行实验C 并获奖励30 000元,三次实验C 只要有两次成功,则项目研发成功并获奖励60 000元(不重复得奖).且每次实验相互独立,用X 表示技术人员所获奖励的数值,写出X 的分布列及数学期望.7.解:(1)设A ,B ,C 实验成功分别记为事件A ,B ,C 且相互独立,A ,B ,C 至少有一次实验成功为事件D .则P (D )=1-P (A -B -C -)=1-P (A -)P (B -)P (C -)=1-15×14×13=5960.(2)X 的取值为0,10 000,30 000,60 000.则P (X =0)=15+45×15=925.P (X =10 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫14+34×14=725.P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫233-C 23⎝ ⎛⎭⎪⎫232×13=775.或P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫133+23×⎝ ⎛⎭⎪⎫132+13×23×13=775. P (X =60 000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233+C 23⎝ ⎛⎭⎪⎫232×13=415.∴X 的分布列为∴X 的数学期望是 E (X )=0×925+10 000×725+30 000×775+60 000×415=21 600(元).1.(2015·湖北,4,易)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t,P(X≥t)≥P(Y≥t)1.C由正态分布密度曲线可得,μ1<μ2,σ1<σ2.结合正态曲线的概率的几何意义,对于A,∵μ1<μ2,∴P(Y≥μ2)<P(Y≥μ1);对于B,∵σ1<σ2,∴P(X≤σ2)>P(X≤σ1);对于C,D,结合图象可知,C正确.2.(2015·课标Ⅰ,4,中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3122.A记A i={投中i次},其中i=1,2,3,B表示该同学通过测试,故P(B)=P(A2∪A3)=P(A2)+P(A3)=C23×0.62×0.4+C33×0.63=0.648.3.(2015·湖南,7,中)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2 386 B.2 718C.3 413 D.4 7723.C由于曲线C为正态分布N(0,1)的密度曲线,则阴影部分面积为S=0.682 62=0.341 3,∴落入阴影部分的点的个数为10 000×0.341 31=3 413.故选C.4.(2016·四川,12,易)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.4.【解析】 由题可知:在一次试验中成功的概率P =1-14=34,而该试验是一个2次的独立重复试验,成功次数X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,∴E (X )=2×34=32.【答案】 325.(2015·广东,13,中)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.5.【解析】 由E (X )=np ,D (X )=np (1-p ),得⎩⎨⎧np =30,np (1-p )=20,解得p =13.【答案】 136.(2012·课标全国,15,中)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.6.【解析】 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.【答案】 387.(2013·山东,19,12分,中)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分,求乙队得分X 的分布列及数学期望.7.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故 P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=19, 故乙队得分X 的分布列为数学期望E (X )=0×1627+1×427+2×427+3×19=79.二项分布是一种重要的概率模型,在高考中经常出现,选择题、填空题、解答题都可能出现,解答题出现频率更高,一般会综合相互独立、互斥或对立事件等知识进行考查,难度中等.1(2014·辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能的取值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,所以X的分布列为因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.(1)读图→计算小矩形面积,得相应概率→利用独立事件的概率公式求解(2)确定X的所有可能值→运用n次独立重复试验计算公式,得相应概率→列出分布列→利用二项分布求出期望和方差(2012·天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i. (1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231+C 44⎝ ⎛⎭⎪⎫134=19.所以这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列为故E (ξ)=0×827+2×4081+4×1781=14881.n 次独立重复试验中事件A 恰好发生k 次的概率n 次独立重复试验中事件A 恰好发生k 次可看作是C k n 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A -事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k.判断某随机变量是否服从二项分布的方法(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.正态分布及其应用在近几年新课标高考中时常出现,主要考查正态曲线的性质(特别是对称性),常以选择题、填空题的形式出现,难度较小;有时也会与概率与统计结合,在解答题中考查.2(1)(2015·辽宁十校联考,7)设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数图象如图所示,则( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2(2)(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ <μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 【解析】 (1)由正态分布N (μ,σ2)的性质知,x =μ为正态分布密度函数图象的对称轴,故μ1<μ2;又σ越小,图象越高瘦,故σ1<σ2.(2)由正态分布的概率公式知P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,故P(3<ξ<6)=12[] P(-6<ξ<6)-P(-3<ξ<3)=12(95.44%-68.26%)=13.59%.【答案】(1)A(2)B1.(2015·广东佛山一模,7)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=()A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 51.B由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=1-P(2≤X≤4)2=0.5-12×0.682 6=0.158 7,故选B.2.(2016·江西八校联考,6)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.22.B由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.,利用正态曲线的对称性求概率的方法(1)解题的关键是利用对称轴x=μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时,可借助图形判断.(2)对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).(3)对于特殊区间求概率一定要掌握服从N(μ,σ2)的随机变量X在三个特殊区间的取值概率,将所求问题向P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)转化,然后利用特定值求出相应概率.同时,要充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质.1.(2016·贵州八校联考,3)设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()A .1 B.53 C .5 D .91.B 因为P (ξ>a +2)=P (ξ<2a -3),所以由正态分布的对称性知,(a +2)+(2a -3)2=2,解得a =53.2.(2015·河南郑州二模,9)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.429 D.2272.A 由独立重复试验的概率公式,知所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49. 3.(2015·福建福州模拟,5)已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.9773.C ∵μ=0,正态曲线关于μ=0对称, ∴P (ξ>2)=P (ξ<-2)=0.023,∴P (-2≤ξ≤2)=1-2×0.023=0.954,故选C.4.(2015·豫北六校联考,10)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值分别为( ) A .60,34 B .60,14 C .50,34 D .50,144.B 由ξ~B (n ,p ),得E (ξ)=np =15,D (ξ)=np (1-p )=454,则p =14,n =60. 5.(2016·山西四校联考,14)设随机变量X ~N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________.5.【解析】 因为P (X >m )=0.3,X ~N (3,σ2),所以m >3,P (X <6-m )=P (X <3-(m -3))=P (X >m )=0.3,所以P (X >6-m )=1-P (X <6-m )=0.7.【答案】 0.76.(2016·河北唐山一模,18,12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X (单位:元),求X 的分布列和期望.6.解:(1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49. (2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝ ⎛⎭⎪⎫233=827,P (X =5)=C 12×13×⎝ ⎛⎭⎪⎫232=827,P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627=29.P (X =15)=C 12×⎝ ⎛⎭⎪⎫132×23=427, P (X =20)=⎝ ⎛⎭⎪⎫133=127.所以X 的分布列为E (X )=0×827+5×827+10×29+15×427+20×127=203(元).7.(2016·江西南昌一模,18,12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.7.解:(1)P(80≤X<85)=P(75<X≤80)=0.5-P(X≤75)=0.2,P(85≤X<95)=0.5-0.2-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是E(ξ)=3×0.4=1.2(人).1.(2013·广东,4,易)已知离散型随机变量X的分布列为则X的数学期望E(X)=()A.32B.2 C.52D.31.A由数学期望公式得E(X)=1×35+2×310+3×110=32.2.(2014·浙江,9,难)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n 个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(1)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2) 2.A 随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=n m +n +2m m +n =2m +nm +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2mC 2m +n =3m +n m +n,所以E (ξ1)<E (ξ2).因为p 1=m m +n +n m +n ·12=2m +n 2(m +n ),p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2nC 2m +n ·13=3m +n 3(m +n ),p 1-p 2=n 6(m +n )>0,所以p 1>p 2.思路点拨:列出随机变量ξ1,ξ2的分布列,计算期望值并比较大小;利用分步计数原理计算p 1,p 2并比较大小.3.(2014·浙江,12,易)随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.3.【解析】 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝ ⎛⎭⎪⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.【答案】 254.(2016·课标Ⅰ,19,12分,中)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需要更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?4.解:由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.5.(2016·天津,16,13分,中)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.5.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为1 3.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望EX=0×415+1×715+2×415=1.6.(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮。
高考数学复习专题——排列组合-概率与统计(教师版)

一、排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑〞法解决,先将甲乙二人看作一个元素与其他五人进展排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑〞法解决,共有种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空〞法,所以甲、乙二人不相邻的排法总数应为:种 .评注:假设个人站成一排,其中个人不相邻,可用“插空〞法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比拟难,或分类不清或多种时,可考虑用“排除法〞,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年高考题) 1名教师和4名获奖学生排成一排照像留念,假设教师不排在两端,那么共有不同的排法种.解:先考虑特殊元素〔教师〕的排法,因教师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.〔2000年全国高考题〕乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进展分类讨论,最后总计。
2019年高考数学总复习精品课件:第十四单元第一节_离散型随机变量及其概率分布-PPT文档资料
5
(1)求常数a的值;(2)求Pξ≥
3;(3)求P(
<ξ1 <
).
7
5
10
10
解析: ξ的分布列为
ξ
1
2
3
4
5
5
5
5
5
5
P
a
2a 3a 4a 5a
(1)由a+2a+3a+4a+5a=1,得a1 = .
(2)P(ξ≥
)=3 P(ξ=
)+P3(ξ=
15 )+P(ξ4 =1)
5
5
= 3 4 5 4
P(ξ= x)1=
5 ,P (1ξ= )= 10 2
,x 2
1 10
P(ξ= x)=3 4 , 2
故ξ的概率分1布0 为5
ξ
x1
x2
x3
P
1
1
2
2
10
5
题型三 超几何分布 【例3】某校高三年级某班的数学课外活动小组中有6名男生, 4名女生,从中选出4人参加数学竞赛考试,用X表示其中的 男生人数,求X的概率分布.
(3)因为甲先取,所以甲只有可能在第1次,第3次和第5次取球, 记“甲取到白球”的事件为A, 则P(A)=P(“X=1”或“X=3”或“X=5”)10′ 因为事件“X=1”、“X=3”、“X=5”两两互斥, 所以P(A)=P(X=1)+P(X=3)+P(X=5) = 3 6 1 … 2…2……………………………………14′
X 0~6 7
8
9 10
现进行两P次射击0,以该0运.2动员0两.3次射击0.中3 最高0环.2数作为他的成 绩,记为ξ. (1)求该运动员两次都命中7环的概率; (2)求ξ的分布列.
高考数学选修知识讲解离散型随机变量及其分布列(理)
离散型随机变量及其分布列编稿:赵雷 审稿:李霞【学习目标】1.了解离散型随机变量的概念.2.理解取有限个值的离散型随机变量及其分布列的概念.3.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题.4. 理解两个特殊的分布列:“两点分布”和“超几何分布”。
【要点梳理】要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a .试验可以在相同的情形下重复进行.B .试验的所有可能结果是明确可知的,并且不止一个.c .每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ξ,η,ζ)等表示。
要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。
例如,任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数量性质,但仍可以用数量来表示它,比如,我们用ξ来表示这个随机试验中出现正面向上的次数,则ξ=0,表示试验结果为反面向上,ξ=1,表示试验结果为正面向上。
(2)随机变量实质是将随机试验的结果数量化 。
3.离散型随机变量的定义如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….4. 随机变量的分类随机变量有以下两种:(1)离散型随机变量:(2)连续型随机变量: 如果随机变量可以取其一区间内的一切值,这样的随机变量叫做连续型随机变量.要点诠释:离散型随机变量和连续型随机变量的区别:离散型随机变量,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值按一定次序一一列出.连续性随机变量可取某一区间内的一切值,我们无法将其中的值一一列举.例如,抛掷一枚骰子,可能出现的点数就是一个离散型随机变量;某人早晨在出租车站等出租车的时间(单位:秒)就不是一个离散型随机变量.5. 若是随机变量,其中a,b 是常数,则也是随机变量,并且不改变其属性(离散型、连续型)。
高考数学一轮专项复习ppt课件-离散型随机变量的分布列、均值与方差(通用版)
A.3632 B.3625 C.3613 D.3523
答案
高考一轮总复习•数学
第30页
(2)为了加强环保知识的宣传,某学校组织了垃圾分类知识竞赛活动.活动设置了四个 箱子,分别写有“厨余垃圾”“有害垃圾”“可回收物”“其他垃圾”;另有卡片若干张,
每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取 20 张,按照自己 的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得 5 分,投放错误得 0 分.从所有参赛选手中随机抽取 20 人,将他们的得分按照[0,20],(20,40],(40,60],(60,80], (80,100]分组,绘成如图所示的频率分布直方图:
高考一轮总复习•数学
第29页
对点练 2(1)某电话亭中装有一部公用电话,在观察使用这部电话的人数时,设在某一 时刻,有 n 个人正在使用电话或等待使用的概率为 P(n),P(n)与时刻 t 无关,统计得到: P(n)=12n·P00≤n≤5, 那么在某一时刻,这个电话亭一个人也没有的概率 P(0)的值
则 D(X)=0-122×12+1-122×12=14.
第14页
高考一轮总复习•数学
第15页
重难题型 全线突破
高考一轮总复习•数学
第16页
题型
随机变量的概念
典例 1 写出下列随机变量的可能取值,并说明随机变量所表示的意义. (1)一个袋中装有 2 个白球和 5 个黑球,从中任取 3 个,其中所含白球的个数 X; (2)投掷两枚均匀的骰子,所得点数之和为
第26页
高考一轮总复习•数学
P(ξ=6)=P(A3B3)=12×15=110.
可得随机变量 ξ 的分布列为
写出分布列后一定要验证概率和是不是 1.
随机变量及其分布列.版块二.几类典型的随机分布3.教师版
1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列将离散型随机变量X 所有可能的取值x 与该取值对应的概率p (1,2,,)i n =列表表示:X 的分布列.2.几类典型的随机分布⑴两点分布如果随机变量X 的分布列为其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.两点分布又称01-布又称为伯努利分布.⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X知识内容二项分布取不同值时的概率()P X m =,从而列出X 的分布列.⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)k k n kn n P k p p -=-(0,1,2,,)k n =. 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =.于是得到由式0111()C CCC nn n k kn k nn nnn nq p pq pq p q p q--+=++++ 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,; 4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nME X N=,2()()()(1)n N n N M M D X N N --=-.4.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.5.条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).二项分布的概率计算【例1】 已知随机变量ξ服从二项分布,1~(4)3B ξ,,则(2)P ξ=等于 .【考点】二项分布 【难度】1星 【题型】填空 【关键字】无【解析】2224118C ()(1)3327-=【答案】827;【例2】 甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为( )A .827B .6481C .49D .89【考点】二项分布 【难度】2星 【题型】选择 【关键字】无【解析】甲3:1获胜,表示只比赛了4局,且第4局为甲获胜,前面3局中甲胜了两局,乙胜了一局,因此所求概率为2232128C ()33327⨯⨯=. 【答案】A ;【例3】 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)【考点】二项分布 【难度】2星典例分析【关键字】2007年,湖北高考【解析】37310101115(3)C 122128P ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭ 【答案】15128;【例4】 某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【考点】二项分布 【难度】2星 【题型】填空 【关键字】无【解析】他能及格则要解对4道题中解对3道或4道:解对3道的概率为334()C 0.40.6P A =⋅⋅,解对4道的概率为444()C 0.4P B =,且A 与B 互斥, 他能及格的概率为334444()C 0.40.6C 0.40.18P A B +=⋅⋅+⋅≈.【答案】0.18;【例5】 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)【考点】二项分布 【难度】2星 【题型】填空【关键字】2006年,湖北高考【解析】设发热人数为X ,则~(50.8)X B ,,33244155555(3)(345)C (0.8)(0.2)C (0.8)(0.2)C (0.8)0.94P X P X ===++≈≥,,.【答案】0.94;【例6】 从一批由9件正品,3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).【考点】二项分布 【难度】2星 【题型】解答 【关键字】无【答案】有放回地抽取5件,视为5重Bernoulli 实验.设A 表示“一次实验中抽到次品”,31()124P A ==.记X 为抽到的次品数,则1~(5)4X B ,,于是223511(2)C ()(1)0.2644P X ==-=.【例7】 一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( )A .0.1536B .0.1808C .0.5632D .0.9728【考点】二项分布 【难度】2星 【题型】选择 【关键字】无【解析】所有可能的情况是有0,1,2台机床需要有工人照看,于是()()()()()4322012444C 0.8C 10.80.8C 10.80.80.9728+-+-=亦可考虑反面的情形求解.【答案】D;【例8】 设在4次独立重复试验中,事件A 发生的概率相同,若已知事件A 至少发生一次的概率等于6581,求事件A 在一次试验中发生的概率. 【考点】二项分布 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】设所求概率为p ,X 为A 在4次试验中发生的次数,则~(4)X B p ,,依题意04465(1)1(0)1C (1)81P X P X p ==-==--≥,解出13p =.【例9】 我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l 枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【考点】二项分布【题型】解答 【关键字】无 【解析】略【答案】设X 表示击中敌舰的鱼雷数,则~(80.6)X B ,,敌舰被击沉的概率为00811788(2)1(0)(1)1[0.60.40.60.4]0.99P X P X P X C C =-=-==-⋅⋅+⋅⋅=≥.【例10】 某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.【考点】二项分布 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】ξ的取值分别为0、1、2ξ=0表示抽取两件均为正品,022(0)C (10.05)0.9025P ξ==-=.ξ=1表示抽取一件正品一件次品,12(1)C (10.05)0.050.095P ξ==-⋅=.ξ=2表示抽取两件均为次品,222(2)C (0.05)0.0025P ξ===.∴ξ的概率分布列为:(1)0.0950.00250.0975P ξ=+=≥.【例11】 某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求: ⑴ 该公司的资助总额为零的概率;⑵ 该公司的资助总额超过15万元的概率.【考点】二项分布 【难度】2星 【题型】解答【关键字】2009年,江西高考【答案】⑴ 设A 表示资助总额为零这个事件,则611()264P A ⎛⎫== ⎪⎝⎭.⑵ 设B 表示资助总额超过15万元这个事件,则42564566661111111()C C C 2222232P B ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【例12】 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴ 求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵ 求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【考点】二项分布 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】⑴ 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.3()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.⑵ 记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.【例13】 某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率; ⑵求家具城至少返还该顾客现金200元的概率.【考点】二项分布【题型】解答 【关键字】无 【解析】略【答案】⑴家具城恰好返还给该顾客现金200元,即该顾客的三张奖券有且只有一张中奖.所求概率为1231448C ()()55125p =⋅=. ⑵设家具城至少返还给该顾客现金200元为事件A ,这位顾客的三张奖券有且只有一张中奖为事件1A ,这位顾客有且只有两张中奖为事件2A ,这位顾客有且只有三张中奖为事件3A ,则123A A A A =++,且123A A A ,,是互斥事件.123()()()()P A P A P A P A =++12223333314141C ()()C ()()C ()55555=⋅+⋅+48121125125125=++61125=. 也可以用间接法求:3461()1()1()5125P A P A =-=-=.【例14】 某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率; ⑵两种大树各成活1株的概率.【考点】二项分布 【难度】3星 【题型】解答【关键字】2009年,重庆高考 【解析】略【答案】设k A 表示第k 株甲种大树成活,1k =,2.l B 表示第l 株乙种大树成活,1l =,2.则1A ,2A ,1B ,2B 独立,且125()()6P A P A ==,124()()5P B P B ==. ⑴至少有1株成活的概率为()12121P A A B B -⋅⋅⋅12121()()()()P A P A P B P B =-⋅⋅⋅2211899165900⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.⑵由独立重复试验中事件发生的概率公式知,所求概率为11225141108804C C 6655362590045P ⎛⎫⎛⎫⎛⎫⎛⎫=⋅=⨯== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【例15】 一个口袋中装有n 个红球(5n ≥且*n ∈N )和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n 表示一次摸奖中奖的概率p ;⑵若5n =,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n 取多少时,P 最大?【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】⑴一次摸奖从5n +个球中任选两个,有25C n +种,其中两球不同色有115C C 5n n =种, 一次摸奖中奖的概率25510C (4)(5)n n np n n +==++. ⑵若5n =,一次摸奖中奖的概率59p =,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是123380(1)C (1)243P p p =-=. ⑶设每次摸奖中奖的概率为p ,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为123233(1)C (1)363(01)P P p p p p p p ==-=-+<<求导得291233(1)(31)P p p p p '=-+=--不难知道在1(0)3,上P 为增函数,在1(1)3,上P 为减函数,当13p =时P 取得最大值. 由101(4)(5)3n n n =++,解得20n =.【例16】 袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是13,从B 中摸出一个红球的概率为p . ⑴从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B ,两个袋子中的球数之比为1:2,将A B ,中的球装在一起后,从中摸出一个红球的概率是25,求p 的值. 【考点】二项分布【难度】4星 【题型】解答【关键字】2005年,浙江高考 【解析】略【答案】⑴恰好摸5次停止,则第5次摸到的是红球,前面4次独立重复试验摸到两次红球,所求概率为:22241218C ()()33381⨯= 随机变量ξ的取值为0123,,,.由n 次独立重复试验概率公式()C (1)k kn k n n P k p p -=-,得55132(0)C (1)3243P ξ==⨯-=,1451180(1)C (1)33243P ξ==⨯⨯-=, 22351180(2)C ()(1)33243P ξ==⨯⨯-=,3280217(3)124381P ξ+⨯==-=.⑵设袋子A 中有m 个球,则袋子B 中有2m 个球,且A 中红球数为13m ,B 中红球数为2mp ,由122335m mpm +=,解得1330p =.【例17】 设飞机A 有两个发动机,飞机B 有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p 是t 的函数1t p e λ-=-,其中t 为发动机启动后所经历的时间,λ为正的常数,试讨论飞机A 与飞机B 哪一个安全?(这里不考虑其它故障). 【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】当A 的两个发动机都有故障时,才不能安全飞行,A 安全的概率A P 为22221C 1A P p p =-=-.当B 的三或四个发动机有故障时,才不能安全飞行,B 安全的概率为:443343441[C C (1)]134B P p p p p p =-+-=+-,432234(1)(31)A B P P p p p p p p -=-+-=---. ∵01p <<,∴2100p p -<>,当0A B P P ->即13p >时,13131ln 322t t e e t λλλ-->⇒>⇒>,此时A 比较安全;当0A B P P -=即13p =时,13ln 2t λ=,此时A 与B 一样安全;当0A B P P -<即103p <<时,13ln 2t λ<,此时B 比较安全.【例18】 假设飞机的每一台发动机在飞行中的故障率都是1P -,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P 而言,四发动机飞机比二发动机飞机更安全?【考点】二项分布 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】分析:4台发动机中要有2台(或3、4台)正常运行,而这2台可以是任意的.故属n 次独立重复试验问题.2台发动机的情形同理.建立不等式求解. 解:四发动机飞机成功飞行的概率为22233144444C (1)C (1)C P P P P P ⋅⋅-+⋅⋅-+⋅22346(1)4(1)P P P P P =-+-+ 二发动机飞机成功飞行的概率为122222C (1)C 2(1)P P P P P P ⋅⋅-+=-+要使四发动机飞机比二发动机飞机安全,只要223426(1)4(1)2(1)P P P P P P P P -+-+>-+2(1)(32)0P P P ⇒-->,解得213P <<. 答:当发动机不出故障的概率大于23时,四发动机飞机比二发动机飞机安全.注:计算飞机成功飞行的概率时可从反面考虑:四发动机为004113441C (1)C (1)P P P P -⋅⋅--⋅⋅-,二发动机为00221C (1)P P -⋅⋅-,这样更简单.【例19】 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.【考点】二项分布 【难度】4星【关键字】无 【解析】略【答案】⑴1~(6)3B ξ,,ξ的分布列为6612()C ()()(016)33k k kP k k ξ-===,,,⑵由于η表示该学生首次停车时经过的路口数,η取值为012345,,,,,.其中k η=表示前k 个路口没遇红灯,但在1k +个路口遇红灯,故21()()()(015)33k P k k η===,,,,而6η=表示一路上没遇红灯,62(6)()3P η==;⑶62665(1)1(0)1()0.91223729P P ξξ=-==-=≈≥.【例20】 一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ij为硬币在5次抛掷中有3次正面向上的概率,求i j +.【考点】二项分布 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】设正面向上的概率为P ,依题意:()()4312255C 1C 1P P P P -=-12P P ⇒-=,解得:13P =,硬币在5次抛掷中有3次正面向上的概率为()322333551140C 1C 133243P P ⎛⎫⎛⎫-=-=⎪⎪⎝⎭⎝⎭, 故283i j +=.【例21】 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【考点】二项分布 【难度】3星 【题型】解答【关键字】2007年,江苏高考【答案】设X 为5次预报中预测准确的次数,则~(50.8)X B ,.⑴()()2325(2)0.810.8100.640.0080.05P X C ==-=⨯⨯≈⑵145(2)1(0)(1)10.8(10.8)10.00640.99P X P X P X C =-=-==-⨯-=-≈≥ ⑶设Y 为4次预报中预测准确的次数,则~(40.8)Y B ,,所求概率为134(1)0.80.8(10.8)0.80.02P Y C =⨯=⨯-⨯≈.【例22】 某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,求至少有两位乘客在20层下的概率.【考点】二项分布 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】5位乘客在某一层楼下可看作5次独立重复试验,用X 表示在第20层下的人数,则1~(5)3X B ,,至少有两位乘客在20层下的概率为:51455111131(2)1(0)(1)1C (1)C (1)333243P X P X P X =-=-==---⋅⋅-=≥.【例23】 10个球中有一个红球,有放回的抽取,每次取一球,求直到第n 次才取得()k k n ≤次红球的概率.【考点】二项分布 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】设A 表示“取出一球为红球”的事件,易知1()0.110P A ==. 由题意第n 次取得的是红球,设X 为前面1n -次取得红球的次数,则~(10.1)X B n -,.于是111(1)C (0.1)(10.1)k k n k n P X k ----=-=-.题目要求的概率为11(1)0.1C (0.1)(0.9)k k n kn P X k ---=-⋅=.【例24】 某车间为保证设备正常工作,要配备适量的维修工.设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01.试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】⑴设X 表示20台设备中发生故障的设备的数目,则~(200.01)X B ,,不能及时维修的概率为0201192020(2)1(0)(1)1C (10.01)C (0.01)(10.01)0.01686P X P X P X =-=-==---⋅⋅-≈≥⑵设Y 表示80台设备中发生故障的设备的数目,则~(800.01)Y B ,,不能及时维修的概率为(4)1(0)(1)(2)(3)P Y P Y P Y P Y P Y =-=-=-=-=≥08017922783377808080801C (10.01)C (0.01)(10.01)C (0.01)(10.01)C (0.01)(10.01)=--------0.00866≈比较⑴⑵的结果知⑵的效率较高.【例25】 A B ,是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效.若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.观察3个试验组,求至少有1个甲类组的概率.(结果保留四位有效数字)【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】设i A 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,012i =,,.i B 表示事件“一个试验组中,服用B 有效的小鼠有i 只”,012i =,,依题意有:112124()C 339P A =⋅⋅=,2224()339P A =⋅=,0111()224P B =⋅=,112111()C 222P B =⋅⋅=. 于是试验组是甲类组的概率为:102121414144()()()4949299p P B A P B A P B A =⋅+⋅+⋅=⋅+⋅+⋅=. 设X 表示3个试验组中甲类组的个数,则4~(3)9X B ,.334604(1)1(0)1C (1)0.82859729P X P X =-==--=≈≥.【例26】 已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】设甲、乙投篮3次命中的次数分别为X ,Y ,则~(30.9)~(30.8)X B Y B ,,,.所求概率为()[(3)(2)(1)(0)]()P X Y P X P X P X P X P X Y >==+=+=+=>(3)()(2)()(1)()(0)()P X P X Y P X P X Y P X P X Y P X P X Y ==>+=>+=>+=> (3)[(0)(1)(2)](2)[(0)(1)](1)(0)P X P Y P Y P Y P X P Y P Y P X P Y ===+=+=+==+=+==330031122213333C (0.9)[C (0.8)(0.2)C (0.8)(0.2)C (0.8)(0.2)]=++2200311211200333333C (0.9)(0.1)[C (0.8)(0.2)C (0.8)(0.2)]C (0.9)(0.1)[C (0.8)(0.2)]+++0.38≈.【例27】 若甲、乙投篮的命中率都是0.5p =,求投篮n 次甲胜乙的概率.(1n n ∈N ,≥)【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】方法一:同样设甲、乙投篮n 次命中的次数分别为X ,Y ,则~()X Y B n p ,,.按照例题中的思路有:10()()()nk k i P X Y P X k P Y i -==>==⋅=∑∑…………①不难知道所求概率也可以“Y ”为主:01()()()nnk i k P Y X P Y k P X i ==+<==⋅=∑∑…………②X Y ,的概率分布是相同的,()()C (1)(0)k k n kn P X k P Y k p p k n -====-≤≤. ①②相加得:2()()()()[1()]nnk i kk P X Y P X k P X i P X k P X k =≠=>==⋅===-=∑∑∑21[()]n k P X k ==-=∑21[C (1)]nkkn k nk p p -==--∑2201(C )nnk n k p==-∑221C (0.5)n nn pp =-= 故2211()C (0.5)22n nn P X Y pp >=-=. 方法二:由对称性知()()P X Y P Y X >=>,于是有2()()()1()1()()nk P X Y P X Y P X Y P X Y P X k P Y k =>=>+<=-==-==∑201[()]nk P X k ==-=∑221C (0.5)n nn pp =-=.【例28】 省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x 饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x 饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x 饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x 饮料的概率(精确到0.01).【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】⑴记“第一瓶x 饮料合格”为事件1A ,“第二瓶x 饮料合格”为事件2A ,1A 与2A 是相互独立事件,“甲喝2瓶x 饮料都合格就是事件12A A ,同时发生,根据相互独立事件的概率乘法公式得:1212()()()0.64P A A P A P A ⋅=⋅=.⑵记“一人喝合格的2瓶x 饮料”为事件A ,三人喝6瓶x 饮料且限定每人2瓶相当于3次独立重复试验.根据n 次独立重复试验中事件A 发生k 次的概率公式,3人喝6瓶x 饮料只有1人喝2瓶不合格的概率:2232233(2)C 0.64(10.64)30.640.360.44P -=⨯⨯-=⨯⨯≈.【例29】 在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率; ⑶至少答对2道题的概率.【考点】二项分布 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】由已知可知每个题解答正确的概率为12,并且每次解答是相互独立事件.⑴ 全部正确的概率是666611(6)C 264P ⎛⎫=⋅= ⎪⎝⎭.⑵“正确解答不少于4道”即“有4道题、5道题或6道题正确”,故所求概率为666(4)(5)(6)P P P ++42516456666111111C 1C 1C 1222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅-+⋅⋅-+⋅⋅- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1132=. ⑶“至少答对2道题”的对立事件为“有0道题或1道题正确”,故所求概率为661(0)(1)P P --61501661111C C 222⎛⎫⎛⎫⎛⎫=-⋅-⋅⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭157(6416)6464=--=.【例30】 某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?【考点】二项分布 【难度】4星 【题型】解答 【关键字】无 【解析】略【答案】分析:进行几场比赛相当于进行几次独立重复试验,可以用n 次独立重复试验中某事件发生k 次的概率方式解题.解:记一场比赛系队获胜为事件A ,事件A 的对立事件为校队获胜,所以()10.60.4P A =-=用方案⑴,A 发生两次为系队胜,A 发生3次也为系队胜,所以系队胜的概率为:22333333(2)(3)C 0.40.6C 0.40.352P P +=⋅⋅+⋅≈ 用方案⑵,A 发生3、4、5次为系队胜. 所以系队胜的概率为:3224555555(3)(4)(5)C0.P P P ++=⋅⋅+⋅⋅+用方案⑶,A 发生4、5、6、7次为系队胜. 所以系队胜的概率为:77(4)(5)(6)(7)P P P P +++4435527777C 0.40.6C 0.4=⋅⋅+⋅⋅+⋅⋅+比较可以看出,双方各出3个人对系队更有利,获胜概率为0.352.评:实际上,对弱队而言,比赛场数越少,对弱队越有利,侥幸取胜的可能性越大.奥运会上乒乓球比赛从21分制改成11分制对我们这个乒乓强国来说,是不利的;但从三局改为七局对我们来说是有利的.二项分布的期望与方差【例31】 已知(100.8)X B ,~,求()E X 与()D X .【考点】二项分布 【难度】1星 【题型】解答 【关键字】无 【解析】略【答案】由二项分布的期望与方差公式得()8()(1) 1.6E X np D X np p ===-=,.【例32】 已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( )A .10和0.8B .20和0.4C .10和0.2D .100和0.8【考点】二项分布 【难度】2星 【题型】选择 【关键字】无【解析】()8()(1) 1.6E X np D X np p ===-=,,解得0.810p n ==,. 【答案】A ;【例33】已知随机变量X服从参数为60.4,的二项分布,则它的期望()E X=,方差()D X=.【考点】二项分布【难度】2星【题型】填空【关键字】无【解析】略【答案】2.4 1.44,.【例34】已知随机变量X服从二项分布,且() 2.4Eξ=,() 1.44Dξ=,则二项分布的参数n,p的值分别为,.【考点】二项分布【难度】2星【题型】填空【关键字】无【解析】略【答案】60.4,.【例35】一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是.【考点】二项分布【难度】2星【题型】填空【关键字】无【解析】二项分布,74 2.810⨯=.【答案】2.8;【例36】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()【考点】二项分布 【难度】3星 【题型】选择 【关键字】无【解析】抛掷一次,4枚硬币正好出现2枚正面向上,2枚反面向上的概率是244C 328=,故3~(80)8B ξ,,因此数学期望为380308⨯=,选C .【答案】C ;【例37】 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是( )A .(1)np p -B .npC .nD .(1)p p -【考点】二项分布 【难度】2星 【题型】选择 【关键字】无 【解析】略 【答案】B ;【例38】 一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)【考点】二项分布 【难度】3星 【题型】填空 【关键字】无【解析】由题意知,此问题满足参数为32,5的二项分布,故23655E ⨯==. 【答案】65;【例39】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十九 概率、随机变量及其分布列 1.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上 顾客 数(人) x 30 25 y 10
结算时间 (分钟/人) 1 2 3
已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率) 答案:解 (1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得
P(X=1)=15100=320,P(X==30100=310,P(X=2)=25100=14,P(X==20100=15,P(X=3)=
10
100
=110. X的分布列为 X 1 2 3
P 320 310 14 15 110
X的数学期望为
E(X)=1×320+×310+2×14+×15+3×110=.
(2)记A为事件“该顾客结算前的等候时间不超过分钟”,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则 P(A)=P(X1=1且X2=1)+P(X1=1且X2=+P(X1=且X2=1).
由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以
P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=+P(X1=×P(X2=1)=320×320+320×
3
10+310×320=980. 故该顾客结算前的等候时间不超过分钟的概率为980.
结合事件的互斥性、对立性、独立性以及古典概型,主要以解答题的方式考查离散型随机变量分布列、期望和方差的求解及其实际应用.
本部分复习要从整体上,知识的相关关系上进行.离散型随机变量问题的核心是概率计算,而概率计算又以事件的独立性、互斥性、对立性为核心,在解题中要充分分析事件之间的关系.
必备知识 互斥事件有一个发生的概率 若A、B是互斥事件,则P(A+B)=P(A)+P(B),P(A)+P(A )=1. 相互独立事件与n次独立重复试验 (1)若 A1,A2,…,An是相互独立事件,则P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An). (2)如果在一次试验中事件A发生的概率为p,事件A不发生的概率为1-p,那么在n次独立重复试验中事件A发生k次的概率为: Pn(k)=Cknpk(1-p)n-k.
离散型随机变量的分布列、期望与方差 (1)主干知识:随机变量的可能取值,分布列,期望,方差,二项分布,超几何分布,正态分布. (2)基本公式:①E(ξ)=x1p1+x2p2+…+xnpn+…; ②D(ξ)=(x1-E(ξ))2p1+(x2-E(ξ))2p2+…+(xn-E(ξ))2pn+…; ③E(aξ+b)=aE(ξ)+b,D(aξ+b)=a2D(ξ); ④二项分布:ξ~B(n,p),则P(ξ=k)=Cknpk(1-p)n-k,E(ξ)=np,D(ξ)=np(1-p).
正态分布 (1)若X服从参数为μ和σ2的正态分布,则可表示为X~N(μ,σ2). (2)N(μ,σ2)的分布密度曲线关于直线x=μ对称,该曲线与x轴所围成的图形的面积为1. (3)当X~N(μ,σ2)时,=P(μ-σ<X≤μ+σ),=P(μ-2σ<X≤μ+2σ),=P(μ-3σ<X≤μ+3σ). 以上三个概率值具有重要的应用,要熟记,不可混用. 必备方法 1.在解含有相互独立事件的概率题时,首先把所求的随机事件分拆成若干个互斥事件的和,其次将分拆后的每个事件分拆为若干个相互独立事件的乘积,这两个事情做好了,问题的思路就清晰了,接下来就是按照相关的概率值进行计算的问题了,如果某些相互独立事件符合独立重复试验概型,就把这部分归结为用独立重复试验概型,用独立重复试验概型的概率计算公式解答. 2.相当一类概率应用题都是由掷硬币、掷骰子、摸球等概率模型赋予实际背景后得出来的,我们在解题时就要把实际问题再还原为我们常见的一些概率模型,这就要根据问题的具体情况去分析,对照常见的概率模型,把不影响问题本质的因素去除,抓住问题的本质. 3.求解一般的随机变量的期望和方差的基本方法是:先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,根据数学期望和方差的公式计算. 互斥事件与相互独立事件的概率 互斥事件、相互独立事件的概率在求随机变量的分布列、期望、方差往往起工具性作用,试题多来源于生活,考查阅读理解能力及对概率知识的应用能力. 【例1】某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下: 办理业务所需的时间/分 1 2 3 4 5 频率 从第一个顾客开始办理业务时计时. (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. [审题视点]
[听课记录] [审题视点] (1)第三个顾客恰好等待4分钟的情况有三种可能:第一个顾客需1分钟,第二个顾客需3分钟;第一个顾客需3分钟,第二个顾客需1分钟;两个顾客都需要2分钟.(2)①找出第2分钟末已办理完业务的顾客人数X的所有可能取值,其取值分别为0,1,2;②求出分布列,得出期望,本问最难的是分布列的求解. 解 设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下: Y 1 2 3 4 5
P (1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则事件A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟. 所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=×+×+×=. (2)法一 X所有可能的取值为0,1,2. X=0对应第一个顾客办理业务所需的时间超过2分钟,
所以P(X=0)=P(Y>2)=; X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间
超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=×+=; X=2对应两个顾客办理业务所需的时间均为1分钟,
所以P(X=2)=P(Y=1)P(Y=1)=×=; 所以X的分布列为 X 0 1 2
P E(X)=0×+1×+2×=.
法二 X的所有可能取值为0,1,2. X=0对应第一个顾客办理业务所需的时间超过2分钟,
所以P(X=0)=P(Y>2)=; X=2对应两个顾客办理业务所需的时间均为1分钟,
所以P(X=2)=P(Y=1)P(Y=1)=×=; P(X=1)=1-P(X=0)-P(X=2)=;
所以X的分布列为 X 0 1 2
P E(X)=0×+1×+2×=.
在概率的计算中,一般是根据随机事件的含义,把随机事件分成几个互斥事件的和,每个小的事件再分为几个相互独立事件的乘积,然后根据相应的概率公式进行计算. 【突破训练1】 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局. (1)求再赛2局结束这次比赛的概率; (2)求甲获得这次比赛胜利的概率. 解 记Ai表示事件:第i局甲获胜,i=3,4,5, Bj表示事件:第j局乙获胜,j=3,4.
(1)记A表示事件:再赛2局结束比赛. A=A3·A4+B3·B4.
由于各局比赛结果相互独立,故 P(A)=P(A3·A4+B3·B4)=P(A3·A4)+P(B3·B4)
=P(A3)P(A4)+P(B3)P(B4)=×+×=. (2)记B表示事件:甲获得这次比赛的胜利. 因前2局中,甲、乙各胜1局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3·A4+B3·A4·A5+A3·B4·A5, 由于各局比赛结果相互独立,故 P(B)=P(A3·A4)+P(B3·A4·A5)+P(A3·B4·A5)
=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)