高中一年级数学知识点

合集下载

高中一年级数学知识点

高中一年级数学知识点

高中一年级数学知识点1. 代数基础知识2. 二元一次方程3. 三角函数基础4. 平面坐标系与直线方程5. 概率基础6. 进制与逻辑运算7. 函数基础知识8. 数列基础知识9. 解析几何基础10. 微积分初步代数基础知识:数学中的代数是指用字母等表示数,然后通过相关的数学运算进行计算,代数基础知识主要包括:整式展开、平方公式、配方法和分式的简化和运算等。

二元一次方程:二元一次方程是指包含两个未知数的一元一次方程,学生需要学会如何推导解二元一次方程,求解方程组,并利用二元一次方程解决实际问题。

三角函数基础:三角函数基础包括正弦、余弦、正切等基础概念的介绍,并学会如何利用三角函数进行计算。

平面坐标系与直线方程:平面坐标系是用于描述平面上点的位置的数学工具,学习时需要掌握平面坐标系的构成、直线方程的求解及其相关性质。

概率基础:概率是统计学中的一个重要概念,学习时需要了解事件、样本空间和概率等基本概念,以及各种计算方法和名词的定义。

进制与逻辑运算:进制是指数值表示方式的进位规则。

学生需要理解二进制、八进制、十六进制的概念和相互转换,同时也需要掌握真值表、逻辑运算、命题公式的基本知识。

函数基础知识:数学中的函数是一种数值关系,可以将一个数值通过某种规则转换成另一个数值。

学习时需要掌握函数的概念、函数的基本性质、函数的图象等。

数列基础知识:数列是指数学中描述数的一种数学对象,学生需要学会如何推导等差数列、等比数列等,以及数列的求和公式和递归公式。

解析几何基础:解析几何是一种数学工具,用于研究几何图形的性质和关系。

需要学会如何描述点、直线、平面等几何对象,以及用解析几何的方法解决几何问题。

微积分初步:微积分是数学中的一个分支,主要研究一些变量的变化率和量的积分运算。

学习时需要学会导数、微分、积分等概念,并理解它们之间的关系。

同时也包括极限、什么是连续等概念。

1. 代数基础知识:代数基础知识主要包括整式展开、平方公式、配方法和分式的简化和运算等。

高一数学知识点全部总结

高一数学知识点全部总结

高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。

解一元二次方程的方法有因式分解、配方法、公式法等。

1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。

1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。

1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。

1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。

1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。

1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。

1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。

1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。

1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。

二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。

2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。

高一数学知识点全部归纳

高一数学知识点全部归纳

高一数学知识点全部归纳一、集合1. 集合的概念:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

2. 集合中元素的特性:确定性、互异性、无序性。

3. 集合的表示方法:列举法、描述法、图示法。

4. 集合间的关系:子集、真子集、相等。

5. 集合的运算:交集、并集、补集。

二、函数1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数。

2. 函数的三要素:定义域、值域、对应法则。

3. 函数的表示方法:解析法、列表法、图象法。

4. 函数的单调性:设函数 f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁ x₂时,都有 f(x₁) f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

5. 函数的奇偶性:设函数 f(x)的定义域为 D,如果对于定义域D 内任意一个 x,都有x∈D,且 f(x) = f(x)(或 f(x) = f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。

三、指数函数和对数函数1. 指数函数:一般地,函数 y = a^x(a > 0 且a ≠ 1)叫做指数函数。

指数函数的图象和性质:当 a > 1 时,函数在 R 上单调递增;当 0 a 1 时,函数在 R 上单调递减。

2. 对数函数:一般地,如果 a^x = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x = logₐN。

函数 y = logₐx (a > 0 且a ≠ 1)叫做对数函数。

对数函数的图象和性质:当 a > 1 时,函数在(0, +∞) 上单调递增;当 0 a 1 时,函数在(0, +∞) 上单调递减。

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结
高中一年级数学必修一主要包括以下知识点:
1. 平面直角坐标系:了解平面直角坐标系,熟悉坐标系中点、坐标轴、坐标等概念。

2. 函数与方程:理解函数的概念及性质,熟悉一次函数、二次函数、三次函数等常见函数类型,了解方程的概念及解方程的方法。

3. 直线与圆:了解直线的性质,熟悉直线的方程及直线间的关系。

了解圆的性质,了解如何确定一个圆。

4. 不等式与线性规划:掌握不等式的基本性质及解不等式的方法。

熟悉线性规划的基本概念及求解线性规划问题的方法。

5. 平面向量:了解平面向量的概念及性质,掌握平面向量的运算法则,包括向量的加法、减法、数乘及点积等。

6. 数列与数列的表示方法:了解数列的概念及性质,熟悉等差数列、等比数列等常见数列。

掌握递推公式及通项公式的推导与应用。

7. 三角函数:熟悉正弦函数、余弦函数、正切函数等三角函数的基本性质及图像。

了解解三角函数方程的方法。

8. 解直角三角形:了解三角函数的定义及基本关系,熟悉解直角三角形的方法。

9. 数据的收集与处理:掌握数据的收集方法、数据的整理及数据的分析方法,熟练运用统计学知识进行数据分析。

10. 概率与统计:了解概率的基本概念及性质,熟悉概率计算方法及概率的应用。

熟悉统计学中的基本术语和统计图表的理解与应用。

以上是高中一年级数学必修一的主要知识点总结,掌握这些知识点对于高中一年级的数学学习非常重要。

高中一年级数学知识点

高中一年级数学知识点

高中一年级数学知识点1. 勾股定理和特殊三角形2. 一元一次方程与二元一次方程3. 函数及其图像特征4. 概率与统计5. 三角函数和复数6. 平面向量的基本性质7. 导数及其应用8. 积分初步9. 线性代数基础10. 数学证明方法与思维训练1. 勾股定理和特殊三角形勾股定理是指对于一个直角三角形,它的斜边的平方等于两个直角边的平方之和。

即:a² + b² = c²。

其中a、b是直角三角形的两条直角边,c是斜边。

特殊三角形指的是等边三角形、等腰三角形以及直角三角形。

例如:一个直角三角形,它的两条直角边分别为3cm和4cm,求斜边的长度c。

根据勾股定理:c² = 3² + 4² = 9 + 16 = 25,所以c = 5 cm。

2. 一元一次方程与二元一次方程一元一次方程指的是只有一个未知数的一次方程,即ax + b = 0。

二元一次方程指的是有两个未知数的一次方程,即ax + by = c。

例如:求解一元一次方程2x + 3 = 7。

解法:2x + 3 = 7,移项得2x = 4,再除以2,可得x = 2。

例如:求解二元一次方程2x + 3y = 7,x - y = 1。

解法:将第二个方程中的x代入到第一个方程中。

得到2(x - 1) + 3y = 7,即2x - 2 + 3y = 7,化简得2x + 3y = 9。

然后用解一元一次方程的方法解出y的值,再代回x的值即可。

3. 函数及其图像特征函数是一种映射关系,将某一集合中的每个元素对应到另一个集合中的唯一元素。

通常用y = f(x)表示,其中y是函数的输出值,x是函数的输入值,f表示函数本身。

函数的图像特征包括:定义域、值域、单调性、奇偶性、周期性、对称性、极值点等。

例如:y = x² + 2x + 1是一个函数,求它的图像特征。

解法:该函数的定义域为实数集R,值域为y≥1。

高一数学知识点总结

高一数学知识点总结

高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A 注意:B与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a 、b 属于Q)指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称&对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ; ○2 =NM a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式 ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高中一年级数学知识点总结

高中一年级数学知识点总结

高中一年级数学知识点1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(sss)有三边对应相等的两个三角形全等26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(asa)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)94判定定理3三边对应成比例,两三角形相似(sss)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

高一年级数学上册知识点

高一年级数学上册知识点

高一年级数学上册知识点高一年级数学上册是高中数学学习的基础阶段,涵盖了许多重要的数学概念和技能。

这些知识点不仅为后续的数学学习打下坚实的基础,同时也在日常生活中有着广泛的应用。

以下是高一年级数学上册的主要知识点概述:首先,我们学习了集合的概念,包括集合的表示、元素与集合的关系、集合的运算等。

集合论是现代数学的基础,它帮助我们理解数学对象的分类和组织。

接着,我们进入了函数的领域,这是数学中一个非常核心的概念。

我们学习了函数的定义、函数的表示方法、函数的性质,如单调性、奇偶性等。

此外,还探讨了函数的图像,包括一次函数、二次函数等基本函数的图像和性质。

在解析几何部分,我们研究了直线和圆的方程,以及它们的位置关系。

通过这些知识点,我们能够解决一些实际问题,比如计算两点之间的距离、判断直线和圆的位置关系等。

三角学是另一个重要的数学分支,我们学习了三角函数的定义、三角恒等式、和差公式、倍角公式等。

这些知识在解决与角度和长度相关的问题时非常有用。

我们还接触到了不等式的解法,包括一元一次不等式、一元二次不等式等。

不等式在优化问题、实际应用中有着广泛的应用,比如在经济学、物理学等领域。

此外,数学归纳法是一种证明方法,它在数学证明中扮演着重要的角色。

我们学习了数学归纳法的基本原理和应用,这有助于我们理解数学定理的证明过程。

最后,我们探讨了立体几何的基础知识,包括点、线、面的位置关系,以及简单几何体的体积和表面积的计算。

这些知识对于理解三维空间中的几何关系至关重要。

总的来说,高一年级数学上册的知识点为学生提供了一个坚实的数学基础,这些知识点将在后续的学习中不断深化和扩展。

通过这些知识点的学习,学生能够培养出良好的数学思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习任何一门课程都要学会对该科目知识点进行总结,这样可以检查我们对知识的真正掌握程度,然而只有对一门课程有了较全面的把握后才能做出比较全面的总结。

下面给大家带来高中一年级数学必修一知识点,希望对你们有所帮助。

高中一年级数学必修一知识点
课时一:集合有关概念
1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

2、一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3、集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
例:{a,b,c}和{a,c,b}是表示同一个集合
4、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来{a,b,c……}
2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x?R|x-3>2},{x|x-3>2}
①语言描述法:例:{不是直角三角形的三角形}
②Venn图:画出一条封闭的曲线,曲线里面表示集合。

5、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合例:{x|x2=-5}
6、元素与集合的关系:
(1)元素在集合里,则元素属于集合
(2)元素不在集合里,则元素不属于集合
课时二、集合间的基本关系
1.“包含”关系—子集
(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A。

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。

②真子集:如果A?B,且A?B那就说集合A是集合B的真子集
③如果A?B,B?C,那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集
课时四:函数的有关概念
1、函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.
(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;
(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
2、函数的三要素:定义域、值域、对应法则
3、函数的表示方法:
(1)解析法:明确函数的定义域
(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

4、函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.
(2)画法
A、描点法:
B、图象变换法:平移变换;伸缩变换;对称变换。

(3)函数图像变换的特点:
1)函数y=f(x)关于X轴对称y=-f(x)
2)函数y=f(x)关于Y轴对称y=f(-x)
3)函数y=f(x)关于原点对称y=-f(-x)
课时五:函数的解析表达式,及函数定义域的求法
1、函数解析式子的求法
(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)、求函数的解析式的主要方法有:
1)代入法:
2)待定系数法:
3)换元法:
4)拼凑法:
2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
4、区间的概念:
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示
课时六:
1.值域:先考虑其定义域
(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;
(2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。

(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。

(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。

课时七:
1.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

(4)常用的分段函数
1)取整函数:
2)符号函数:
3)含绝对值的函数:
2.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

记作“f(对应关系):A(原象)→B(象)”
对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。

注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。

所以函数是映射,而映射不一定的函数。

课时八、函数的单调性(局部性质)及最值
1、增减函数
2、图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
3、函数单调区间与单调性的判定方法
(A)定义法:
任取x1,x2∈D,且x1
作差f(x1)-f(x2);
变形(通常是因式分解和配方);
定号(即判断差f(x1)-f(x2)的正负);
下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”。

相关文档
最新文档