人教版高中数学必修4同步训练题及答案全册汇编

合集下载

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
解:(1) 原式 =
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =

高中数学必修四同步练习及答案(新课标人教A版)之欧阳德创编

高中数学必修四同步练习及答案(新课标人教A版)之欧阳德创编

高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 01.2任意角的三角函数 (3)1.3三角函数的诱导公式 (5)1.4三角函数的图像与性质 (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (10)第一章 三角函数基础过关测试卷 (13)第一章三角函数单元能力测试卷 (15)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (18)2.2向量减法运算与数乘运算 (20)2.3平面向量的基本定理及坐标表示 (22)2.4平面向量的数量积与2.5平面向量应用举例 (25)第二章平面向量基础过关测试卷 (28)第二章平面向量单元能力测试卷 (31)3.1两角和与差的正弦、余弦和正切公式 (34)3.2简单的三角恒等变换 (37)第三章三角恒等变换单元能力测试卷 ................................................................................ 39 人教A 版必修4练习答案1.1任意角和弧度制 (42)1.2任意角的三角函数 (43)1.3三角函数的诱导公式 (43)1.4三角函数的图像与性质 (44)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (44)第一章三角函数基础过关测试卷 (46)第一章三角函数单元能力测试卷 (46)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (47)2.2向量减法运算与数乘运算 (47)2.3平面向量的基本定理及坐标表示 (47)2.4平面向量的数量积与2.5平面向量应用举例 (49)第二章平面向量基础过关测试卷 (50)第二章平面向量单元能力测试卷 (50)3.1两角和与差的正弦、余弦和正切公式 (51)3.2简单的三角恒等变换 (51)第三章三角恒等变换单元能力测试卷 (52)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398 - 38B.,398 - 142C.,398 - 1042D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱ 180- 180<<β},则B A 等于 ( )A.,36{ - 54}B.,126{ - 144}C.,126{ -,36 -,54 144}D.,126{ - 54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于 90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( )A. 180=+βαB. 0=+βαC. 360⋅=-k βα,Z k ∈D. 360⋅=+k βα,Z k ∈5.已知α为第二象限的角,则2α所在的象限是 ( )A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限6.将分针拨慢5分钟,则分针转过的弧度数是 ( ) A.3π B.3π- C.2π D.32π 7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( ) A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( ) A.35ππ+ B.344ππ+ C.326ππ- D.373ππ+ 10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( )A.B A =B.B A ⊇C.B A ⊆D.B A ≠二、填空题(每题5分,共20分)11.角a 小于 180而大于- 180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________;2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________;4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.14.已知a {∈θ︱a =+πk },4)1(Z k k ∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又 720-<a < 0,求角a .16.已知角 45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=k x 45+}Z k ∈ 那么两集合的关系是什么? 17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( ) A.55- B.55 C.552 D.25 2.α是第四象限角,则下列数值中一定是正值的是 ( )A.αsinB.αcosC.αtanD.αtan 1 3.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( ) A.34 B.43 C.34± D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos <θ则2θ是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( )A.34-B.43- C.43 D.34 8.已知点()ααcos ,tan P 在第三象限,则角α在 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________.10.角α的终边上有一点(),5,m P 且(),013cos ≠=m m α则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________.12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________.三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值. 15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32- B.m 23- C.m 32 D.m 23 3.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( ) A.)](22,22[Z k k k ∈++-ππππ B.))(223,22(Z k k k ∈++ππππ C.)](223,22[Z k k k ∈++ππππ D.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( ) A.21||a a + B.21a a + C.21a a +- D.211a +-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A.33B.33- C.3D.-3 7.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A.0B.1C.1- D.23 8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为.三、解答题(每题10分,共40分)13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值. 14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值. 15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( )A.[]1,0B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( ) A 52π B 25π C π D π5 3.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2[- 4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1D.(]1,∞- 5.下列命题正确的是 ( )A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( )A 1C.0D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象( ) A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππC.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y(2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω 的一个可能值为 ( )A.3B.2C.31D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为( ) A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK KD.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是( ) A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________. 10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________.三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的;3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( )A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( )A.1B.0C.2D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________. 10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( ) A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A.1sin2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是( )A.2π=x B 2π-=x C 4π=D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( )A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( )A 5B 6C 7D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( ) A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( ) A.2π B 4π- C 4π D 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个孤立点D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则=C.若=,则∥D.若≠,则与不是共线向量3.设O 为△ABC 的外心,则、、是 ( )A.相等向量B.平行向量C.模相等的向量D.起点相等的向量4.已知正方形ABCD 的边长为1,设=,=,=, 则++=( )A.0B.3C.22+D.225.58==的取值范围是 ( )A.[]8,3B.()8,3C.[]13,3D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B 成立的是( )A.=+B.=+C.=+D.=+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC == ( )A.7B.5C.3D.28.向量、皆为非零向量,下列说法不正确的是( )A.向量与>,则向量+与的方向相同B.向量与<,则向量+与的方向相同C.向量与同向,则向量+与的方向相同D.向量与同向,则向量+与的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与的关系是__________.10.已知C B A ,,是不共线的三点,向量与向量是平行向量,与BC 是共线向量,则=__________.11.在菱形ABCD 中,∠DAB ︒=601=,则=+__________.12.化简=++__________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且=,=.求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可表示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________ 三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,=b ,试以a ,b 表示、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==则BC 等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且//,则实数m 的值等于 ( )A.2或23-B.23C.2-或23 D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m b a -==且//,则32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使2211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量,使=2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===,且21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21- B.2 C.21 D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,== 则 等于 ( ) A.2141+ B.3132+ C.4121+ D.3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且//,则=x __________12.设向量)3,2(),2,1(==b a ,若向量+λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与的方向的夹角为3π4=,则的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量与不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e e e +=+=),(321e e -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==,(1)求c b a 23-+;(2)求满足n m +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.=B.1=⋅C.≠D.=2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅③2a =④()()⋅⋅=⋅⋅b a ⋅≤A.0B.1C.2D.3 3.对于非零向量,,下列命题中正确的是 ( )A.000==⇒=⋅b a b a 或B. //a ⇒在bC.()2⋅=⋅⇒⊥D.=⇒⋅=⋅4.下列四个命题,真命题的是 ( )A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅;D.ABC ∆为斜三角形的充要条件是.0≠⋅.5.,8=为单位向量,与的夹角为,60o 则在方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量,a ,1==与b 的夹角为 120,则=⋅+⋅b a a a( )A.21B.21-C.23D.23-7.,631==与的夹角为,3π则⋅的值为 ( ) A.2 B.2± C.1 D.1±8.已知()(),5,5,0,3-==则a 与b 的夹角为 ( ) A.4π B.3π C.43π D.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量2+与-2平行时,⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==b 且,⊥则a 的坐标是_____________.12.若(),8,6-=则与平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,====-b __________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==,求与b 的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0 =-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D 的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e --=共线的等价条件是ACODA.23=λ B.32=λ C.32-=λ D.23-=λ ( )8.下面给出的关系式中正确的个数是 ( )①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行; ③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 延长线上,22PP =,则点P 坐标是( )A.)11,2(-B.)3,34(C.)3,32( D.)7,2(-11.若k b a 432,1||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a,求(1)b a b a+⋅,的值;(2)a 与b 的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+ ④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( ) A.1 B.2 C.3 D.42.已知正方形ABCD 的边长为1,设===,,=++b ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 =2153e e +与向量213e e m -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=则32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( )A.60B.60- C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( ) A.4πB.43πC.3πD.32π9.若b a b a ⊥==,1||||且b a 32+与b a k4-也互相垂直,则k 的值为( )A.6-B.6C.3D.3-10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为( )A.13B.513 C.565 D.65 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =,则P 点坐标为 ( )A.)11,2(-B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a|=1,|b|=2,且(a-b)和a 垂直,则a与b的夹角为__________. 14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=,ABDMC求证:C N M ,,三点共线. 18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--=31,=31, 1)求点E 、F 及向量的坐标;2)求证:EF ∥AB .19.24==夹角为120,求:(1)b a ⋅;(2))()2(+⋅-;(3)a 3+.20.已知)2,3(),2,1(-==b a ,当k 为何值时:(1)b a k +与b a3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x x x -+==π,x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求与的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( ) A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( )A.0B.21C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于( ) A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于( ) A.45π B.4π C.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( )A.2B.2-C.4D.4- 9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________.11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A.23 B.23- C.21 D.21- 2.下列各式中,最小的是 ( )A.40cos 22B.6cos 6sin 2 C.37sin 50cos 37cos 50sin - D.41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A.2πB.πC.π2D.π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A.21B.23C.21- D.3-5.若316sin =⎪⎭⎫⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A.97-B.31- C.31 D.976.若函数x x y tan 2sin =,则该函数有 ( )A.最小值0,无最大值B.最大值2,无最小值C.最小值0,最大值2D.最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A.2cosαB.2sinαC.2cosα- D.2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A.1B.1- C.21D.21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________. 10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( ) A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( )A.2B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系A.b a =B.b a >C.b a <D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+=( ) A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是A.6π=x B.4π=x C.6π-=x D.2π-=x( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( )A.2B.4C.8D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97 B.23C.1832+D.183724+( ) 12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α. (2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值. 18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根,求:(1)βα+的值;(2))cos(βα-的值. 21.已知函数a x x x x f ++-++=2cos )62sin()62sin()(ππ(a 为实常数),(1)求函数)(x f 的最小正周期;(2)如果当⎥⎦⎤⎢⎣⎡∈2,0πx 时,)(x f 的最小值为2-,求a 的值. 16.已知函数R x xx x x f ∈--++=,2cos 2)6sin()6sin()(2ωπωπω(其中0>ω),(1)求函数)(x f 的值域;(2)若函数)(x f y =的图像与直线1-=y 的两个相邻交点间的距离为2π,求函数 )(x f y =的单调增区间.参考答案1.1任意角和弧度制一、选择题1-5CCDCC 6-10CADBA 二、填空题11.120{-60,-0,60,120,}12.(1)α{︱360⋅=k α},Z k ∈ (2)α{︱90⋅=k α},Z k ∈(3)α{︱ 360⋅k <<α 180360⋅+k },Z k ∈ α{︱360⋅=k α 270+},Z k ∈(4)α{︱ 180⋅=k α45+},Z k ∈ 13.2 14.一或第二 三、解答题15.解:∵ 120=α 360⋅+k Z k ∈,720,-0<<α ∴240-=α600,16.解:(1) 45=β360⋅+k Z k ∈,720-≤ 45 360⋅+k 0<,则2-=k 或1-=k675-=β或 315-=β(2)},45)1({},,45)12({Z k k x x N Z k k x x M ∈+==∈+==所以N M ⊂17.因为,,23Z k k ∈+=ππθ所以Z k k ∈+=,3293ππθ所以在]2,0[π内与3θ终边相同的角有:913,97,9πππ18.因为302=+R l ,所以4225)215(15)230(212122+--=+-=-==R R R R R lR S当215=R 时,扇形有最大面积4225,此时2,15230===-=RlR l α1.2任意角的三角函数 一、选择题1-4ABAB 5-8BBAB 二、填空题⒐⎭⎬⎫⎩⎨⎧∈+=+<<+<≤Z k k k k k k ,222223222ππαππαπππαπα或或 10.1317或137- 11.33,21 12.⎪⎭⎫⎝⎛47,45ππ三、解答题 13.22,1,22-- 14.126,562 15.161.3三角函数的诱导公式 一、选择题1-4ABCC 5-8CCCC 二、填空题 9.1 10.1312 11.0 12.211aa ++-提示:12.由已知a -=26tan ,于是21126cos a+=;2126sin aa +-=.∴()()21126cos 26sin 206cos 206sin aa ++-=-=-+-.三、解答题 13.33 14.2515.0 16.3 提示:16.()()()42000cos 2000sin 2000++++=απαπb a f()[]()[]41999cos 1999sin ++++++=αππαππb a ()()841999cos 1999sin +-+-+-=απαπb a ()381999=+-=f。

人教版本高中数学必修4课后练习习题答案.docx

人教版本高中数学必修4课后练习习题答案.docx

第二章平面向量2.1 平面向量的实际背景及基本概念练习(P77)uuur uuur2、AB,BA .1、略 .这两个向量的长度相等,但它们不等 .uuur uuur uuur uuur3、 AB 2 , CD 2.5 , EF 3 , GH 2 2 .4、(1)它们的终点相同;(2)它们的终点不同 .习题 A 组( P77)1、( 2) .uuur uuuruuur uuur uuur uuur3、与 DE相等的向量有: AF , FC ;与 EF 相等的向量有: BD , DA ;uuur uuur uuur与FD 相等的向量有: CE , EB .r uuur uuur uur r uuuur uuur4、与 a 相等的向量有:CO, QP, SR;与 b 相等的向量有:PM , DO ;r uuur uuur uuur与c 相等的向量有: DC , RQ, STuuur3 3 .6、(1)×;(2)√;(3)√;(4)× .5、 AD2习题 B 组( P78)1、海拔和高度都不是向量 .2、相等的向量共有24 对.模为 1 的向量有uuuur18 对 . 其中与 AM 同向的共有 6uuuur uuur uuur6 对;模对,与 AM 反向的也有 6 对;与 AD 同向的共有 3 对,与 AD 反向的也有为 2 的向量共有 4 对;模为 2 的向量有 2 对2.2 平面向量的线性运算练习(P84)1、图略 .2、图略 .3uuur uuur 、(1) DA ;(2) CB .r ur ur ur 4、(1) c ;( 2) f ;(3) f ;(4) g .练习(P87)1、图略 .2uuur uuur uuur uuur uuur3、图略.、 DB , CA , AC , AD , BA .练习(P90)1、图略 .uuur5 uuur uuur2 uuur2、AC AB , BC AB .77uuur 说明:本题可先画一个示意图,根据图形容易得出正确答案.值得注意的是BCuuur与 AB 反向 .r r r7 rr 1rr8r3、(1) b2a ;(2)b4a ;(3)b a ;(4)b a .4、(1)共线;(2)共线 .29r r( 2)11r1rr、图略 .5、(1) 3a2b ;12a b ;(3) 2 ya .63习题 A 组( P91)1、(1)向东走 20 km;(2)向东走 5 km;( 3)向东北走 10 2 km;(4)向西南走 5 2 km;( 5)向西北走 10 2 km;( 6)向东南走 102 km.2、飞机飞行的路程为700 km;两次位移的合成是向北偏西 53°方向飞行 500 km.3、解:如右图所示:uuur uuurAB 表示船速, AD 表示河水的流速,以 AB 、 AD 为邻边作□ ABCD ,则uuurAC 表示船实际航行的速度 .uuur uuur在 Rt△ ABC中, AB8 , AD 2 ,uuuruuur 2 uuur 2222 17所以 ACAB AD82 因为 tanCAD 4 ,由计算器得 CAD76所以,实际航行的速度是 2 17 km/h ,船航行的方向与河岸的夹角约为 76°.r uuur uuur r r uuur4、(1) 0 ; ( 2) AB ; ( 3) BA ; (4) 0 ; (5) 0 ; ( 6) CB ; (7)r 0 .5、略6、不一定构成三角形 . 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形 .7、略 .8 、(1)略;r r r r r r(2)当 ab 时, aba brrrrrr 1rr9、(1) 2a 2b ; ( 2)10a 22b10c ; ( 3)3ab ;(4)2( x y)b .r r ur r ruruur r r uruur 210、 a b 4e 1 , a be 1 4e 2 , 3a2b3e 1 10e 2 .uuurr uuur r 11、如图所示, OCa , ODb ,uuur r r uuur r r DC ba , BC ab .uuur 1ruuur rr uuur1 r r uuur 3 r12、 AEb , BCba , DE4 (b a) , DBa ,41 uuuur1 r4uuur 3ruuur 1 rruuurrECb , DN8 (ba) , AN4 AM(ab) .4813、证明:在 ABC 中, E, F 分别是 AB, BC 的中点,(第 11 题)所以 EF / / AC 且 EF1AC ,uuur 1 uuur 2即 EF 2 AC ;1 uuuruuur同理, HGAC ,2uuur uuur所以 EF HG .习题 B 组( P92)1、丙地在甲地的北偏东 45°方向,距甲地 1400 km.(第 12 题)(第 13 题)r r2、不一定相等,可以验证在 a,b 不共线时它们不相等 .uuuur uuur uuuur uuur1 uuur uuuur 1 uuur3、证明:因为 MN AN AM ,而 ANAC , AMAB ,3 3(第 1 题)uuuur1 uuur 1 uuur 1 uuuruuur1 uuur所以 MNACAB(ACAB)BC .3 3 334、(1)四边形 ABCD 为平行四边形,证略(2)四边形 ABCD 为梯形 .uuur1 uuur证明:∵ ADBC ,3∴ AD / /BC 且 AD BC ∴四边形 ABCD 为梯形 .(3)四边形 ABCD 为菱形 .uuur uuur证明:∵ AB DC ,(第 4 题 (2) )∴ AB / /DC 且 AB DC∴四边形 ABCD 为平行四边形uuur uuur 又 AB AD ∴四边形 ABCD 为菱形 .5、(1)通过作图可以发现四边形 ABCD 为平行四边形 .(第 4 题(3) )uuur uuur uuur uuur uuur uuur 证明:因为 OA OB BA , OD OC CDuuur uuur uuur uuur 而 OA OC OB ODuuur uuur uuur uuur所以 OA OB OD OCuuur uuur所以 BA CD ,即 AB ∥ CD .(第 5 题)因此,四边形 ABCD 为平行四边形 .2.3 平面向量的基本定理及坐标表示 练习(P100)r r r r ( 7, 2) ;r r r r(7, 5) ; 1、(1) a b (3,6) , a b (2) a b(1,11), a b r r r r(4,6)r rr r(3, 4) .(3) a b (0,0) , a b ;(4) a b(3,4) , a brr ( 6, 8) , r r (12,5) .2、 2a4b 4a 3buuur (3,4) uuur ( 3, 4)uuur (9, uuur( 9,1)3、(1) AB , BA ;(2) AB 1) , BA;uuur uuur(0, 2) ;uuuruuur( 5,0)(3) AB (0, 2) , BA(4) AB(5,0) , BA4、 AB ∥ CD .uuur(1,uuur(1,uuur uuur证明: AB1) ,CD 1) ,所以 AB CD . 所以 AB ∥CD .、 (10,1) 或 (14, 1)5、(1) (3, 2) ;( 2) (1,4) ;(3) (4, 5) .633uuur3 uuur uuur3 uuur 7、解:设 P( x, y) ,由点P在线段AB的延长线上,且AP PB ,得 AP PBuuur uuur22 ( x, y)(2,3)( x2, y3)3)(x, y)(4 x, 3 y) AP, PB (4,x23(4x)32∴ ( x2, y3)3y)∴(4 x,32y3(3y)2x8,所以点 P 的坐标为(8, 15) .∴y15习题 A组( P101)1、(1) ( 2,1) ;(2) (0,8) ;(3) (1,2) .说明:解题时可设 B(x, y) ,利用向量坐标的定义解题 .uur uur uur2、F1F2F3 (8,0)uuur( 1, 2)uuur(53,6(1)) (2,7)3、解法一: OA, BCuuur uuur uuur uuur uuur uuur uuur(1,5) .所以点 D 的坐而 AD BC , OD OA AD OA BC标为 (1,5) .uuur( x(1), y( 2))( x1, y2)解法二:设 D ( x, y) ,则 AD,uuur(53,6(1))(2,7)BCuuur uuur可得,x12由 AD BCy2,解得点 D 的坐标为(1,5) . 7uuur uuur(2,4).4、解: OA(1,1), ABuuur1 uuur(uuur uuur uuur1uuur(1, 2).AC AB1,2) ,AD 2 AB( 4,8) ,AE2AB2uuur uuur uuur(0,3) ,所以,点C的坐标为 (0,3) ;OC OA ACuuur uuur uuur(3,9) ,所以,点D的坐标为 (3,9) ;OD OA ADuuur uuur uuur(2,1) ,所以,点E的坐标为 (2,1). OE OA AEr r(x,6) ,所以23,解得 x4.5、由向量 a,b 共线得 (2,3)x6uuur uuur(8,uuur uuur uuur uuur6、 AB(4, 4) , CD8) , CD 2 AB ,所以 AB 与 CD 共线 .uuur uuur(2, 4),所以点 A 的坐标为(2, 4);7、 OA2OAuuur uuur(3,9)B( 3,9)OB3OB,所以点的坐标为;故uuuur3,9) (2, 4)(5,5)A B (习题 B组( P101)uuur(1,2)uuur(3,3) .1、 OA, AB当 tuuur uuur uuur uuur1时,OP OA AB OB (4,5) ,所以 P(4,5) ;当 t 1uuur uuur1 uuur(1,2)(3,3)(5,7),所以 P(5,7) ;时, OP OA AB22222222当 tuuur uuur uuur(1,2)(6,6)(5,4) ,所以 P(5,4) ;2 时,OP OA2AB当 tuuur uuur uuur(6,6)(7,8),所以 P(7,8) .2 时,OP OA 2 AB (1,2)uuur(4,uuur uuur uuur2、(1)因为 AB6) , AC(1,1.5) ,所以 AB 4 AC ,所以A、B、C三点共线;uuur(1.5,2)uuur(6,uuur uuur(2)因为 PQ, PR8) ,所以 PR4PQ ,所以P、 Q 、R三点共线;uuur(8,4)uuur( 1,uuur uuur(3)因为 EF, EG0.5) ,所以 EF8EG ,所以E、F、G三点共线 .ur uur r ur uur3、证明:假设10 ,则由1e1 2 e20 ,得e12 e2 .1ur uur ur uur所以 e1 ,e2是共线向量,与已知 e1,e2是平面内的一组基底矛盾 ,因此假设错误,10.同理20.综上120 .uuur uuur ur uur4、( 1) OP19 .(2)对于任意向量OP xe1ye2, x, y 都是唯一确定的,所以向量的坐标表示的规定合理 .2.4 平面向量的数量积练习(P106)ur r ur rcos ur r8 6124.1、p q p q p, qr r 2r r0ABC 为直角三角形.2、当 a b 0 时,ABC 为钝角三角形;当a b时,3、投影分别为 3 2 ,0, 3 2 . 图略练习(P107)r( 3)242r52 22r r3 54 27 .1、 a 5 , b29 , a br r 8 r r r rr r rr r49 .2、 a b , (a b)(a b)7 , a (b c)0 , (a b)2r r r r74 , 88 .3、 a b 1, a 13 , b习题 A 组( P108)r rr r r 2 r r r 2rr25 12 3 .1、 a b6 3 , (a b)2 a2a b b 25 12 3 , a buuur uuur uuur uuur20 .2、 BC 与 CA 的夹角为 120°, BC CAr rr 2 r r r 2r rr 2 r r r 2 35 .3、 a ba 2ab b23 , a ba 2ab br r4、证法一:设 a 与 b 的夹角为 .( 1)当0 时,等式显然成立;( 2)当0 时, r r r ra 与b , a 与 b 的夹角都为 ,r r r r r r所以( a) b a b cos a b cosr r r r( a b)a b cosr ( r r r r ra b)a b cosa b cos所以 (r r r r r ( ra) b (a b)a b) ;( 3)当0 时, r r r ra 与b , a 与 b 的夹角都为 180,则 ( r r r r ) r ra) b a b cos(180 a b cosr rr r r r( a b) a b cosa b cosr r r r )r r a ( b) ab cos(180a b cos所以 (r r r r r ( ra) b (a b)a b) ;综上所述,等式成立 .r r证法二:设 a (x 1, y 1 ) , b ( x 2 , y 2 ) ,r r那么 ( a) b ( x 1 , y 1 ) ( x 2 , y 2 ) x 1 x 2 y 1 y 2r r( a b) ( x 1 , y 1 ) ( x 2, y 2 ) ( x 1 x 2 y 1 y 2 ) x 1x 2y 1 y 2r ra ( b) (x 1, y 1 ) ( x 2 , y 2 )x 1x 2y 1 y 2所以 (r r r r r r a) b( a b) a ( b) ;5、(1)直角三角形, B 为直角 .uuur( 1, 4) (5, 2)( 6, 6) uuur(3, 4) (5, 2)( 2,2)证明:∵ BA , BC uuur uuur 6 ( 2)( 6) 2 0∴ BA BCuuur uuur B 为直角, ABC 为直角三角形∴ BABC ,(2)直角三角形, A 为直角uuur (19,4) ( 2, 3) (21,7) uuur( 1, 6) ( 2, 3) (1, 3)证明:∵ AB , ACuuur uuur∴ AB AC 21 1 7 ( 3) 0uuur uuurA 为直角,ABC 为直角三角形∴ AB AC ,(3)直角三角形, B 为直角uuur (2,5) (5, 2) (uuur (10,7) (5, 2)(5,5)证明:∵ BA 3,3) , BC uuur uuur3 5 3 5 0∴ BA BCuuur uuurB 为直角, ABC 为直角三角形∴ BABC , 6、 135 . 7、120 .r r r r r 2 r r r 2 r r 6 ,(2a 3b)(2 a b) 4a 4a b 3b 61 ,于是可得 a br r 1cosa b120 .r r,所以a b28、 cos23 , 55 .40uuur(5, 2) (1,0) (4,uuur(8, 4) (5, 2) (3,6) ,9、证明:∵ AB 2) , BCuuur(8, 4)(4,6) (4, 2)DCuuur uuur uuur uuur43 ( 2) 6∴ AB DC , AB BC∴ A, B,C , D 为顶点的四边形是矩形 .r( x, y) , 10、解:设 ax 2y 2 9x3 5 x3 5 则y ,解得5 ,或 5 . x6 56 5 2yy55rr于是 a (3 5,6 5 ) 或 a ( 3 5 , 6 5 ) .5 55 5r r(x, y) ,11、解:设与 a 垂直的单位向量 e则 x2y 2 1x5或 x5,解得 55 . 4x2 y 0y2 5 2 55 y 5r 5 ,r 5 , 2 5) . 于是 e (2 5 ) 或 e (5555习题 B 组( P108)r r r r r r r r 0r r r 0r r r 1、证法一: a b a ca b a ca (b c)a(b c)r r r ( x 3 , y 3 ) .证法二:设 a ( x 1 , y 1) , b ( x 2 , y 2 ) , cr r r rr r r 先证 a b a ca(b c)r rr ra b x 1 x 2y 1 y 2 , a c x 1 x 3 y 1 y 3r r r r由a ba c得x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3,即x 1( x 2 x 3 ) y 1 ( y 2 y 3) 0r r r r r 而 b c ( x 2 x 3 , y 2 y 3 ) ,所以 a (bc) 0rr r r r r r 再证 a(b c)a ba cr r r 0 得 x 1 (x 2由 a (b c)x 3 ) y 1( y 2y 3 ) 0 ,r r r r即 x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3 ,因此 a b a cuuur uuur2、 cos AOBOA OB cos cos sin sin. uuur uuurOA OBr r(c, d) .3、证明:构造向量 u(a,b) , vr r r r r rbd a2b2c2 d 2r ru v u v cos u,v ,所以ac cos u, v∴ (ac bd )2(a2b2 )(c2r r( a2b2 )( c2 d 2 ) d 2 ) cos2 u, vuuur uuur4、 AB AC 的值只与弦AB的长有关,与圆的半径无关 .证明:取 AB 的中点 M ,连接 CM ,则 CMuuuur 1 uuurAB , AM AB2uuuuruuur uuur uuur uuurBAC AM又 AB AC AB AC cos BAC ,而uuurACuuur uuur uuur uuuur1uuur 2所以 AB AC AB AM2AB(第 4 题)uuur2uuur 2 5、(1)勾股定理:Rt ABC 中,C uuur 290 ,则CA CB ABuuur uuur uuur证明:∵ AB CB CAuuur 2uuur uuur uuur 2uuur uuur uuur 2∴ AB(CB CA)2CB2CA CB CA .uuur uuur由 C 90 ,有 CA CB ,于是CA CB 0uuur 2uuur2uuur2∴ CA CB AB(2)菱形ABCD中,求证: AC BDuuur uuur uuur uuur uuur uuur证明:∵ AC AB AD, DB AB AD ,uuur uuur uuur uuur uuur uuur uuur 2uuur 2∴ AC DB ( AB AD ) ( AB AD)AB AD .∵四边形 ABCD 为菱形,∴ ABuuur 2uuur 20 AD ,所以AB ADuuur uuurBD ∴ AC DB 0 ,所以AC(3)长方形ABCD中,求证:AC BD证明:∵ 四边形 ABCD 为长方形,所以 ABuuur uuur0 AD ,所以AB ADuuur 2uuur uuur uuur 2uuur 2uuur uuur uuur 2.∴ AB2AB AD AD AB2AB AD ADuuur uuur uuur uuur uuur2uuur 2BD ∴ ( AB AD )2 ( AB AD )2,所以 AC BD ,所以AC (4)正方形的对角线垂直平分 . 综合以上( 2)( 3)的证明即可 .2.5 平面向量应用举例习题 A 组( P113)1、解:设 P( x, y) , R( x 1 , y 1)uuur uuur则 RA (1,0) ( x 1 , y 1) (1 x 1, y 1) , AP (x, y) (1,0)( x 1,0)uuur uuury 1 ) 2( x 1, y) ,即x 1 2x 3由 RA 2AP 得 (1 x 1 , y 12 y代入直线 l 的方程得 y2x .所以,点 P 的轨迹方程为 y2x .2、解:(1)易知,OFD ∽ OBC , DF1BC ,22所以 BO .BF32 uuur1rr 1uuuruuur uuurr2 rrrAOBOBABFa( ba) a(ab)1r33 23uuurr(2)因为 AE(ab)2(第 2 题)uuur2 uuurAO 2所以 AOAE ,因此 A,O, E 三点共线,而且OE3同理可知:BO2, CO2 ,所以AOBOCO 2r uuruurOFODOE OFOD( 2,7) ;3、解:(1) v v B v Ar uurr uur v v A 13 .(2) v 在 v A 方向上的投影为 uurv A 5(第 4 题) uur uur ur ur uur4、解:设 F 1 , F 2 的合力为 F , F 与 F 1 的夹角为 ,ur 30 uur uur uur则 F 3 1, ; F 3 3 1, F 3 与 F 1 的夹角为 150°. 习题 B 组( P113)uuruuruur1、解:设 v 0 在水平方向的速度大小为 v x ,竖直方向的速度的大小为v y ,uur uur uur uur.则 v x v 0 cos , v y v 0 sin设 在 时 刻 t时 的 上 升 高 度 为 h , 抛 掷 距 离 为 s , 则uur1gt,( g 为重力加速度 )hv 0 t sinuur2sv 0 t cosuur 2uur 2v 0 sin 2,最大投掷距离为 v 0 sin 2.所以,最大高度为2ggur uur r uur r2、解:设v1与v2的夹角为,合速度为v,v2与 v 的夹角为,行驶距离为 d .ur r则 sin v1sin10sin, d0.5v d1.r rsin.∴ r20sin v v20sin v所以当90 ,即船垂直于对岸行驶时所用时间最短.3、(1)(0, 1)uuur( x 1, y 2) .uuur(2, 22) .解:设 P(x, y) ,则 AP ABuuur uuur7将 AB 绕点A沿顺时针方向旋转到 AP ,相当于沿逆时针方向旋转到44uuurAP ,uuur(727727) (1, 3)于是 AP 2 cos 2 sin, 2 sin 2 cos4444所以x11,解得 x0, y1 y233( 2)y2xuuur后,点 P 的坐解:设曲线 C 上任一点P的坐标为 ( x, y) , OP 绕 O 逆时针旋转4标为 (x , y )x x cos ysin x 2( x y)则44,即2y x sin4y cos y2( x y) 42又因为 x 2y 2 3 ,所以1( x y) 21( x y) 2 3 ,化简得 y3 222x第二章复习参考题 A 组( P118)1、(1)√;(2)√;( 3)×;(4)× .2、(1) D ;(2) B ;(3) D ;( 4)C;( 5) D ;(6) B .uuur 1 r r uuur 1r r3、AB(a b) , AD( a b)22uuur uuur uuur uuur 2 r 1 r4、略解:DE BA MA MB a b33uuur 2 r 2 r uuur 1 r 1 rAD a b , BC a b3333uuur 1 r 1 r uuur uuur 1 r 2 rEF a b , FA DC a b3333(第 4 题)uuur 1 r2ruuur 2r1rCD a b , AB a b 3333 uuur r rCE a buuur(8,8)uuur8 2 ;5、(1)AB, ABuuur(2,uuur(8,8) ;uuur uuur33 .(2)OC16) , OD(3)OA OBuuur uuur6、AB与CD共线 .uuur uuur uuur uuur uuur uuur 证明:因为 AB (1,1) , CD(1, 1) ,所以 AB CD .所以 AB 与 CD 共线.7、D(2,0) .8、 n 2 .9、1,0 .3,cos B0,cos C 410、cos A55r ur ur r ur ur 22cos60r ur ur11、证明:(2 n m)m2n m m 1 0 ,所以 (2n m)m .12、 1 .13r r r r1.14、 cos5,cos19、 a b13 , a b820第二章复习参考题 B 组( P119)1、(1) A;(2)D;(3)B;(4)C;(5)C;(6)C;(7)D .r r r r r r2、证明:先证a b a b a b .r r r r r 2r 2r ra b( a b) 2a b2a b,r r r r r2r2r ra b( a b)2a b2ab .r r r r0r r r 2r 2r r因为 a b ,所以 a b,于是 a b a b a b .r r r r r r再证 a b a b a b .r r r 2r r r 2r r r 2r r r 2由于 a b a2a b b, a b a2a b br r r r r r r r由 a b a b 可得 a b0 ,于是 a br r r r r r【几何意义是矩形的两条对角线相等】所以 a b a b a b .r r r ur3、证明:先证a b c dr ur r r r r r2r2c d(a b) (a b)a b(第 3 题)r r r ur 0 r ur又 ab ,所以cd ,所以 c drur r r 再证 cdab .r urr ur r rr r r 2 r 2 0由 cd 得 c d 0 ,即 (a b)(a b)abrr所以 ab【几何意义为菱形的对角线互相垂直,如图所示】uuur uuur uuur uuur 1 r r uuur 1 r1r4、 AD AB BC CD 2 a b , AE ab4 2uuur 3 r uuuur 1 ruuuur uuur uuuur 1r1 r1 r1rr 而 EF a , EM 4 a ,所以 AM AEEM4 aba(ab)424 25、证明:如图所示,uuur uuur uuuuruuur uuuur uuur r OD OP 1 2,由于1 230 ,OPOPOPOPuuuruuur uuur 所以 OP 3OD , OD 1uuuruuur uuur所以 ODOP PD1 1所以 OPP 1 2 30 ,同理可得OPP 1330(第 5 题)所以 P 3 PP 1260 ,同理可得PP 12 P 360 , P 2 P 3 P 1 60 ,所以 PP 12 P 3 为正三角形 .6、连接 AB.uuuuruuurrr由对称性可知, AB 是 SMN 的中位线, MN2AB 2b2a .7、(1)实际前进速度大小为42 (4 3) 2 8(千米/时),沿与水流方向成 60°的方向前进;(2)实际前进速度大小为 4 2 千米/时,沿与水流方向成90 arccos6的方向前进 .3(第 6 题) uuur uuuruuur uuur uuur uuur uuur uuur uuur8、解:因为 OA OBOB OC ,所以 OB (OA OC) 0 ,所以 OB CA 0uuur uuur uuur uuur0 ,所以点 O 是 ABC 的垂心 .同理, OA BC 0 , OC AB9、(1) a 2 x a 1 y a 1 y 0 a 2 x 0 0 ; ( 2)垂直;(3)当 A 1 B 2A 2B 1 0时, l 1 ∥ l 2 ;当 A 1 A 2 B 1B 2 0时, l 1 l 2 ,夹角 的余弦 cosA 1 A 2B 1 B 2 ;A 1 2B 12A 22B 22( )Ax 0 By 0 C4dA 2B 2第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 练习(P127)1、 cos()coscossinsin0 cos1 sinsin.222cos(2)cos2cossin2sin1 cos0 sincos .2、解:由 cos3 , ( , ) ,得 sin1 cos 21 ( 3)24 ;525 5所以 cos()cos cossinsin 2 ( 3 ) 2 4 2 .4442 52 5103、解:由 sin15 , 是第二象限角,得 cos 1 sin 21(15 )28 ;1717 17所以 cos() cos cossin sin8 1 15 3 8 153 .33317 2 172344、解:由 sin2 , ( ,3) ,得 cos1 sin 21 (2 )25 ;3 23 3 又由 cos3 , (3,2 ) ,得 sin1 cos21 ( 3) 27 .4244所以cos() coscos sinsin3 (5) (7) ( 2) 3 5 27 .434 312练习(P131)1、(1)62; ( 2) 62; ( 3) 62; ( 4) 23 .4442、解:由 cos3 , ( , ) ,得 sin 1 cos 21 ( 3)24 ;5255所以 sin() sin coscos sin4 1 ( 3)3 43 3 .333 5 25 2103、解:由 sin12, 是第三象限角,得 cos1 sin 21 ( 12) 25 ;1313 13所以cos(6) coscos sin sin 3 ( 5 ) 1 ( 12) 5 3 12 .662 13 2 1326tantan314、解: tan()42 .1 3 141tan tan45、(1)1; ( 2) 1;(3)1;(4)3 ;22(5)原式 = (cos34 cos26sin34 sin 26 )cos(3426 )cos601 ;2(6)原式= sin20cos70 cos20 sin70 (sin 20 cos70cos20sin70 )sin901 .6、(1)原式 = cos cosxsin sin x cos(3x) ;33(2)原式 = 2(3sin x1cosx) 2(sin x coscosxsin) 2sin( x) ;22666(3)原式 = 2(2sin x2cosx) 2(sin x cos4 cosx sin ) 2sin( x) ;224 4(4)原式 =13sin x)22(coscosxsin sin x) 2 2 cos( x) .2 2( cos x2 3233 7、解:由已知得 sin()cos cos()sin3 ,5即 sin[()]3, sin() 355所以 sin3 . 又 是第三象限角,5于是 cos1sin 21 ( 3 )2 4 .55因此sin(5 ) sincos 5cos sin 5( 3 )(2 ) ( 4 )( 2 ) 7 2 .44 45 2 5 2 10练习(P135)1、解:因为 8 12 ,所以382443sin335又由 cos1 ( 2, tan8,得 sin)584 48585cos85所以 sinsin(2 )2sincos2 (3(4 248 ))2548855coscos(2) cos 2sin 28 ( 4 )2 ( 3)2 7 4885 5252tan2 33 1624tantan(2)8432 77482 1 ( 21 tan)8 42、解:由 sin()3,得 sin3,所以 cos 255所以 cos2cos 2sin216( 3) 2725525 3、解:由 sin2sin 且 sin0 可得 cos121 sin 21 ( 3 )2 165 25,又由( , ),得 sin1 cos 21 ( 1 )23,所以22 2tansin 3 ( 2)3 .cos24 、 解 : 由 tan21 , 得 2tan1 .所 以 tan 26tan1 0 , 所以3 1 tan 23tan 3 105、( 1)sin15 cos151sin301 ; ( 2)cos 2sin 28cos2 ;2484 2(3)原式 =12tan 22.5 11 ;( 4)原式 =cos452 .2 1 tan 2 22.52 tan4522 习题 A 组( P137)3)3 cos3 sin 0 cos ( 1) sinsin ; 1、(1) cos(cossin222(2) sin(3) sin3coscos 3sin1 cossincos ;222(3) cos( ) cos cos sinsin1 cos 0 sincos ;(4) sin( ) sin coscos sin0 cos( 1) sinsin .2、解:由 cos3,0,得 sin1 cos21 ( 3)24 ,55 5所以 cos() cos cos sin sin 6 4 33 14 3 3 .6 65 252 103、解:由 sin2, ( , ) ,得 cos1 sin 21 (2 )25 ,3 23 3又由 cos3, (,3) ,得 sin1 cos 21 ( 3)27 ,424 4所cos()cos cos sin sin5( 3 )2(7 )3527 .3434124、解:由cos 1 ,是锐角,得 sin1cos2 1 ( 1) 2 4 3777因为,是锐角,所以(0,) ,又因为cos()11,所14sin() 1 cos2 ()1(11)2531414所以 cos cos[()]cos()cos sin()sin(11153431 )71472 145、解:由60150 ,得 9030180又由 sin(30)3,得 cos(30)1sin 2 (30) 1 (3)2 55所以 cos cos[(30)30 ]cos(30)cos30sin(30)sin3043314335252106、(1)6 2 ;( 2)2 6 ;( 3)2 3 .447、解:由sin2,(,) ,得 cos1sin21( 2 )2 5 .3233又由cos 3,是第三象限角,4sin1cos21(3)27 .44所以 cos()cos cos sin sin5(32(73)34) 4352712sin()sin cos cos sin2(3(5)(7)3)344以以45得635128、解:∵ sin A5,cos B 3且 A,B 为 ABC 的内角13 5∴ 0 A,0B, cos A12 ,sin B 413 52当 cosA12时, sin( A B) sin Acos BcosAsin B135 3 ( 12) 4 33 013 5 13565A B,不合题意,舍去∴ cos A 12,sin B413 5∴ cosCcos( A B)(cos AcosB sin Asin B)(123 5 4)16 13 5 13 5 659、解:由 sin3 , ( , ) ,得 cos1 sin21 (3) 24 .5255∴ tansin 3 ( 5 ) 3 . cos5 44tantan3 1 2 .∴ tan()14 3 21tan tan1 (11) 24tantan 3 1tan()14 3 212 .tan tan1 ()24 10、解:∵ tan ,tan 是 2x 23x 7 0 的两个实数根 .∴ tantan3, tantan7 .22tantan31 .∴ tan()2 71 tan tan1 ( )3211、解:∵ tan() 3,tan() 5∴ tan2tan[( )()]tan( ) tan() 3 5 41 tan() tan( ) 1 357tan 2tan[()()]tan( ) tan() 3511 tan() tan()1 3 5 812、解:∵ BD : DC : AD2:3:6 ∴ tanBD1DC 1AD,tanAD23tantan 1 1∴ tan BACtan()3 211 tantan1 113 2又∵ 0BAC 180 ,∴BAC 45(第 12 题)13、( 1)6 5 sin( x) ;( 2) 3sin(3x) ;(3)2sin(x) ;(4) 2sin( 7x) ;626212(5)2;( 6)1; (7)sin() ;( 8) cos() ;(9) 3 ; (10)22tan() .14、解:由 sin0.8,(0, ) ,得 cos1 sin 21 0.820.62∴ sin22sin cos 2 0.8 0.6 0.96cos2cos 2sin 20.62 0.82 0.2815、解:由 cos3,180270 ,得 sin1 cos 21 ( 3 ) 26333∴ sin 22sincos 2 (6 ) ( 3) 2 23 3 3cos2cos 2sin 2 (3 )2 ( 6 ) 2 1333tan 2sin 2 2 2 ( 3)2 2cos2 316、解:设 sin Bsin C5,且 0B 90,所以 cosB12 .1313∴ sin A sin(180 2B)sin 2B 2sin B cosB25 1212013 13169cos A cos(1802B)cos2 B(cos 2Bsin 2B)((12) 2( 5)2 ) 1191313169tan Asin A 120 ( 169) 120 cos A169 1191192tan2 1 3,tan(tan tan 2 13 17、解:tan 23 2 )7 4 1 .1 tan 21 ( 1 )2 4 1 tan tan211 337 418、解: cos()cossin()sin1 cos[()]1,即 cos1333又(3,2 ) ,所以 sin1 cos21 (1)22 2233∴ sin 22sin cos2 (2 2 ) 1 4 23 39 cos2cos 2sin 2( 1 )2 ( 2 2 ) 2733 9∴cos(2 ) cos2 cos4sin 2 sin 47 2 ( 4 2 ) 27 2 849 2 9 21819、(1) 1 sin2 ;(2) cos2;( 3) 1sin 4x ;( 4) tan2 .4习题 B 组( P138) 1、略 .2、解:∵ tan A,tan B 是 x 的方程 x 2 p(x 1) 1 0 ,即 x 2 px p 1 0 的两个实根∴ tan A tan B p , tan A tan B p 1∴ tan C tan[( A B)]tan(A B) tan A tan Bp1 tan A tan B1 ( p11)由于 0 C,所以 C3 .43、反应一般的规律的等式是(表述形式不唯一)sin2cos 2(30 ) sin cos(30 )3(证明略)4本题是开放型问题,反映一般规律的等式的表述形式还可以是:sin 2 (30 ) cos 2sin( 30 )cos34sin 2 (15 ) cos 2 (15 )sin( 15 )cos( 15 ) 34 sin 2cos 2sincos3 ,其中 30 ,等等4思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳 . 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高 .4、因为 PA1 2 ,则 (cos( 2 sin 2 ( ) (cos cos ) 2(sinsin )2PP ) 1)即 2 2cos( ) 2 2cos cos 2sin sin所以 cos() cos cossinsin3.2 简单的三角恒等变换练习(P142)1、略 . 2 、略 . 3 、略 .4、( 1) y1 sin 4x . 最小正周期 , 增区 [8k ,k], k Z ,最222 82大1;2( 2) ycos x 2 . 最小正周期2 , 增区 [2k ,22k ], kZ ,最大3;( 3) y2sin(4 x) . 最小正周期 2, 增区 [ 5k , k ], kZ ,最324 2 24 2大 2.A ( P143)1、(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用 sin 2cos 2代替 1,用 2sin cos 代替 sin 2;(5)略; ( 6)提示:用 2cos 2 代替 1 cos2 ;(7)提示:用 2sin 2 代替 1 cos2 ,用 2cos 2 代替 1 cos2 ;(8)略 . 2、由已知可有 sincoscos sin1⋯⋯①, sin coscos sin1⋯⋯②23(1)②× 3-①× 2 可得 sin cos 5cos sin(2)把( 1)所得的两 同除以cos cos 得 tan5tan注意: 里 coscos0 含与①、②之中1 .2tan2 ( 1 )4 3、由已知可解得tan于是 tan2221 tan 21 ( 1 23)2tantan1 1 1tan()421341 tan tan1) 14(2∴ tan24tan()44、由已知可解得 x sin , ycos,于是 x 2 y 2 sin 2 cos 21.5、 f ( x) 2sin(4 x) ,最小正周期是 , 减区 [k , 7k ], k Z .32242 242B ( P143)1、略 .2、由于 76 2 7 90 ,所以 sin76sin(90 14 ) cos14 m即 2cos 2 7 1m ,得 cos7m 123、设存在锐角,使22 ,所以, tan()3 ,3 232tan tan又 tantan 23 ,又因为 tan()2, 221 tan tan2 所以 tantan tan()(1 tantan ) 33222由此可解得 tan1 ,,所以6 .4经检验6 ,是符合题意的两锐角 .44、线段 AB 的中点 M 的坐标为 ( 1(coscos ), 1(sin sin )) . 过 M 作 MM 1 垂22直于 x 轴,交 x 轴于 M 1 , MOM 1 1 ()1 ( ) .22在 Rt OMA 中, OMOA cos2cos.2在 Rt OM 1 M 中, OM 1 OM cos MOM 1cos2 cos ,2M 1 M OM sin MOM 1 sincos.22于是有1(coscos )cos2cos2 ,21(sinsin) sincos 2(第 4 题)225、当 x2 时, f ( ) sin 2 cos 2 1 ;当 x4 时, f ( ) sin 4cos 4(sin 2cos 2 )2 2sin 2 cos 211sin 22 ,此时有 1≤ f ( ) ≤ 1 ;22当x 6时,f ( ) sin 6cos 6(sin 2cos 2 )33sin 2 cos 2 (sin 2cos 2)13sin 22 ,此时有 1≤ f () ≤ 1 ;44由此猜想,当 x2k,k N时, 1≤ f ( ) ≤ 12k 16、(1) y 5( 3sin x4cosx) 5sin( x) ,其中 cos3,sin45555所以, y 的最大值为5,最小值为﹣ 5;(2) y22sin( x) ,其中 cosa ,sinb aba2b2a 2b2所以, y 的最大值为a 2b 2 ,最小值为a 2b 2 ;第三章 复习参考题 A 组( P146)1、 16 . 提示:()652、56. 提示: sin()sin[()]sin[( 5) ()]654 43、1.4、(1)提示:把公式 tan()tan tan变形;1 tan tan(2) 3 ;( 3) 2;( 4) 3 . 提示:利用( 1)的恒等式 .5、(1)原式 =cos103sin104sin(30 10 ) 4 ;sin10 cos10sin 20sin10 3) sin 40 sin10 3 cos10(2)原式 = sin 40 (cos10cos10= 2sin 40cos40sin80 1 ;cos10cos10(3)原式 = tan70 cos10 (3sin 20 1) tan70 cos103sin 20 cos20cos20cos20= sin70cos102sin10 sin 201 ;cos70cos20 cos70(4)原式 = sin50 (13sin10 ) sin50 cos10 3sin10cos10 cos10sin50 2cos50 sin100 1cos10 cos106、(1) 9;(2)24;525(3)2 2 . 提示: sin 4cos 4(sin 2cos 2 ) 2 2sin 2 cos 2 ;3(4)17.257、由已知可求得 cos cos2, sin sin1,于是 tantansin sin1 .55cos cos28、(1)左边 = 2cos 2 21 4cos23 2(cos 2 2 2cos2 1)2(cos21)2 2(2cos 2) 2 8cos 4=右边。

高中数学必修四同步练习及答案(新课标人教A版)之欧阳法创编

高中数学必修四同步练习及答案(新课标人教A版)之欧阳法创编

高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ............................................................................................................... 0 1.2任意角的三角函数 ........................................................................................................... 3 1.3三角函数的诱导公式 ....................................................................................................... 5 1.4三角函数的图像与性质. (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用............................... 10 第一章 三角函数基础过关测试卷 ...................................................................................... 13 第一章三角函数单元能力测试卷........................................................................................ 152.1平面向量的实际背景及基本概念与2.2.1向量加法运算 ............................................ 18 2.2向量减法运算与数乘运算.............................................................................................. 20 2.3平面向量的基本定理及坐标表示 .................................................................................. 22 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 25 第二章平面向量基础过关测试卷........................................................................................ 28 第二章平面向量单元能力测试卷........................................................................................ 313.1两角和与差的正弦、余弦和正切公式 .......................................................................... 34 3.2简单的三角恒等变换 ..................................................................................................... 37 第三章三角恒等变换单元能力测试卷 ................................................................................ 39 人教A 版必修4练习答案1.1任意角和弧度制 ............................................................................................................. 43 1.2任意角的三角函数 ......................................................................................................... 44 1.3三角函数的诱导公式 ..................................................................................................... 44 1.4三角函数的图像与性质.. (45)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用............................... 45 第一章三角函数基础过关测试卷........................................................................................ 47 第一章三角函数单元能力测试卷........................................................................................ 47 2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 ............................................ 48 2.2向量减法运算与数乘运算.............................................................................................. 48 2.3平面向量的基本定理及坐标表示 .................................................................................. 48 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 50 第二章平面向量基础过关测试卷........................................................................................ 51 第二章平面向量单元能力测试卷........................................................................................ 51 3.1两角和与差的正弦、余弦和正切公式 .......................................................................... 52 3.2简单的三角恒等变换 ..................................................................................................... 52 第三章三角恒等变换单元能力测试卷 .. (53)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398- 38 B.,398- 142 C.,398-1042 D.,14210422.集合α{=A ︱90⋅=k α,36-}Z k ∈,β{=B ︱180- 180<<β},则B A 等于 ( )A.,36{-54} B.,126{- 144} C.,126{-,36-,54144}D.,126{-54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则( )A.B A =B.C B =C.C A =D.D A = 4.若角α与β终边相同,则一定有 ( )A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( )A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3πB.3π-C.2πD.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为( )A.6π B.3π C.2πD.32π8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππαB.)(432Z k k ∈+=ππαC.)(4Z k k ∈+=ππαD.)(432Z k k ∈-=ππα9.角316π化为)20,(2παπα<<∈+Z k k 的形式( ) A.35ππ+B.344ππ+C.326ππ-D.373ππ+ 10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是( )A.B A =B.B A ⊇C.B A ⊆D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________. 12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________. 13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又 720-<a <0,求角a .16.已知角45=a ,(1)在区间720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=kx 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么? 17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( ) A.55-B.55C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( )A.αsinB.αcosC.αtanD.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( ) A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于( ) A.34 B.43 C.34± D.43± 5.函数x x y cos sin -+=的定义域是( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 7.已知,54sin =α且α是第二象限角,那么αtan 的值为( ) A.34-B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________.12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________.三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23- C.m 32 D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23-4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin( ) A.21||aa + B.21aa + C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( )A.33 B.33- C.3D.-3 7.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0B.1C.1- D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形 二、填空题(每题5分,共20分) 9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin(α. 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ.12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为. 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<<求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( )A.[]1,0B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( )A52πB 25πC π2D π53.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( )A.[]1,1-B.(][) +∞-∞-,11,C.[)+∞-,1D.(]1,∞-5.下列命题正确的是( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( )A 1C.0D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象( ) A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππC.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间;(2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y(2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω 的一个可能值为 ( )A.3B.2C.31D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为( ) A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为( ) A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK KD.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是( ) A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________. 10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________.三、解答题(每题25分,共50分)11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( )A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( )A.1B.0C.2D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是( )A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________. 10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( ) A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A.1sin2y x = B 1sin()22y x π=- C.1sin()26y x π=-D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是( )A.2π=x B 2π-=x C 4π=x D 8π=9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( )A.1个 B 个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( )A B 6 C D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( ) A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( ) A.2π B 4π- C 4π D 34π 二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分)17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个孤立点D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若=,则∥D.若≠,则与不是共线向量3.设O 为△ABC 的外心,则、、是 ( )A.相等向量B.平行向量C.模相等的向量D.起点相等的向量4.已知正方形ABCD 的边长为1,设=,=,=, 则b ++=( )A.0B.3C.22+D.225.58==的取值范围是 ( )A.[]8,3B.()8,3C.[]13,3D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是( )A.=+B.=+C.=+D.=+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =+= ( )A.7B.5C.3D.28.向量、皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量与同向,则向量+与的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量与的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量是平行向量,与是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601=,则=__________.12.化简=++__________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)+++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且=,OB DO =.求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可表示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________ 三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=? 16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD的形状是什么? AG EFB D2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==AC AB 则等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且//,则实数m 的值等于 ( )A.2或23-B.23C.2-或23 D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m b a -==且//,则32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使02211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===,且21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21- B.2 C.21 D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与 CD 交于点F ,若,,== 则 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且//,则=x __________12.设向量)3,2(),2,1(==,若向量+λ与向量)7,4(--=共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e e e +=+=),(321e e -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求23-+;(2)求满足n m +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b a ≠ D.=2.下面给出的关系始终正确的个数是 ( )①00=⋅②⋅=⋅③2a =④()()c b a c b a ⋅⋅=⋅⋅⋅≤A.0B.1C.2D.3 3.对于非零向量b a ,,下列命题中正确的是 ( )A.000==⇒=⋅b a b a 或B. //a ⇒在bC.()2⋅=⋅⇒⊥D.=⇒⋅=⋅4.下列四个命题,真命题的是 ( )A.在ABC ∆中,若,0>⋅则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅;D.ABC ∆为斜三角形的充要条件是.0≠⋅.5.,8=为单位向量,与的夹角为,60o 则在方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量,a ,1==与b 的夹角为 120,则=⋅+⋅b a a a( ) A.21 B.21- C.23 D.23-7.,631==与的夹角为,3π则⋅的值为 ( ) A.2 B.2± C.1 D.1±8.已知()(),5,5,0,3-==则与的夹角为 ( ) A.4π B.3π C.43π D.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量2+与-2平行时,⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==b 且,⊥则a 的坐标是_____________.12.若(),8,6-=a 则与平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,====b __________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==,求与b 的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与k -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D 的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-ACOD7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ( )8.下面给出的关系式中正确的个数是 ( )①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行; ③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P22PP =,则点P 坐标是( )A.)11,2(-B.)3,34(C.)3,32( D.)7,2(-11.若k b a 432,1|||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a,求(1)b a b a+⋅,的值;(2)a 与b 的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+ ④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( ) A.1 B.2 C.3 D.42.已知正方形ABCD 的边长为1,设===,,则=++b ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 =2153e e +与向量213e e m -=共线,则m 的值等于( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=则b a 32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量,,40-=⋅=8,则向量与的夹角为 ( )A. 60B. 60-C. 120D.120-8.已知)0,3(=,)5,5(-=,则a 与b 的夹角为 ( ) A.4πB.43πC.3πD.32π9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为( )A.6-B.6C.3D.3-10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为( )A.13B.513 C.565 D.6511.若35=+,=,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形 12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,|2|21PP P P =, 则P 点坐标为 ( )A.)11,2(-B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b的夹角为__________.14.若向量),2(x -=,)2,(x -=,且a 与b 同向,则-a b 2=__________.15.已知向量)2,3(-=,)1,2(-,)4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |NABDM C=__________.三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线. 18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量的坐标; 2)求证:∥.19.24==b a a b 夹角为120,求:(1)⋅;(2))()2(+⋅-;(3)b 23+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x x x -+==π,x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅,求α2sin 的值;(213=+OC OA ,且),0(πα∈,求与的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( ) A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( )A.0B.21C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于( ) A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于( ) A.45π B.4π C.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( )A.2B.2-C.4D.4- 9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________.11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A.23 B.23- C.21 D.21- 2.下列各式中,最小的是 ( )A.40cos 22B.6cos 6sin 2 C.37sin 50cos 37cos 50sin - D.41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( )A.2πB.πC.π2D.π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A.21B.23C.21- D.3-5.若316sin =⎪⎭⎫⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A.97-B.31- C.31 D.976.若函数x x y tan 2sin =,则该函数有 ( )A.最小值0,无最大值B.最大值2,无最小值C.最小值0,最大值2D.最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A.2cosαB.2sinαC.2cosα- D.2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A.1B.1- C.21D.21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________. 10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( ) A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( )A.2B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系A.b a =B.b a >C.b a <D.b a ≠( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+=( ) A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是。

高中数学必修四同步练习及答案(新课标人教A版)之欧阳理创编

高中数学必修四同步练习及答案(新课标人教A版)之欧阳理创编

高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 01.2任意角的三角函数 (3)1.3三角函数的诱导公式 (5)1.4三角函数的图像与性质 (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (10)第一章 三角函数基础过关测试卷 (13)第一章三角函数单元能力测试卷 (15)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (18)2.2向量减法运算与数乘运算 (20)2.3平面向量的基本定理及坐标表示 (22)2.4平面向量的数量积与2.5平面向量应用举例 (25)第二章平面向量基础过关测试卷 (28)第二章平面向量单元能力测试卷 (30)3.1两角和与差的正弦、余弦和正切公式 (33)3.2简单的三角恒等变换 (36)第三章三角恒等变换单元能力测试卷 ....................................... 38 人教A 版必修4练习答案1.1任意角和弧度制 (41)1.2任意角的三角函数 (42)1.3三角函数的诱导公式 (42)1.4三角函数的图像与性质 (43)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (43)第一章三角函数基础过关测试卷 (45)第一章三角函数单元能力测试卷 (45)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (46)2.2向量减法运算与数乘运算 (46)2.3平面向量的基本定理及坐标表示 (46)2.4平面向量的数量积与2.5平面向量应用举例 (48)第二章平面向量基础过关测试卷 (49)第二章平面向量单元能力测试卷 (49)3.1两角和与差的正弦、余弦和正切公式 (50)3.2简单的三角恒等变换 (50)第三章三角恒等变换单元能力测试卷 (51)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398 - 38B.,398 - 142C.,398 - 1042D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱ 180- 180<<β},则B A 等于 ( )A.,36{ - 54}B.,126{ - 144}C.,126{ -,36 -,54 144}D.,126{ - 54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于 90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( )A. 180=+βαB. 0=+βαC. 360⋅=-k βα,Z k ∈D. 360⋅=+k βα,Z k ∈5.已知α为第二象限的角,则2α所在的象限是 ( )A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限6.将分针拨慢5分钟,则分针转过的弧度数是 ( ) A.3π B.3π- C.2π D.32π 7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( ) A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( ) A.35ππ+ B.344ππ+ C.326ππ- D.373ππ+ 10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( )A.B A =B.B A ⊇C.B A ⊆D.B A ≠二、填空题(每题5分,共20分)11.角a 小于 180而大于- 180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________;2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________;4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.14.已知a {∈θ︱a =+πk },4)1(Z k k ∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又 720-<a < 0,求角a .16.已知角 45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=k x 45+}Z k ∈ 那么两集合的关系是什么? 17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( ) A.55- B.55 C.552 D.25 2.α是第四象限角,则下列数值中一定是正值的是 ( )A.αsinB.αcosC.αtanD.αtan 1 3.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( ) A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( ) A.34 B.43 C.34± D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos <θ则2θ是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________.10.角α的终边上有一点(),5,m P 且(),013cos ≠=m m α则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________.12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________.三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值. 15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32- B.m 23- C.m 32 D.m 23 3.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( ) A.)](22,22[Z k k k ∈++-ππππ B.))(223,22(Z k k k ∈++ππππ C.)](223,22[Z k k k ∈++ππππ D.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( ) A.21||a a + B.21a a + C.21a a +- D.211a +-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A.0B.1C.1- D.23 8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为.三、解答题(每题10分,共40分)13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值. 14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( )A.[]1,0B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( ) A 52π B 25π C π D π5 3.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2- 4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1D.(]1,∞- 5.下列命题正确的是 ( )A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 1C.0D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象( ) A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππD.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y(2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω 的一个可能值为 ( )A.3B.2C.31D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK KD.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是( ) A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________. 10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________.三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域;2)求它的单调区间;3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( )A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( )A.1B.0C.2D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________. 10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( ) A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A.1sin2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是( ) A.2π=x B 2π-=x C 4π=D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( )A 5B 6CD 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( ) A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( ) A.2π B 4π- C 4π D 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分)17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个孤立点D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若=,则∥D.若≠,则与不是共线向量3.设O 为△ABC 的外心,则、、是 ( )A.相等向量B.平行向量C.模相等的向量D.起点相等的向量4.已知正方形ABCD 的边长为1,设=,=,=, 则b +=( )A.0B.3C.22+D.225.58==的取值范围是 ( )A.[]8,3B.()8,3C.[]13,3D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是( )A.=+B.=+C.=+D.=+ D C7.在边长为1的正三角形ABC 中,若向量=,== ( )A.7B.5C.3D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量与<,则向量+与的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量与同向,则向量+与的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量与向量是平行向量,与是共线向量,则=__________.11.在菱形ABCD 中,∠DAB ︒=601=,则=+__________.12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)DF ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,=.求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可表示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________ 三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值?14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,=b ,试以a ,b 表示DE 、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==AC AB 则等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m m =+=且//,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m -==且//,则32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使02211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===,且21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==若n m -与2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21- B.2 C.21 D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,== 则 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且//,则=x __________12.设向量)3,2(),2,1(==,若向量+λ与向量)7,4(--=共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式x x y x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e e e +=+=),(321e e -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==,(1)求c b a 23-+;(2)求满足n m +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅②⋅=⋅③2=④()()c b a c b a ⋅⋅=⋅⋅⋅≤A.0B.1C.2D.3 3.对于非零向量b a ,,下列命题中正确的是 ( )A.000==⇒=⋅或B. b a //⇒在C.()2⋅=⋅⇒⊥D.b a c b c a =⇒⋅=⋅4.下列四个命题,真命题的是 ( )A.在ABC ∆中,若,0>⋅则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅;D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.,8=为单位向量,与的夹角为,60o 则在方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量b a ,,1==与的夹角为 120,则=⋅+⋅( )A.21B.21- C.23 D.23-7.a ,631==与的夹角为,3π则⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==b a 则与的夹角为 ( ) A.4π B.3π C.43π D.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==且,b a ⊥则的坐标是_____________.12.若(),8,6-=则与平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e λ+=与()2132e e --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====+-__________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b 的夹角θ.16.,43==且与不共线,当k 为何值的时,向量k +与k -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0 =-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D 的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e λ+=与()1232e e --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ACOD( )8.下面给出的关系式中正确的个数是 ( )①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行; ③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 22PP =,则点P 坐标是( )A.)11,2(-B.)3,34(C.)3,32( D.)7,2(-11.若k b a 432,1|||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a,求(1)b a b a+⋅,的值;(2)a 与b 的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+ ④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( ) A.1 B.2 C.3 D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++ ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量,,40-=⋅=8,则向量与的夹角为 ( )A.60B.60- C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( ) A.4πB.43πC.3πD.32π 9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为( )A.6-B.6C.3D.3-10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为( )A.13B.513 C.565 D.65 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =,则P 点坐标为 ( )A.)11,2(-B.)3,34(C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a|=1,|b|=2,且(a-b)和a 垂直,则a与b的夹角为__________. 14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=,ABDMC求证:C N M ,,三点共线. 18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--=31,=31BC , 1)求点E 、F 及向量EF的坐标; 2)求证:∥.19.24==夹角为120,求:(1)⋅;(2))()2(b a b a +⋅-;(3)3+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( ) A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( )A.0B.21C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于( ) A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于( )A.45π B.4π C.45π或4π D.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( )A.2B.2-C.4D.4- 9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分) 10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________.11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值;(2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23- C .21 D .21- 2.下列各式中,最小的是 ( )A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin -D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A .2πB .πC .π2D .π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( ) A .21B .23C .21-D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A .97-B .31- C .31 D .976.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值B .最大值2,无最小值C .最小值0,最大值2D .最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinαC .2cosα-D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________. 10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( ) A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( )A.2B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系A.b a =B.b a >C.b a <D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+=( ) A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x 7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( )A.2B.4C.8D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97 B.23C.1832+D.183724+( ) 12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分)17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值. 18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根,求:(1)βα+的值;(2))cos(βα-的值. 21.已知函数a x x x x f ++-++=2cos )62sin()62sin()(ππ(a 为实常数),(1)求函数)(x f 的最小正周期;(2)如果当⎥⎦⎤⎢⎣⎡∈2,0πx 时,)(x f 的最小值为2-,求a 的值. 16.已知函数R x xx x x f ∈--++=,2cos 2)6sin()6sin()(2ωπωπω(其中0>ω),(1)求函数)(x f 的值域;(2)若函数)(x f y =的图像与直线1-=y 的两个相邻交点间的距离为2π,求函数 )(x f y =的单调增区间.参考答案1.1任意角和弧度制一、选择题1-5CCDCC 6-10CADBA 二、填空题11.120{-60,-0,60,120,}12.(1)α{︱360⋅=k α},Z k ∈ (2)α{︱90⋅=k α},Z k ∈(3)α{︱ 360⋅k <<α 180360⋅+k },Z k ∈ α{︱360⋅=k α 270+},Z k ∈(4)α{︱ 180⋅=k α45+},Z k ∈ 13.2 14.一或第二 三、解答题15.解:∵ 120=α 360⋅+k Z k ∈,720,-0<<α ∴240-=α600,16.解:(1) 45=β360⋅+k Z k ∈,720-≤ 45 360⋅+k 0<,则2-=k 或1-=k675-=β或 315-=β(2)},45)1({},,45)12({Z k k x x N Z k k x x M ∈+==∈+==所以N M ⊂17.因为,,23Z k k ∈+=ππθ所以Z k k ∈+=,3293ππθ所以在]2,0[π内与3θ终边相同的角有:913,97,9πππ18.因为302=+R l ,所以4225)215(15)230(212122+--=+-=-==R R R R R lR S当215=R 时,扇形有最大面积4225,此时2,15230===-=RlR l α1.2任意角的三角函数 一、选择题1-4ABAB 5-8BBAB 二、填空题⒐⎭⎬⎫⎩⎨⎧∈+=+<<+<≤Z k k k k k k ,222223222ππαππαπππαπα或或 10.1317或137- 11.33,21 12.⎪⎭⎫⎝⎛47,45ππ三、解答题 13.22,1,22-- 14.126,562 15.161.3三角函数的诱导公式 一、选择题1-4ABCC 5-8CCCC 二、填空题 9.1 10.1312 11.0 12.211aa ++-提示:12.由已知a -=26tan ,于是21126cos a+=;2126sin aa +-=.∴()()21126cos 26sin 206cos 206sin aa ++-=-=-+-.三、解答题 13.33 14.2515.0 16.3 提示:16.()()()42000cos 2000sin 2000++++=απαπb a f()[]()[]41999cos 1999sin ++++++=αππαππb a ()()841999cos 1999sin +-+-+-=απαπb a。

最新高中数学(人教A版)必修4:2-4-1同步试题(含详解)

最新高中数学(人教A版)必修4:2-4-1同步试题(含详解)

高中数学(人教A 版)必修4同步试题1.已知向量a ,b 满足a·b =0,|a|=1,|b|=2,则|2a -b|=( ) A .0 B .22 C .4D .8解析 |2a -b|2=4a 2-4a·b +b 2=8, ∴|2a -b|=22. 答案 B2.已知|a|=6,|b|=2,a 与b 嘚夹角为60°,则a·b 等于( ) A .6+3 B .6-3 C .6D .7 解析 a·b =|a||b|cos60°=6×2×cos60°=6. 答案 C3.已知|a|=2,|b|=4,a·b =-4,则向量a 与b 嘚夹角为( ) A .30° B .60° C .150°D .120° 解析 cos θ=a·b |a||b|=-42×4=-12,∵θ∈[0°,180°], ∴θ=120°,故选D. 答案 D4.已知|b|=3,a 在b 方向上嘚投影为32,则a·b =( ) A .3 B.92 C .2D.12 解析 由题意,得|a|cos 〈a ,b 〉=32, ∴a·b =|a||b|cos 〈a ,b 〉=3×32=92. 答案 B5.若非零向量a 与b 嘚夹角为2π3,|b|=4,(a +2b)·(a -b)=-32,则向量a 嘚模为( ) A .2 B .4 C .6D .12 解析 (a +2b)·(a -b)=a 2+2a·b -a·b -2b 2=a 2+a·b -2b 2=-32,又a·b =|a||b|cos 2π3=|a|×4×()-12=-2|a|, ∴|a|2-2|a|-2×42=-32. ∴|a|=2,或|a|=0(舍去). 答案 A6.若平面向量a =(-1,2)与b 嘚夹角是180°,且|b|=35,则b =________.解析 设b =(x ,y),则⎩⎪⎨⎪⎧y =-2x ,x 2+y 2=45.∴x 2=9.∴x =±3,又a =(-1,2)与b 方向相反. ∴b =(3,-6). 答案 (3,-6)7.设向量a ,b 满足|a|=1,|b|=1,且|ka +b|=3|a -kb|(k>0).若a 与b 嘚夹角为60°,则k =________. 解析 由|ka +b|=3|a -kb|, 得k 2a 2+2ka·b +b 2=3a 2-6ka·b +3k 2b 2, 即(k 2-3)a 2+8ka·b +(1-3k 2)b 2=0. ∵|a|=1,|b|=1,a·b =1×1cos60°=12, ∴k 2-2k +1=0,∴k =1. 答案 17.已知两点A(2,3),B(-4,5),则与AB →共线嘚单位向量是________. 解析 A B →=(-6,2), ∴|AB →|=-62+22=210,∴与AB →共线嘚单位向量为±⎝⎛⎭⎫-31010,1010.答案 (-31010,1010)或(31010,-1010)8.若向量a ,b 满足|a|=2,|b|=1,a·(a +b)=1,则向量a ,b 嘚夹角嘚大小为________. 解析 ∵|a|=2,a·(a +b)=1, ∴a 2+a·b =2+a·b =1.∴a·b =-1.设a ,b 嘚夹角为θ,则cos θ=a·b |a||b|=-12×1=-22,又θ∈[0,π],∴θ=3π4. 答案 3π49.已知|a|=2|b|≠0,且关于x 嘚方程x 2+|a|x +a·b =0有实根,求a 与b 嘚夹角嘚取值范围. 解 依题意,Δ=|a|2-4a·b ≥0, ∴|a|2≥4a·b.设a 与b 嘚夹角为θ,则 cos θ=a·b |a||b|≤14|a|212|a|2=12,又0≤θ≤π,∴θ∈[]π3,π.即a 与b 嘚夹角嘚取值范围是[]π3,π.10.已知|a|=1,a·b =12,(a -b)·(a +b)=12,求: (1)a 与b 嘚夹角;(2)a -b 与a +b 嘚夹角嘚余弦值. 解 (1)∵(a -b)·(a +b)=12, ∴|a|2-|b|2=12.∵|a|=1, ∴|b|=|a|2-12=22.设a 与b 嘚夹角为θ,则 cos θ=a·b|a||b|=121·22=22,∵0°≤θ≤180°, ∴θ=45°.(2)∵(a -b)2=a 2-2a·b +b 2=12, ∴|a -b|=22.∵(a +b)2=a 2+2a·b +b 2=52, ∴|a +b|=102.设a -b 与a +b 嘚夹角为α,则cos α=a -b ·a +b |a -b||a +b|=1222×102=55. 教师备课资源1.设a ,b ,c 是三个向量,以下命题中正确嘚有( ) ①若a·b =a·c ,且a ≠0,则b =c ; ②若a·b =0,则a =0,或b =0; ③若a ,b ,c 互不共线,则(a·b)c =a(b·c); ④(3a +2b)(3a -2b)=9|a|2-4|b|2. A .1个 B .2个 C .3个D .4个解析 ①,②,③均错,④正确. 答案 A2.△ABC 中,AB →·AC →<0,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 答案 C3.已知|a|=4,|b|=6,a 与b 嘚夹角为60°,则向量a 在b 方向上嘚投影是________,向量b 在a 方向上嘚投影是________.解析 向量a 在b 方向上嘚投影是|a|cos60°=4×12=2,向量b 在a 方向上嘚投影是|b|cos60°=6×12=3. 答案 2 34.若向量|a|=1,|b|=2,|a -b|=2,则|a +b|=________. 解析 由|a -b|=2, 得|a|2-2a·b +|b|2=4. 又|a|=1,|b|=2, ∴2a·b =1.∴|a +b|2=|a|2+2a·b +|b|2=1+1+4=6. ∴|a +b|=6. 答案65.已知a ,b 为两个单位向量,则下面说法正确嘚是( )A .a =bB .如果a ∥b ,那么a =bC .a·b =1D .a 2=b 2解析 ∵a 与b 是单位向量,∴|a|=|b|,∴a 2=b 2. 答案 D6.已知两点A(2,3),B(-4,5),则与AB →共线嘚单位向量是________. 解析 AB →=(-6,2), ∴|AB →|=-62+22=210,∴与AB →共线嘚单位向量为±⎝⎛⎭⎫-31010,1010.答案 ⎝⎛⎭⎫-31010,1010或⎝⎛⎭⎫31010,-1010。

【最新教材】【人教A版】高中数学必修4同步辅导与检测(含答案)第二章2.4-2.4.2平面向量数量积

【最新教材】【人教A版】高中数学必修4同步辅导与检测(含答案)第二章2.4-2.4.2平面向量数量积

- 1),
→→ 故AD·AC=(2,1) ·(3,- 1)= 5.
答案: A
3.已知向量 a=(1,-2),b=(x,4),且 a∥b,则|a-b|=( )
A.5 3 B.3 5 C.2 5 D.2 2 解析: 因为 a∥b,所以 4+2x=0, 所以 x=- 2, a-b= (1,- 2)-(-2,4)=(3,- 6), 所以 |a-b|=3 5. 答案: B 4.若 a=(2,1), b=(3, 4),则向量 a 在向量 b 方向上的射影 的数量为 ( ) A.2 5 B.2 C. 5 D.10 解析: 设 a , b 的夹角为 θ,则 |a|cos θ= |a| ·|aa|·|bb|= a|b·b| = 2×3+5 1×4=2. 答案: B 5. (2016 ·全国 Ⅱ卷 )已知向量 a=(1,m),b=(3,- 2),且 (a+ b)⊥b,则 m=( ) A.- 8 B.- 6 C.6 D. 8 解析: 法一: 因为 a=(1,m),b=(3,- 2),所以 a+b=(4,m - 2). 因为 (a+b)⊥b,所以 (a+b) ·b=0,所以 12-2(m-2)=0, 解得 m=8. 法二: 因为 (a+b)⊥b,所以 (a+ b) ·b= 0,即 a·b+b2=3-2m+ 32+(-2)2=16-2m=0,解得 m= 8. 答案: D 二、填空题 6.(2016 ·北京卷 )已知向量 a=(1, 3), b=( 3,1),则 a 与 b 夹角的大小为 ________.
因此 λ的取值范围是 λ<130且 λ≠ -65.
答案:
λλ<130且
λ≠-
6 5
三、解答题
9.已知向量 a= (1,2),b=(x,1),
(1)当 x 为何值时,使 (a+2b)∥ (2a-b)?

高中数学必修四同步练习及答案(新课标人教A版)之欧阳数创编

高中数学必修四同步练习及答案(新课标人教A版)之欧阳数创编

高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 01.2任意角的三角函数 (3)1.3三角函数的诱导公式 (5)1.4三角函数的图像与性质 (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (10)第一章 三角函数基础过关测试卷 (12)第一章三角函数单元能力测试卷 (14)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (17)2.2向量减法运算与数乘运算 (19)2.3平面向量的基本定理及坐标表示 (21)2.4平面向量的数量积与2.5平面向量应用举例 (24)第二章平面向量基础过关测试卷 (26)第二章平面向量单元能力测试卷 (28)3.1两角和与差的正弦、余弦和正切公式 (31)3.2简单的三角恒等变换 (33)第三章三角恒等变换单元能力测试卷 ....................................... 35 人教A 版必修4练习答案1.1任意角和弧度制 (38)1.2任意角的三角函数 (38)1.3三角函数的诱导公式 (39)1.4三角函数的图像与性质 (40)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (40)第一章三角函数基础过关测试卷 (41)第一章三角函数单元能力测试卷 (41)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 (42)2.2向量减法运算与数乘运算 (42)2.3平面向量的基本定理及坐标表示 (42)2.4平面向量的数量积与2.5平面向量应用举例 (44)第二章平面向量基础过关测试卷 (45)第二章平面向量单元能力测试卷 (45)3.1两角和与差的正弦、余弦和正切公式 (46)3.2简单的三角恒等变换 (46)第三章三角恒等变换单元能力测试卷 (47)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398 - 38B.,398 - 142C.,398 - 1042D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱ 180- 180<<β},则B A 等于 ( )A.,36{ - 54}B.,126{ - 144}C.,126{ -,36 -,54 144}D.,126{ - 54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于 90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则 ( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( )A. 180=+βαB. 0=+βαC. 360⋅=-k βα,Z k ∈D. 360⋅=+k βα,Z k ∈5.已知α为第二象限的角,则2α所在的象限是 ( )A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限6.将分针拨慢5分钟,则分针转过的弧度数是 ( ) A.3π B.3π- C.2π D.32π 7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( ) A.6π B.3π C.2π D.32π8.已知角α的终边经过点)1,1(--P ,则角α为 ( ) A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( ) A.35ππ+ B.344ππ+ C.326ππ- D.373ππ+ 10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( )A.B A =B.B A ⊇C.B A ⊆D.B A ≠二、填空题(每题5分,共20分)11.角a 小于 180而大于- 180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________;2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________;4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.14.已知a {∈θ︱a =+πk },4)1(Z k k ∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又 720-<a < 0,求角a .16.已知角 45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=k x 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同? 18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( ) A.55- B.55 C.552 D.25 2.α是第四象限角,则下列数值中一定是正值的是 ( )A.αsinB.αcosC.αtanD.αtan 1 3.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( ) A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( ) A.34 B.43 C.34± D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos <θ则2θ是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.34 8.已知点()ααcos ,tan P 在第三象限,则角α在( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________.10.角α的终边上有一点(),5,m P 且(),013cos ≠=m m α则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________.12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________.三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值. 15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32- B.m 23- C.m 32 D.m 23 3.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( ) A.)](22,22[Z k k k ∈++-ππππ B.))(223,22(Z k k k ∈++ππππ C.)](223,22[Z k k k ∈++ππππ D.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( ) A.21||a a + B.21a a + C.21a a +- D.211a +-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A.0B.1C.1- D.23 8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为.三、解答题(每题10分,共40分)13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值. 14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( )A.[]1,0B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( ) A 5π B 2π C π2 D π 3.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2[- 4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( )A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A 1 C.0 D. 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象 ( )A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x x y1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω 的一个可能值为 ( )A.3B.2C.31D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位4.函数1)62sin(2++=πx y 的最大值是( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为( ) A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK KC.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是( ) A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( )A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( )A.1B.0C.2D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________. 10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( ) A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A.1sin2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是( ) A.2π=x B 2π-=x C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( )A 5B 6C 7D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( ) A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( ) A.2π B 4π- C 4π D 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个孤立点D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则=C.若=,则∥D.若≠,则与不是共线向量3.设O 为△ABC 的外心,则、、是 ( )A.相等向量B.平行向量C.模相等的向量D.起点相等的向量4.已知正方形ABCD 的边长为1,设=,=,=, ++=( ) A.0 B.3 C.22+ D.225.58==的取值范围是 ( )A.[]8,3B.()8,3C.[]13,3D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是( )A.CA BC AB =+B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量=,=+= ( )A.7B.5C.3D.28.向量、皆为非零向量,下列说法不正确的是 ( )A.向量与>,则向量+与的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量与同向,则向量+与的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量与的关系是__________.10.已知C B A ,,是不共线的三点,向量与向量AB 是平行向量,与是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==+__________.12.化简=++__________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)++++. (2)+++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且=,=.求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可表示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________ 三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值?14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==AC AB 则等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且//,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m b a -==且//,则32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使02211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量,使=2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===,且21λλ+=,则21,λλ的值分别为( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21- B.2 C.21 D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,== 则 等于 ( ) A.2141+ B.3132+ C.4121+ D.3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且//,则=x __________12.设向量)3,2(),2,1(==b a ,若向量+λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与的方向的夹角为3π4=,则的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量与不共线,实数y x ,满足等式x x y x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e e e +=+=),(321e e -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==,(1)求c b a 23-+;(2)求满足n m +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b a ≠ D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅②⋅=⋅③2a =④()()c b a c b a ⋅⋅=⋅⋅⋅≤A.0B.1C.2D.3 3.对于非零向量b a ,,下列命题中正确的是 ( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在C.()2⋅=⋅⇒⊥D.b a c b c a =⇒⋅=⋅4.下列四个命题,真命题的是 ( )A.在ABC ∆中,若,0>⋅则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅;D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.,8=为单位向量,与的夹角为,60o 则在方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量,a ,1==与的夹角为 120,则=⋅+⋅b a a a( ) A.21 B.21- C.23 D.23-7.a ,631==与的夹角为,3π则⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==b a 则与的夹角为 ( ) A.4π B.3π C.43π D.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量2+与-2平行时,⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==b 且,⊥则a 的坐标是_____________.12.若(),8,6-=则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,====__________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==,求与b 的夹角θ.16.,43==且与不共线,当k 为何值的时,向量k +与k -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA == ,,d OD c OC ==则下列运算正确的是( )A.0 =+++d c b aB.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b a c b c a =⇒⋅=⋅ 6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D 的坐标为( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e λ+=与()1232e e --=共线的等价条件是A.23=λB.32=λC.32-=λD.23-=λ ( )A C O D8.下面给出的关系式中正确的个数是 ( ) ①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底;②两个非零向量平行,则他们所在直线平行;③零向量不能作为基底中的向量;④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 22PP =,则点P 坐标是( )A.)11,2(-B.)3,34(C.)3,32( D.)7,2(-11.若k b a 432,1|||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分) 12.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a ,则b a 与的夹角为__________. 14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________.三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a +⋅,的值;(2)a 与b 的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+ ④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( ) A.1 B.2 C.3 D.42.已知正方形ABCD 的边长为1,设===,,=++b ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 =2153e e +与向量213e e m -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=则b a 32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量,,40-=⋅=8,则向量与的夹角为 ( )A.60B.60- C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则与的夹角为NABDM C( ) A.4πB.43πC.3πD.32π 9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为( )A.6-B.6C.3D.3-10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为( )A.13B.513 C.565 D.65 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为( )A.)11,2(-B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a|=1,|b|=2,且(a-b)和a 垂直,则a与b的夹角为__________. 14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线. 18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31,BF =31, 1)求点E 、F 及向量的坐标; 2)求证:∥.19.24==120,求:(1)⋅;(2))()2(+⋅-;(3)3+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x x x -+==π,x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅,求α2sin 的值;(213=+,且),0(πα∈,求与的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( ) A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( )A.0B.21C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于( ) A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于( )A.45π B.4π C.45π或4π D.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( )A.2B.2-C.4D.4- 9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分) 10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________.11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23- C .21 D .21- 2.下列各式中,最小的是 ( )A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin -D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A .2πB .πC .π2D .π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A .21B .23C .21-D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A .97-B .31- C .31 D .976.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值B .最大值2,无最小值C .最小值0,最大值2D .最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinαC .2cosα-D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________. 10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin 510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( ) A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( )A.2B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系A.b a =B.b a >C.b a <D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+=( ) A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x 7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( )A.2B.4C.8D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97 B.23C.1832+D.183724+( ) 12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值. 18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根, 求:(1)βα+的值;(2))cos(βα-的值. 21.已知函数a x x x x f ++-++=2cos )62sin()62sin()(ππ(a 为实常数),(1)求函数)(x f 的最小正周期;(2)如果当⎥⎦⎤⎢⎣⎡∈2,0πx 时,)(x f 的最小值为2-,求a 的值. 16.已知函数R x xx x x f ∈--++=,2cos 2)6sin()6sin()(2ωπωπω(其中0>ω),(1)求函数)(x f 的值域;(2)若函数)(x f y =的图像与直线1-=y 的两个相邻交点间的距离为2π,求函数 )(x f y =的单调增区间.参考答案1.1任意角和弧度制一、选择题1-5CCDCC 6-10CADBA 二、填空题11.120{-60,-0,60,120,}12.(1)α{︱360⋅=k α},Z k ∈ (2)α{︱90⋅=k α},Z k ∈(3)α{︱ 360⋅k <<α 180360⋅+k },Z k ∈ α{︱360⋅=k α 270+},Z k ∈(4)α{︱ 180⋅=k α45+},Z k ∈ 13.2 14.一或第二 三、解答题15.解:∵ 120=α 360⋅+k Z k ∈,720,-0<<α ∴240-=α600,16.解:(1) 45=β360⋅+k Z k ∈,720-≤ 45 360⋅+k 0<,则2-=k 或1-=k675-=β或 315-=β(2)},45)1({},,45)12({Z k k x x N Z k k x x M ∈+==∈+==所以N M ⊂17.因为,,23Z k k ∈+=ππθ所以Z k k ∈+=,3293ππθ所以在]2,0[π内与3θ终边相同的角有:913,97,9πππ18.因为302=+R l ,所以4225)215(15)230(212122+--=+-=-==R R R R R lR S当215=R 时,扇形有最大面积4225,此时2,15230===-=RlR l α 1.2任意角的三角函数一、选择题1-4ABAB 5-8BBAB 二、填空题⒐⎭⎬⎫⎩⎨⎧∈+=+<<+<≤Z k k k k k k ,222223222ππαππαπππαπα或或 10.1317或137- 11.33,21 12.⎪⎭⎫⎝⎛47,45ππ三、解答题 13.22,1,22-- 14.126,562 15.161.3三角函数的诱导公式 一、选择题1-4ABCC 5-8CCCC 二、填空题 9.1 10.1312 11.0 12.211aa ++-提示:12.由已知a -=26tan ,于是21126cos a+=;2126sin aa +-=.∴()()21126cos 26sin 206cos 206sin aa ++-=-=-+-.三、解答题 13.33 14.2515.0 16.3 提示:16.()()()42000cos 2000sin 2000++++=απαπb a f()[]()[]41999cos 1999sin ++++++=αππαππb a ()()841999cos 1999sin +-+-+-=απαπb a ()381999=+-=f。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A版高中数学必修4同步训练目录1-1-1 任意角1-1-2 弧度制1-2-0-1 任意角的三角函数的定义1-2-1 单位圆中的三角函数线1-2-2 同角三角函数的基本关系1-3-1 诱导公式二、三、四1-3-2 诱导公式五、六1-4-1 正弦函数、余弦函数的图象1-4-2-1 周期函数1-4-2-2 正、余弦函数的性质1-4-3 正切函数的性质与图象1-5-1 画函数y=Asinωx+φ的图象1-5-2 函数y=Asinωx+φ的性质及应用1-6 三角函数模型的简单应用第一章综合检测题2-1 平面向量的实际背景及基本概念2-2-1 向量加法运算及其几何意义2-2-2 向量减法运算及其几何意义2-2-3 向量数乘运算及其几何意义2-3-1 平面向量基本定理2-3-2、3 平面向量的正交分解及坐标表示平面向量的坐标运算2-3-4 平面向量共线的坐标表示2-4-1 平面向量数量积的物理背景及其含义2-4-2 平面向量数量积的坐标表示、模、夹角2-5 平面向量应用举例第二章综合检测题3-1-1 两角差的余弦公式3-1-2-1 两角和与差的正弦、余弦3-1-2-2 两角和与差的正切3-1-3 二倍角的正弦、余弦、正切公式3-2-1 三角恒等变换3-2-2 三角恒等式的应用第三章综合检测题高中数学必修四综合能力测试能力提升一、选择题1.给出下列四个命题,其中正确的命题有①-75°是第四象限角②225°是第三象限角③475°是第二象限角④-315°是第一象限角A.1个B.2个C.3个D.4个[答案] D[解析] 由终边相同角的概念知:①②③④都正确,故选D.2.如果角α与x+45°具有同一条终边,角β与x-45°具有同一条终边,则α与β的关系是A.α+β=0B.α-β=0C.α+β=k?360°k∈ZD.α-β=k?360°+90°k∈Z[答案] D[解析] ∵α=x+45°+k?360°k∈Z,β=x-45°+k?360°k∈Z,∴α-β=k?360°+90°k∈Z.3.山东潍坊模块达标已知α与120°角的终边关于x轴对称,则是A.第二或第四象限角B.第一或第三象限角C.第三或第四象限角D.第一或第四象限角[答案] A[解析] 由α与120°角的终边关于x轴对称,可得α=k?360°-120°,k∈Z,∴=k?180°-60°,k∈Z,取k=0,1可确定终边在第二或第四象限.4.若角θ是第四象限角,则90°+θ是A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] A[解析] 如图所示,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.5.下列说法中,正确的是A.第二象限的角是钝角B.第二象限的角必大于第一象限的角C.-150°是第二象限角D.-252°16′,467°44′,1187°44′是终边相同的角[答案] D[解析] 第二象限的角中,除包含钝角以外,还包含与钝角相差k?360°k∈Z的角,如460°是第二象限的角但不是钝角,故选项A 错;460°是第二象限的角,730°是第一象限角,显然460°小于730°,故选项B错;选项C中-150°应为第三象限角,故选项C错;选项D中三个角相差360°的整数倍,则它们的终边相同.6.集合A=α|α=k?90°-36°,k∈Z,B=β|-180°β180°,则A∩B等于A.-36°,54°B.-126°,144°C.-126°,-36°,54°,144°D.-126°,54°[答案] C[解析] 当k=-1时,α=-126°∈B;当k=0时,α=-36°∈B;当k=1时,α=54°∈B;当k=2时,α=144°∈B.二、填空题7.2011~2012?黑龙江五校联考与-2013°终边相同的最小正角是________.[答案] 147°8.2011~2012?镇江高一检测将分针拨快10分钟,则分针所转过的度数为________.[答案] -60°9.已知角β的终边在图中阴影所表示的范围内不包括边界,那么β∈________.[答案] α|n?180°+30°αn?180°+150°,n∈Z[解析] 在0°~360°范围内,终边落在阴影内的角α的取值范围为30°α150°与210°α330°,所以所有满足题意的角α的集合为α|k?360°+30°αk?360°+150°,k∈Z∪α|k?360°+210°αk?360°+330°,k∈Z=α|2k?180°+30°α2k?180°+150°,k∈Z∪α|2k+1180°+30°α2k+1180°+150°,k∈Z=α|n?180°+30°αn?180°+150°,n∈Z.三、解答题10.如图,分别写出适合下列条件的角的集合:1终边落在射线OM上;2终边落在直线OM上;3终边落在阴影区域内含边界.[解析] 1终边落在射线OM上的角的集合为A=α|α=45°+k?360°,k∈Z.2终边落在射线OM反向延长线上的角的集合为B=α|α=225°+k?360°,k∈Z,则终边落在直线OM上的角的集合为A∪B=α|α=45°+k?360°,k∈Z∪α|α=225°+k?360°,k ∈Z=α|α=45°+2k?180°,k∈Z∪α|α=45°+2k+1?180°,k∈Z=α|α=45°+n?180°,n∈Z.3同理,得终边落在直线ON上的角的集合为β|β=60°+n?180°,n∈Z,故终边落在阴影区域内含边界的角的集合为α|45°+n?180°≤α≤60°+n?180°,n∈Z.11.如图,已知直线l1:y=x及直线l2:y=-x,请表示出终边落在直线l1或l2上的角.[解析] 由题意知,终边落在直线l1上的角的集合为M1=α|α=30°+k1?360°,k1∈Z∪α|α=210°+k2?360°,k2∈Z=α|α=30°+k?180°,k∈Z;终边落在直线l2上的角的集合为M2=α|α=120°+k1?360°,k1∈Z∪α|α=300°+k2?360°,k2∈Z=α|α=120°+k?180°,k∈Z.所以终边落在直线l1或l2上的角的集合为M=M1∪M2=α|α=30°+k?180°,k∈Z∪α|α=120°+k?180°,k∈Z=α|α=30°+2k?90°,k∈Z∪α|α=30°+2k+1?90°,k∈Z=α|α=30°+n?90°,n∈Z.12.在角的集合α|α=k?90°+45°,k∈Z中,1有几种终边不相同的角?2若-360°α360°,则α共有多少个?[解析] 1在给定的角的集合中,终边不相同的角共有四种,分别是与45°,135°,-135°,-45°终边相同的角.2令-360°k?90°+45°360°,得-k.又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3.∴满足条件的角共有8个.能力提升一、选择题1.α=-,则角α的终边在A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析] α=-π=-π×°=-120°,则α的终边在第三象限.2.山东济南一中12-13期中已知α=-3,则角α的终边所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析] 由-π-3-知-3是第三象限角.3.下列各对角中,终边相同的是A.和2kπ-k∈ZB.-和C.-和D.π和[答案] C[解析] ∵--=-2π,∴选C.4.圆的半径是6 cm,则圆心角为15°的扇形面积是A.cm2B.cm2C.πcm2D.3πcm2[答案] B[解析] ∵15°=,∴l=×6=cm,∴S=lr=××6=cm2.5.2013山东潍坊高一期末若2弧度的圆心角所对的弧长为4 cm,则这个圆心角所夹的扇形的面积是A.4 cm2B.2 cm2C.4π cm2D.2π cm2[答案] A6.在半径为2cm的圆中,若有一条弧长为cm,则它所对的圆心角为A BC D.[答案] A[解析] 设圆心角为θ,则θ==.二、填空题7.广东高考改编如图所示,点A、B、C是圆O上的点,且AB=4,∠ACB=,则劣弧的长为________.[答案][解析] 连接AO,OB,因为∠ACB=,所以∠AOB=。

又OA=OB,所以△AOB为等边三角形,故圆O的半径r=AB=4,劣弧的长为×4=.8.2011~2012?淮安高一检测把角化成α+2kπ0≤α2π的形式为________.[答案] +4π9.若α,β满足-αβ,则α-β的取值范围是________.[答案] -π,0[解析] 由题意,得-α,--β,∴-πα-ββ.又αβ,∴α-β0.∴-πα-β0.三、解答题10.如图所示,用弧度制表示顶点在原点,始边重合于x轴的非负半轴,终边落在阴影部分的角的集合.[解析] 1将阴影部分看成是由OA逆时针转到OB所形成.故满足条件的角的集合为α|π+2kπαπ+2kπ,k∈Z.2若将终边为OA的一个角改写为-,此时阴影部分可以看成是OA逆时针旋转到OB所形成,故满足条件的角的集合为α|-+2kπα≤+2kπ,k∈Z.3将图中x轴下方的阴影部分看成是由x轴上方的阴影部分旋转π rad而得到,所以满足条件的角的集合为α|kπ≤α≤+kπ,k ∈Z.4与第3小题的解法类似,将第二象限阴影部分旋转π rad后可得到第四象限的阴影部分.所以满足条件的角的集合为α|+kπα+kπ,k∈Z.11.集合A=α|α=,n∈Z∪α|α=2nπ±π,n∈Z,B=β|β=n π,n∈Z∪β|β=nπ+,n∈Z,求A与B的关系.[解析] 解法1 :如图所示.∴B?A.解法2:α|α=,n∈Z=α|α=kπ,k∈Z∪α|α=kπ+,k∈Z;β|β=,n∈Z=β|β=2kπ,k∈Z∪β|β=2kπ±π,k∈Z比较集合A、B的元素知,B中的元素都是A中的元素,但A中元素α=2k+1πk∈Z不是B的元素,所以A?B.能力提升一、选择题1.已知P2,-3是角θ终边上一点,则tan2π+θ等于A BC.-D.-[答案] C[解析] tan2π+θ=tanθ==-.2.如果θ是第一象限角,那么恒有A.sin0B.tan1C.sincosD.sincos[答案] B3.可化为A.cos201.2°B.-cos201.2°C.sin201.2°D.tan201.2°[答案] B[解析] ∵201.2°是第三象限角,∴cos201.2°0,∴=|cos201.2°|=-cos201.2°.4.如果点Psinθ+cosθ,sinθcosθ位于第二象限,那么角θ所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析] 由于点Psinθ+cosθ,sinθcosθ位于第二象限,则所以有sinθ0,cosθ0,所以θ是第三象限角.5.α是第二象限角,Px,为其终边上一点,且cosα=x,则sin α的值为A B.C D.-[答案] A[解析] ∵|OP|=,∴cosα==x又因为α是第二象限角,∴x0,得x=-∴sinα==,故选A.6.如果α的终边过点P2sin30°,-2cos30°,则sinα的值等于A B.- C.-D.-[答案] C[解析] ∵P1,-,∴r==2,∴sinα=-.二、填空题7.已知角θ的终边经过点-,,那么tanθ的值是________.[答案] -8.已知角α的终边在直线y=x上,则sinα+cosα的值为________.[答案] ±[解析] 在角α终边上任取一点Px,y,则y=x,当x0时,r==x,sinα+cosα=+=+=,当x0时,r==-x,sinα+cosα=+=--=-.9.宁夏银川期中若角α的终边经过点P1,-2,则的值为________.[答案][解析] 根据任意角的三角函数的定义知tanα==-2,所以==.三、解答题10.已知角α的终边过点3a-9,a+2且cosα≤0,sinα0,求实数a的取值范围.[解析] ∵cosα≤0,sinα0,∴角α的终边在第二象限或y轴非负半轴上,∵α终边过3a-9,a+2,∴,∴-2a≤3.11.2011~2012?黑龙江五校联考已知角θ的终边上有一点P-,m,且sinθ=m,求cosθ与tanθ的值.[解析] 由题意可知=,∴m=0或或-.1当m=0时,cosθ=-1,tanθ=0;2当m=时,cosθ=-,tanθ=-;3当m=-时,cosθ=-,tanθ=.12.已知=-,且lgcosα有意义.1试判断角α所在的象限;2若角α的终边上一点是M,m,且|OM|=1O为坐标原点,求m的值及sinα的值.[解析] 1由=-可知sinα0,∴α是第三或第四象限角或终边在y轴的负半轴上的角.由lgcosα有意义可知cosα0,∴α是第一或第四象限角或终边在x轴的正半轴上的角.综上可知角α是第四象限的角.2∵|OM|=1,∴2+m2=1,解得m=±.又α是第四象限角,故m0,从而m=-.由正弦函数的定义可知sinα====-.能力提升一、选择题1.已知的正弦线为MP,正切线为AT,则有A.MP与AT的方向相同B.|MP|=|AT|C.MP0,AT0D.MP0,AT0[答案] A[解析] 三角函数线的方向和三角函数值的符号是一致的.MP=sin0,AT=tan0.2.已知α角的正弦线与y轴正方向相同,余弦线与x轴正方向相反,但它们的长度相等,则A.sinα+cosα=0B.sinα-cosα=0C.tanα=0D.sinα=tanα[答案] A3.若α,则下列不等式正确的是A.sinαcosαtanαB.cosαtanαsinαC.sinαtanαcosαD.tanαsinαcosα[答案] D4.y=的定义域为A.B.C.D.以上k∈Z[答案] B[解析] ∵,∴2kπx2kπ+,k∈Z.5.能力拔高题已知cosα≤sinα,那么角α的终边落在第一象限内的范围是A.0,]B.[,C.[2kπ+,2kπ+,k∈ZD.2kπ,2kπ+],k∈Z[答案] C[解析] 如图所示,由余弦线长度|OM|不大于正弦线长度|MP|可知,角α的终边落在图中的阴影区域,故选C.6.已知sinαsinβ,那么下列命题成立的是A.若α、β是第一象限角,则cosαcosβB.若α、β是第二象限角,则tanαtanβC.若α、β是第三象限角,则cosαcosβD.若α、β是第四象限角,则tanαtanβ[答案] D[解析] 如图1,α、β的终边分别为OP、OQ,sinα=MPNQ=sin β,此时OMON,∴cosαcosβ,故A错;如图2,OP、OQ分别为角α、β的终边,MPNQ,∴ACAB,即tanαtanβ,故B错;如图3,角α,β的终边分别为OP、OQ,MPNQ即sinαsinβ,∴ONOM,即cosβcosα,故C错,∴选D.二、填空题7.已知tanx=1,则x=________.[答案] x=+kπk∈Z8.不等式cosx0的解集是________.[答案] x|2kπ-x2kπ+,k∈Z.[解析] 如图所示,OM是角x的余弦线,则有cosx=OM0,∴OM的方向向右.∴角x的终边在y轴的右方.∴2kπ-x2kx+,k∈Z.9.已知点Ptanα,sinα-cosα在第一象限,且0≤α≤2π,则角α的取值范围是______________________.[答案] ∪[解析] ∵点P在第一象限,∴由1知0α或πα,3由2知sinαcosα,作出三角函数线知,在[0,2π]内满足sinαcosα的α∈,4由3、4得α∈∪.三、解答题10.利用三角函数线比较下列各组数的大小:1sin与sin;2tan与tan.[解析]如图,射线OP1、OP2分别表示角、的终边,其中P1、P2是终边与单位圆的交点,过点P1、P2分别作x轴的垂线,垂足分别为点Q1、Q2,过点A1,0作x轴的垂线分别与角、的终边的反向延长线交于点T1、T2,则Q1P1、Q2P2是角、的正弦线,AT1、AT2是、的正切线.于是,有向线段Q1P1Q2P2,AT1AT2,所以sinsin,tantan.11.求下列函数的定义域:1y=; 2y=lg3-4sin2x.[解析] 如图1.∵2cosx-1≥0,∴cosx≥.∴函数定义域为k∈Z.2如图2.∵3-4sin2x0,∴sin2x,∴-sinx.∴函数定义域为∪,k∈Z,即k∈Z.12.利用单位圆和三角函数线证明:若α为锐角,则1sinα+cosα1;2sin2α+cos2α=1.[证明] 如图,记角α的两边与单位圆的交点分别为点A,P,过点P作PM⊥x轴于点M,则sinα=MP,cosα=OM.1在Rt△OMP中,MP+OMOP,∴sinα+cosα1.2在Rt△OMP中,MP2+OM2=OP2,∴sin2α+cos2α=1.能力提升一、选择题1.已知sinα-cosα=-,则sinα?cosα等于A B.- C.-D.[答案] C[解析] 将所给等式两边平方,得1-2sinαcosα=,故sinαcosα=-.2.已知A为锐角,lg1+cosA=m,lg=n,则lgsinA的值为A.m+B.m-nC.m+D.m-n[答案] D[解析] ∵m-n=lg1+cosA+lg1-cosA=lg1-cos2A=lgsin2A=2 lgsinA,∴lgsinA=m-n.3.函数y=+的值域是A.0,2B.-2,0C.-2,0,2D.-2,2[答案] C[解析] 化简得y=+,当x的终边分别在第一、二、三、四象限时分类讨论符号即可.4.如果sinx+cosx=,且0xπ,那么tanx的值是A.-B.-或-C.-D.或-[答案] A[解析] 将所给等式两边平方,得sinxcosx=-,∵0xπ,∴sinx0,cosx0,∴sinx=,cosx=-,∴tanx=-.5.若非零实数m、n满足tanα-sinα=m,tanα+sinα=n,则cosα等于A B.C D.[答案] A[解析] 已知两等式联立,得解得tanα=,sinα=,则cosα==.6.化简+1-cosα的结果是A.sinαB.cosαC.1+sinαD.1+cosα[答案] A二、填空题7.在△ABC中,sinA=,则∠A=________.[答案] 60°[解析] ∵2sin2A=3cosA,∴21-cos2A=3cosA,即2cosA-1cosA+2=0,∴cosA=,cosA=-2舍去,∴A=60°.8.已知tanα=cosα,那么sinα=________.[答案][解析] 由于tanα==cosα,则sinα=cos2α,所以sinα=1-sin2α,解得sinα=.又sinα=cos2α≥0,所以sinα=.三、解答题9.已知cosα=-,且tanα0,求的值.[解析] ∵cosα=-,且tanα0,∴α是第三象限角,∴sinα=-=-,===sinα1+sinα=-×1-=-.10.已知2cos2α+3cosαsinα-3sin2α=1,求1tanα;2.[解析] 12cos2α+3cosαsinα-3sin2α==,则=1,即4tan2α-3tanα-1=0.解得tanα=-或tanα=1.2原式==,当tanα=-时,原式=;当tanα=1时,原式=.11.求证:sinα1+tanα+cosα1+=+.[证明] 左边=sinα1++cosα1+=sinα++cosα+ =+=+=右边.即原等式成立.能力提升一、选择题1.将cosπ+2化为某个锐角的三角函数为A.cos2B.-cos2C.-cosπ-2D.cosπ-2[答案] D[解析] cosπ+2=-cos2=-cos[π-π-2]=cosπ-2.又0π-2,故选D.2.在△ABC中,cosA+B的值等于A.cosCB.-cosCC.sinCD.-sinC[答案] B[解析] cosA+B=cosπ-C=-cosC.3.若cosπ+α=-,α2π,则sin2π-α=A B.±C D.-[答案] C[解析] ∵cosα+π=-,∴cosα=,又∵α2π,∴sinα=-=-=-,∴sin2π-α=-sinα=.4.在直角坐标系中,若α与β的终边关于y轴对称,则下列等式恒成立的是A.sinα+π=sinβB.sinα-π=sinβC.sin2π-α=-sinβD.sin-α=sinβ[答案] C[解析] ∵α与β的终边关于y轴对称,∴β=π-α+2kπ,k ∈Z,∴sinβ=sinπ-α+2kπ=sinπ-α=sinα.又sinα+π=-sinα,sinα-π=-sinα,sin2π-α=-sinα,sin-α=-sinα,∴sin2π-α=-sinβ恒成立.5.2013?济南质检α∈-,,sinα=-,则cos-α的值为A.-B.C D.-[答案] B[解析] 因为α∈-,,sinα=-,所以cosα=,即cos-α=,故选B.6.设tan5π+α=mα≠kπ+,k∈Z,则的值为A BC.-1D.1[答案] A[解析] ∵tan5π+α=m,∴tanα=m.原式====.二、填空题7.广东揭阳第一中学2012-2013期中化简:=________.[答案] -1[解析]原式===-1.8.2012?揭阳模拟已知sinαcosα=,且α,则cosα-sinα的值是________.[答案] -[解析] 1-2sinαcosα=sinα-cosα2=,又∵α,sinαcosα.∴cosα-sinα=-.9.2013?郑州模拟若sinπ-α=log8,且α∈-,0则cos2π-α的值是________.[答案][解析] ∵sinπ-α=log8,∴sinα=log232-2=-.∴cos2π-α=cosα==.三、解答题10.山东济南一中12-13期中已知0απ,tanα=-2.1求cosα的值;2求2sin2α-sinαcosα+cos2α的值. [解析] 1因为0απ,tanα=-2,απ, 所以cosα=-2原式===.11.已知sinα+π=,且sinαcosα0,求的值.[解析] ∵sinα+π=,∴sinα=-0.又sinαcosα0,∴cosα0.∴α是第四象限角.∴cosα===.∴tanα==-.∴原式====-.12.已知α是第四象限角,且fα=.1化简fα;2若sinα=-,求fα;3若α=-,求fα.[解析] 1fα==cosα.2∵sinα=-,且α是第四象限角,∴fα=cosα===.3f-=cos-=cos-=cos=.能力提升一、选择题1.2013?广东文已知sin+α=,那么cosα=A.-B.- C D.[答案] C[解析] 本题考查诱导公式,由sin+α=cosα=,知选C.2.已知sinα=,则cos+α等于A BC.-D.-[答案] C[解析] cos+α=-sinα=-.3.若sin3π+α=-,则cos-α等于A.-BC D.-[答案] A[解析] 由已知,得sinα=,则cos-α=-sinα=-.4.山东济南一中12-13期中若sin-α=,则cos-α的值为A B.- C D.-[答案] B[解析] cos-α=cos[+-α]=-sin-α=-.5.已知sinα+=,α∈-,0,则tanα等于A.-2B.2C.-D.[答案] A[解析] sinα+=cosα=,又α∈-,0,所以sinα=-=-,则tanα==-2.6.若=2,sinα-5π?sin-α等于A BC.±D.-[答案] B[解析] ==2,解得tanα=3,则原式=-sinα-cosα=sinαcos α====.二、填空题7.已知α是锐角,且2tanπ-α-3cos+β+5=0,tanπ+α+6sin π+β-1=0,则sinα的值是______________.[答案][解析] 由已知可得-2tanα+3sinβ+5=0,tanα-6sinβ-1=0,∴tanα=3.又tanα=,∴9==,sin2α=.∵α为锐角,∴sinα=.8.已知sin+α=,则sin-α=________.[答案][解析] ∵sin+α=cosα=,∴sin-α=cosα=.9.化简=________.[答案] -1[解析] 原式====-1.三、解答题10.2011~2012?宜春高一检测化简:.[解析] 原式==-1.11.若sin180°+α=-,0°α90°.求的值.[解析] 由sin180°+α=-,α∈0°,90°,得sinα=,cosα=,∴原式====2.12.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求的值.[解析] 由已知得sinα=-.∵α是第三象限角,∴cosα=-=-.∴原式===.能力提升一、选择题1.对于正弦函数y=sinx的图象,下列说法错误的是A.向左右无限伸展B.与y=cosx的图象形状相同,只是位置不同C.与x轴有无数个交点D.关于y轴对称[答案] D2.从函数y=cosx,x∈[0,2π的图象来看,对应于cosx=的x有A.1个值B.2个值C.3个值D.4个值[答案] B3.下列选项中是函数y=-cosx,x∈[,]的图象上最高点的坐标的是A.,0B.π,1C.2π,1D.,1[答案] B4.函数y=cosx+|cosx| x∈[0,2π]的大致图象为[答案] D[解析] y=cosx+|cosx|=,故选D.5.如图所示,函数y=cosx|tanx|0≤x且x≠的图象是[答案] C[解析] y=6.在0,2π上使cosxsinx成立的x的取值范围是A.0,∪,2πB.,∪π,C.,D.-,[答案] A[解析] 第一、三象限角平分线为分界线,终边在下方的角满足cosxsinx.∵x∈0,2π,∴cosxsinx的x范围不能用一个区间表示,必须是两个区间的并集.二、填空题7.方程sinx=lgx的解有________个.[答案] 38.sinx0,x∈[0,2π]的解集是________.[答案] 0,π[解析] 如图所示是y=sinx,x∈[0,2π]的图象,由图可知满足sinx0,x∈[0,2π]的解集是0,π.9.函数fx=则不等式fx的解集是________.[答案][解析] 在同一平面直角坐标系中画出函数fx和函数y=的图象,如图所示,当fx时,函数fx的图象位于函数y=的图象上方,此时有-x0或+2kπx+2kπk∈N.三、解答题10.试用五点法画函数y=cosx-1,x∈[0,2π]的简图.[解析] 抓住关键点,取横坐标依次为0、、π、、2π的点.列表:x 0π2πy=cosx-1 - -1 - -1 -画图如图:11.2011~2012?桂林高一检测根据函数图象解不等式sinxcosx,x∈[0,2π].[解析] 在同一坐标系中画出函数y=sinx和y=cosx在x∈[0,2π]上的图象,如图所示,可知,当x时,sinxcosx,即不等式的解集是,.12.画出正弦函数y=sinx,x∈R的简图,并根据图象写出-≤y ≤时x的集合.[解析]过0,-、0,点分别作x轴的平行线,从图象可看出它们分别与正弦曲线交于+2kπ,-,k∈Z,+2kπ,-,k∈Z点和+2kπ,,k∈Z,+2k π,,k∈Z点,那么曲线上夹在对应两点之间的点的横坐标的集合即为所求,即当-≤y≤时x的集合为:x|-+2kπ≤x≤+2kπ,k∈Z∪x|+2kπ≤x≤+2kπ,k∈Z.能力提升一、选择题1.定义在R上的函数fx,存在无数个实数x满足fx+2=fx,则fxA.是周期为1的周期函数B.是周期为2的周期函数C.是周期为4的周期函数D.不一定是周期函数[答案] D2.函数y=2cos的最小正周期是4π,则ω等于A.2BC.±2D.±[答案] D[解析] 4π=,∴ω=±.3.2013山师附中期中函数y=|sinx|+|cosx|的最小正周期为A B.π C.2πD.4π[答案] A[解析] ∵+=|sinx|+|cosx|.∴原函数的最小正周期为.4.函数y=的周期是A.2πB.π C D.[答案] C[解析] T=?=.5.函数y=cosx+k0的最小正周期不大于2,则正整数k的最小值应是A.10B.11C.12D.13[答案] D[解析] T==≤2 ∴k≥4π又k∈N*∴k最小为13,故选D.6.定义在R上的函数fx既是偶函数,又是周期函数,若fx的最小正周期为π,且当x∈时,fx=sinx,则f等于A.-B.1C.-D.[答案] D[解析] f=f=f=f=f=f=sin=.二、填空题7.2013?江苏函数y=3sin2x+的最小正周期为________.[答案] π[解析] 本题考查三角函数的周期.T==π.8.若函数fx=2cosωx+ω0的最小正周期为T,且T∈1,3,则正整数ω的最大值是________.[答案] 6[解析] T=,又1T3,∴13.∴.∴ω2π.则正整数ω的最大值为6.9.设函数fx=3sinωx+,ω0,x∈-∞,+∞,且以为最小正周期.若f=,则sinα的值为________.[答案] ±[解析] ∵fx的最小正周期为,ω0,∴ω==4.∴fx=3sin.由f=3sin=3cosα=,∴cosα=.∴sinα=±=±.三、解答题10.求下列函数的周期.1y=sin2x;2y=-cosx+;3y=sinωx+φω0.[解析] 由周期函数的定义求.1令fx=sin2x,∵fx+π=sin2x+π=sin2x=fx.∴函数y=sin2x的周期为π.2令fx=-cosx+,∵fx+2π=-cos[x+2π+]=-cosx+=fx.∴函数y=-cosx+的周期为2π.3令fx=sinωx+φ,∵fx+=sin[ωx++φ]=sinωx+φ+2π=sinωx+φ=fx,∴函数y=sinωx+φω0的周期为.11.已知函数y=sinx+|sinx|.1画出函数的简图.2这个函数是周期函数吗?如果是,求出它的最小正周期. [解析] 1y=sinx+|sinx|=函数图象如图所示.2由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π.12.已知函数y=5cos其中k∈N,对任意实数a,在区间[a,a+3]上要使函数值出现的次数不少于4次且不多于8次,求k值.[解析] 由5cosπx-=,得cosπx-=.∵函数y=cosx在每个周期内出现函数值为的有两次,而区间[a,a+3]长度为3,为了使长度为3的区间内出现函数值不少于4次且不多于8次,必须使3不小于2个周期长度且不大于4个周期长度.即2×≤3,且4×≥3.∴≤k≤.又k∈N,故k=2,3.能力提升一、选择题1.y=2sinx2的值域是A.[-2,2]B.[0,2]C.[-2,0]D.R[答案] A[解析] ∵x2≥0,∴sinx2∈[-1,1],∴y=2sinx2∈[-2,2].2.函数y=是A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数[答案] A[解析] 定义域为R,f-x===-fx,则fx是奇函数.3.已知a∈R,函数fx=sinx-|a|,x∈R为奇函数,则a等于A.0B.1C.-1D.±1[答案] A[解析] 解法一:易知y=sinx在R上为奇函数,∴f0=0,∴a=0.解法二:∵fx为奇函数,∴f-x=-fx,即sin-x-|a|=-sinx+|a|,-sinx-|a|=-sinx+|a|.∴|a|=0,即a=0.4.重庆高考下列函数中,周期为π,且在[,]上为减函数的是A.y=sin2x+B.y=cos2x+C.y=sinx+D.y=cosx+[答案] A[解析] C、D两项中函数的周期都为2π,不合题意,排除C、D;B项中y=cos2x+=-sin2x,该函数在[,]上为增函数,不合题意;A项中y=sin2x+=cos2x,该函数符合题意,选A.5.陕西高考对于函数fx=sin2x,下列选项中正确的是A.fx在,上是递增的B.fx的图象关于原点对称C.fx的最小正周期为2πD.fx的最大值为2[答案] B[解析] 由于函数y=sinx在,π上是递减的,所以fx=sin2x在,上是递减的,故A选项错误.因为f-x=sin2-x=sin-2x=-sin2x=-fx,所以fx为奇函数,图象关于原点对称,故B选项正确.6.函数yx=-cos xln x2的部分图象大致是图中的[答案] A[解析] 函数的定义域是-∞,0∪0,+∞,f-x=-cos-xln-x2=-cos xln x2=fx,则函数fx是偶函数,其图象关于y轴对称,排除选项C和D;当x∈0,1时,cosx0,0x21,则ln x20,此时fx0,此时函数fx的图象位于x轴的上方,排除选项B.二、填空题7.西南大学附中2012-2013期中函数fx=2cosωxω0在x∈[-,]上的最大、最小值之和为0,则ω的最小值为________.[答案] 38.2012?长沙调研已知函数fx=3sinωx-ω0和gx=2cos2x+φ+1的图象的对称轴完全相同,若x∈[0,],则fx的取值范围是____________.[答案] [-,3][解析] ∵fx与gx的图象的对称轴完全相同,∴fx与gx的最小正周期相等,∵ω0,∴ω=2,∴fx=3sin2x-,∵0≤x≤,∴-≤2x-≤,∴-≤sin2x-≤1,∴-≤3sin2x-≤3,即fx的取值范围是[-,3].9.2011~2012?无锡高一检测函数y=sinx-,x∈[0,π]的值域为________.[答案] [-,1]三、解答题10.求函数y=cos+1的最大值,及此时自变量x的取值集合.[解析] ∵x∈R,∴-1≤cos≤1.∴≤cos+1≤.∴函数y=cos+1的最大值是.此时2x-=2kπk∈Z,∴x=kπ+.即此时自变量x的取值集合是.11.已知函数fx=log|sinx|.1求其定义域和值域;2判断其奇偶性;3求其周期;4写出单调区间.[解析] 1由|sinx|0得sinx≠0,∴x≠kπk∈Z. 即函数定义域为x∈R|x≠kπ,k∈Z.又0|sinx|≤1,∴log|sinx|≥0.∴函数的值域为[0,+∞.2∵fx的定义域关于原点对称,且f-x=log|sin-x|=log|-sinx|=log|sinx|=fx.∴fx为偶函数.3函数fx是周期函数,∵fx+π=log|sinx+π|=log|-sinx|=log|sinx|=fx,∴fx的周期T=π.4∵y=logu在0,+∞上是减函数,u=|sinx|在k∈Z上是增函数,在k∈Z上是减函数.∴fx在k∈Z上是增函数,在k∈Z上是减函数.即fx的单调增区间是k∈Z,单调减区间是k∈Z.12.设函数fx=sin2x+acosx+a-,x∈[0,]的最大值是1,试确定a的值.[解析] fx=sin2x+acosx+a-=1-cos2x+acosx+a-=-cosx-2+2a2+5a-4.1若0≤≤1,即0≤a≤2,当cosx=时,fx最大,此时2a2+5a-4=1,解得a=;2若1,即a2,当x=0时,即cosx=1时,fx最大,此时-1-2+2a2+5a-4=1,解得a=不符合条件,舍去;3若0,即a0,当x=时,即cosx=0时,fx最大,此时-0-2+2a2+5a-4=1,解得a=不符合条件,舍去.综上可得a=.能力提升一、选择题1.函数y=3tan。

相关文档
最新文档