人教版数学必修四模块综合测试题
人教版高中数学必修四模块综合测试及答案

(3)函数 与函数 是同一函数;
(4)
三、解答题(10分+12分+12分+12分+12分+12分)
17、已知单位向量 和 的夹角为 ,
(1)试判断 与 的关系并证明;
(2)求 在 方向上的投影。
18、如图,平行四边形ABCD中, ,
点M在AB边上,且 的值是多少?
19、已知函数 的最大值是1,
二、(每题5份,共20分)
13、函数 的定义域是.
14、设 , ,
则a,b,c的大小关系(由小到大排列)为
15、已知P为 所在平面内一点,且满足 ,则 的面积与
的面积之比为。
16、下列命题中,正确的是____________________
(1)若 与 是共线向量, 与 是共线向量,则 与 是共线向量
(1)求常数a的值;
(2)求使 成立的x的取值集合。
20、已知向量 ,
设函数
(1)写出 的单调递增区间;
(2)若 ,求 的值域;
(3)已知 .
21、已知函数 ,点A、B分别是函数 图像上的最高点和最低点.
(1)求点A、B的坐标以及 · 的值;
(2)设点A、B分别在角 、 的终边上,求tan( )的值.
A. B. C. D.
11、 若 均为锐角, ,则 ( )
A. B. C. D.
12、 如图,某园林单位准备绿化一块直径为 的半圆形空地, 的地方种草, 的内接正方形 为一水池,其余地方种花, ( 为定值), , 的面积为 ,正方形 的面积为 ,当 取得最小值时,角 的值为( )
A. B. C. D.
高中数学必修四模块综合测试
一、选择题(每题5份,共60分)
高中数学 必修四 本册综合能力测试 新人教A版必修4

本册综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.tan 83π的值为( )A .33B .-33C . 3D .- 3[答案] D[解析] tan 83π=tan(2π+23π)=tan 23π=- 3.2.已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( ) A .(35,-45)B .(45,-35)C .(-35,45)D .(-45,35)[答案] A[解析] 本题考查平面向量的坐标运算,单位向量的求法. 因为AB →=(3,-4),|AB →|=5,所以与向量AB →同向的单位向量为AB →|AB →|=,-5=(35,-45),选A . 3.若sin α=1213,α∈⎝ ⎛⎭⎪⎫π2,π,则tan2α的值为( ) A .60119 B .120119 C .-60119D .-120119[答案] B[解析] ∵sin α=1213,α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α=-513.∴tan α=-125.∴tan2α=2tan α1-tan 2α=120119. 4.若sin2α=55,sin(β-α)=1010,且α∈[π4,π],β∈[π,3π2],则α+β的值是( )A .7π4B .9π4C .5π4或7π4D .5π4或9π4[答案] A[解析] 因为α∈[π4,π],故2α∈[π2,2π],又sin2α=55,故2α∈[π2,π],a ∈[π4,π2],∴cos2α=-255,β∈[π,3π2],故β-α∈[π2,5π4],于是cos(β-α)=-31010,∴cos(α+β)=cos[2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=-255×(-31010)-55×1010=22,且α+β∈[5π4,2π],故α+β=7π4.5.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( ) A .0 B .-1 C .0或-1 D .-1或1[答案] C[解析] 由夹角公式:cos45°=x +1-x 2·x +2+x 2=22,即x 2+x =0,解得x =0或x =-1.6.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c[答案] A[解析] a =sin62°,b =cos26°=sin64°,c =32=sin60°,∴b >a >C . 7.在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形 [答案] D[解析] 设∠BAC 的角平分线为AD ,则AB→|AB →|+AC |AC →|=λAD →.由已知得AD ⊥BC ,∴△ABC 为等腰三角形.又cos A =12,∴A =60°,△ABC 为等边三角形,故选D .8.将函数y =sin x 的图象经过下列哪种变换可以得到函数y =cos2x 的图象( ) A .先向左平移π2个单位,然后再沿x 轴将横坐标压缩到原来的12倍(纵坐标不变)B .先向左平移π2个单位,然后再沿x 轴将横坐标伸长到原来的12倍(纵坐标不变)C .先向左平移π4个单位,然后再沿x 轴将横坐标压缩到原来的12倍(纵坐标不变)D .先向左平移π4个单位,然后再沿x 轴将横坐标伸长到原来的12倍(纵坐标不变)[答案] A[解析] y =cos2x =sin(2x +π2),将y =sin x 的图象先向左平移π2个单位得到y =sin(x +π2)的图象,再沿x 轴将横坐标压缩到原来的12倍(纵坐标不变)得到y =sin(2x +π2)的图象,故选A .9.函数y =tan(π4x -π2)的部分图象如右图,则(OA →+OB →)·AB →=( )A .6B .4C .-4D .-6[答案] A[解析] ∵点B 的纵坐标为1, ∴tan(π4x -π2)=1,∴π4x -π2=π4,∴x =3,即B (3,1). 令tan(π4x -π2)=0,则π4x -π2=0,解得x =2,∴A (2,0),∴OA →+OB →=(5,1),AB →=(1,1).∴(OA →+OB →)·AB →=6.10.函数y =⎩⎪⎨⎪⎧kx +-2≤x ,ωx +φω>0,0<x ≤8π3的图象如下图,则( )A .k =12,ω=12,φ=π3B .k =12,ω=12,φ=π6C .k =12,ω=2,φ=π6D .k =-2,ω=12,φ=π3[答案] B[解析] ∵直线过点(-2,0), ∴-2k +1=0,∴k =12.∵2πω=T ,∴14T =14×2πω=83π-53π=π, ∴ω=12,∴y =2sin(12x +φ)过点(83π,-2),∴-2=2sin(4π3+φ),∴φ=π6.11.如图,在圆O 中,若弦AB =3,弦AC =5,则AO →·BC →的值是( )A .-8B .-1C .1D .8[答案] D[解析] 取BC 的中点D ,连接AD 、OD ,则有OD ⊥BC ,AD →=12(AB →+AC →),BC →=AC →-AB →,AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC →2-AB →2)=12×(52-32)=8,选D . 12.关于x 的方程x 2-x cos A cos B -cos 2C2=0有一个根为1,则在△ABC 中一定有( )A .∠A =∠BB .∠A =∠CC .∠B =∠CD .∠A +∠B =π2[答案] A[解析] ∵1是方程的根,∴1-cos A ·cos B -cos 2C2=0,∴cos A cos B =sin 2C2,∴2cos A cos B =1-cos C ,∴2cos A ·cos B =1+cos(A +B ),把cos(A +B )展开,cos(A -B )=1,∴∠A =∠B .故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若tan α=3,则sin αcos α的值等于________. [答案]310[解析] sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=31+9=310. 14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.[答案] 2[解析] 由题意a ·(λb -a )=0,即λa ·b -|a |2=0,∴λ·2×2×22-4=0,即λ=2.15.已知13sin α+5cos β=9,13cos α+5sin β=15,那么sin(α+β)的值为________.[答案]5665[解析] 将两等式的两边分别平方再相加得169+130sin(α+β)+25=306,所以sin(α+β)=5665.16.在△ABC 中,∠BAC =120°,AB =AC =2.D 、E 是BC 边上的点,且AD →·BC →=0,CE →=2EB →,则AD →·AE →=________.[答案] 1[解析] ∵AD →·BC →=0,∴AD →⊥BC →. 又AB =AC ,∴点D 为BC 的中点, ∴AD →=12(AB →+AC →),AE →=AC →+CE →=23AB →+13AC →,∴AD →·AE →=12(AB →+AC →)·(23AB →+13AC →)=16(2AB →2+3AB →·AC →+AC →2) =16(8+3×2×2×cos120°+4)=1. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.[解析] (1)f (x )=2sin(π-x )cos x =2sin x cos x =sin2x ∴函数f (x )的最小正周期T =2π2=π.(2)由-π6≤x ≤π2,知-π3≤2x ≤π∴-32≤sin2x ≤1 ∴f (x )在区间[-π6,π2]上的最大值为1,最小值为-32.18.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.[解析] (1)a =3(1,0)-2(0,1)=(3,-2),b =4(1,0)+(0,1)=(4,1), a ·b =3×4+(-2)×1=10.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+20+|b |2=13+20+17=50, ∴|a +b |=5 2.(2)cos<a ,b >=a ·b |a ||b |=1013·17=10221221.19.(本题满分12分)(2015·济宁模拟)已知向量a =(cos θ,sin θ),θ∈[0,π],向量b =(3,-1).(1)若a ⊥b ,求θ的值;(2)若|2a -b |<m 恒成立,求实数m 的取值范围. [解析] (1)∵a ⊥b ,∴3cos θ-sin θ=0, 得tan θ=3,又θ∈[0,π],∴θ=π3.(2)∵2a -b =(2cos θ-3,2sin θ+1), ∴|2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+8(12sin θ-32cos θ)=8+8sin(θ-π3),又θ∈[0,π],∴θ-π3∈[-π3,23π],∴sin(θ-π3)∈[-32,1],∴|2a -b |2的最大值为16. ∴|2a -b |的最大值为4. 又|2a -b |<m 恒成立. ∴m >4.20.(本题满分12分)(2015·山东潍坊高一期末)已知函数f (x )=A sin(ωx +φ)(ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)将函数y =f (x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈[-π2,5π12]时,求函数y =f (x +π12)-2f (x +π3)的最值.[解析] (1)由图得:34T =116π-π3=96π=32π,∴T =2π, ∴ω=2πT=1.又f (116π)=0,得:A sin(116π+φ)=0,∴116π+φ=2k π,φ=2k π-116π, ∵0<φ<π2,∴当k =1时,φ=π6.又由f (0)=2,得:A sin φ=2,A =4, ∴f (x )=4sin(x +π6).(2)将f (x )=4sin(x +π6)的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin(2x +π6),再将图象向右平移π6个单位得到g (x )=4sin[2(x -π6)+π6]=4sin(2x-π6), 由2k π-π2≤2x -π6≤2k π+π2(k ∈Z )得:k π-π6≤x ≤k π+π3(k ∈Z ),∴g (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ).(3)y =f (x +π12)-2f (x +π3)=4sin[(x +π12)+π6]-2×4sin[(x +π3)+π6]=4sin(x +π4)-42sin(x +π2)=4(sin x ·cos π4+cos x ·sin π4)-42cos x=22sin x +22cos x -42cos x =22sin x -22cos x =4sin(x -π4).∵x ∈[-π2,512π],x -π4∈[-34π,π6],∴sin(x -π4)∈[-1,12],∴函数的最小值为-4,最大值为2.21.(本题满分12分)(2015·厦门模拟)已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应的x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan2α的值.[解析] ∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4.∴f (x )=b·c=cos x sin x +2cos x sin α+sin x cos x +2sin x cos α =2sin x cos x +2(sin x +cos x ).令t =sin x +cos x (π4<x <π),则t ∈(-1,2),且2sin x cos x =t 2-1. ∴y =t 2+2t -1=(t +22)2-32,t ∈(-1,2). 当t =-22时,y min =-32,此时sin x +cos x =-22. 即2sin(x +π4)=-22,sin(x +π4)=-12,∵π4<x <π, ∴π2<x +π4<5π4. ∴x +π4=7π6,即x =1112π.所以函数f (x )的最小值为-32,相应的x 的值为1112π.(2)∵a 与b 的夹角为π3,cos π3=a ·b |a ||b |=cos αcos x +sin αsin x =cos(x -α),∵0<α<x <π,∴0<x -α<π. ∴x -α=π3,∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, 化简得sin(x +α)+2sin2α=0. 代入x -α=π3得sin(2α+π3)+2sin2α=52sin2α+32cos2α=0,∴tan2α=-35. 22.(本题满分12分)(2015·福建文)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0. [解析] (1)因为f (x )=103sin x 2cos x2+10cos 2x2=53sin x +5cos x +5=10sin(x +π6)+5.所以函数f (x )的最小正周期T =2π.(2)①将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5的图象,再向下平移a (a >0)个单位长度后得到g (x )=10sin x +5-a 的图象.已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.②要证明存在无穷多个互不相同的正整数x 0,使得g (x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得10sin x 0-8>0,即sin x 0>45.由45<32知,存在0<α0<π3,使得sin α0=45. 由正弦函数的性质可知,当x ∈(α0,π-α0)时,均有sin x >45.因为y =sin x 的最小正周期为2π,所以当x ∈(2k π+α0,2k π+π-α0)(k ∈Z )时,均有sin x >45.因为对任意的整数k ,(2k π+π-α0)-(2k π+α0)=π-2α0>π3>1,所以对任意的正整数k ,都存在正整数x k ∈(2k π+α0,2k π+π-α0),使得sin x k >45.亦即,存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.。
人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。
一、选择题:(共12小题,每小题5分,共60分。
)1.sin300°的值为A。
-31 B。
3 C。
22 D。
1/22.角α的终边过点P(4,-3),则cosα的值为A。
4 B。
-3 C。
2/5 D。
-4/53.cos25°cos35°-sin25°sin35°的值等于A。
3/11 B。
3/4 C。
2/11 D。
-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。
AB+BC=AC B。
AB-AC=BCC。
AB-BC=BC D。
AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。
[0,π] B。
[π,2π] C。
[-π/2,π/2] D。
[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。
4/3 B。
-3/5 C。
-5/3 D。
-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。
y=sin(2x+π/3) B。
y=sin(2x+2π/3)C。
y=sin(2x-π/3) D。
y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。
1个 B。
2个 C。
3个 D。
4个9.下列命题中,正确的是A。
|a|=|b|→a=b B。
|a|>|b|→a>bC。
|a|=0→a=0 D。
a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。
高一数学必修4 模块测试卷

高一数学必修4 模块测试卷试卷满分:100分 考试时间:60分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3πB. 23πC. 43πD. 53π2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( ) A. (4,2)- B. (4,2)-- C. (4,2) D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( ) A. 3- B. 3 C. 13-D. 135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是)0,2(π,那么()f x 的解析式可以是( )A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A.6π B. 4π C. 3π D. 2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度 D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( ) A. 4π B. 2πC. πD. 2π9. 设角θ的终边经过点(3,4)-,则)4cos(πθ+的值等于( )A.B.C.D. 10. 在矩形ABCD中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( )A .3B .2 C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=,则sin 2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______. 16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>.其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号) 三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin 2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+. (Ⅰ)求()3f π的值;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.参考答案及评分标准一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B.二、填空题:本大题共6小题,每小题4分,共24分.11. 2-; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③. 注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分.17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分 所以sin 3tan cos 4ααα==-. …………………5分(Ⅱ)24sin 22sin cos 25ααα==-, …………………8分27cos 22cos 125αα=-=, …………………11分 所以24717sin 2cos 2252525αα+=-+=-. …………………12分18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122=+=. …………………4分(Ⅱ)()cos )sin 1f x x x =-+ …………………6分sin 1x x =-+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分 由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()2AP a = ,(2,0)AB a =, …………………3分 所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分。
人教A版高中数学必修4:模块综合检测Word版含解析

模块综合检测(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中最值是12,周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A 由题意得,A =12,2πω=6π,ω=13,故选A.2.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA +OB +OC +OD 等于 ( )A .OMB .2OMC .3OMD .4OM解析:选D 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以OA +OC =2OM ,OB +OD =2OM ,所以OA +OC +OB +OD =4OM ,故选D.3.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B ∵a =(1,2),b =(-2,m ), ∴1×m -2×(-2)=0, ∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).4.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)的值为( ) A.225B .-25C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α=22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 5.已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( )A .30°B .60°C .120°D .150°解析:选C a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又0°<θ<180°,所以θ=120°.6.将函数y =sin ⎝⎛⎭⎫2x +π3的图象经怎样的平移后所得的图象关于点⎝⎛⎭⎫-π12,0成中心对称( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:选C 函数y =sin ⎝⎛⎭⎫2x +π3的对称中心为⎝⎛⎭⎫k π2-π6,0,其中离⎝⎛⎭⎫-π12,0最近的对称中心为⎝⎛⎭⎫-π6,0,故函数图象只需向右平移π12个单位长度即可. 7.函数ƒ(x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图所示,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)的值等于( )A .2B .2+2C .2+2 2D .-2-22解析:选C 由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而ƒ(x )=2sin π4x .∴ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)=ƒ(1)+ƒ(2)+ƒ(3)=2sin π4+2sin π2+2sin 3π4=2+2 2.8.如图,在四边形ABCD 中,|AB |+|BD |+|DC |=4,|AB |·|BD |+|BD |·|DC |=4,AB ·BD =BD ·DC =0,则(AB +DC )·AC 的值为( )A .4B .2C .4 2D .22解析:选A ∵AC =AB +BD +DC ,AB ·BD =BD ·DC =0, ∴(AB +DC )·AC=(AB +DC )·(AB +BD +DC )=AB 2+AB ·BD +AB ·DC +DC ·AB +DC ·BD +DC 2=AB 2+2AB ·DC +DC 2.∵AB ·BD =0,BD ·DC =0,∴AB ⊥BD ,DC ⊥BD ,∴AB ∥DC , ∴AB ·DC =|AB ||DC |, ∴原式=(|AB |+|DC |)2.设|AB |+|DC |=x ,则|BD |=4-x ,|BD |·x =4, ∴x 2-4x +4=0,∴x =2,∴原式=4,故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中横线上)9.在平面直角坐标系 xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴AB ⊥OB ,∴OB ·AB =0. 又AB =OB -OA =(2,2)-(-1,t )=(3,2-t ), ∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:510.已知ƒ(x )=sin ⎝⎛⎭⎫x +π6,若cos α=35⎝⎛⎭⎫0<α<π2,则ƒ⎝⎛⎭⎫α+π12=________.解析:因为cos α=35⎝⎛⎭⎫0<α<π2,所以sin α=45; ƒ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4 =22(sin α+cos α)=7210. 答案:721011.在△ABC 中,已知sin A =10sin B sin C ,cos A =10cos B · cos C ,则tan A =________,sin 2A =________.解析:由sin A =10sin B sin C ,cos A =10cos B cos C 得cos A -sin A =10cos(B +C )=-10cos A ,所以sin A =11cos A ,所以tan A =11,sin 2A =2sin A cos A sin 2A +cos 2A =2tan A 1+tan 2A =1161. 答案:11116112.函数f (x )=cos 2x -sin 2x +sin 2x +1的最小正周期是________,振幅是________. 解析:f (x )=cos 2x -sin 2x +sin 2x +1=cos 2x +sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1,所以最小正周期为π,振幅为 2.答案:π213.已知向量a ,b 满足|a |=2,|b |=3,且|2a -b |=13,则|2a +b |=________,向量a 在向量b 方向上的投影为________.解析:|2a -b |2=4a 2-4a·b +b 2=4×22-4a ·b +32=13,解得a·b =3.因为|2a +b |2=4a 2+4a·b +b 2=4×22+4×3+32=37,所以|2a +b |=37.向量a 在向量b 方向上的投影为a·b |b |=33=1.答案:37 114.已知函数f (x )=M cos(ωx +φ)(M >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,AC =BC =22,∠C =90°,则f (x )=________,f ⎝⎛⎭⎫12=________.解析:依题意知,△ABC 是直角边长为22的等腰直角三角形,因此其边AB 上的高是12,AB =1,故M =12,函数f (x )的最小正周期是2,即2πω=2,ω=π,所以f (x )=12cos(πx +φ),又函数f (x )是奇函数,所以φ=k π+π2,k ∈Z.由0<φ<π,得φ=π2,故f (x )=12cos ⎝⎛⎭⎫πx +π2=-12sin πx ,则f ⎝⎛⎭⎫12=-12sin π2=-12. 答案:-12sin πx -1215.有下列四个命题:①若α,β均为第一象限角,且α>β,则sin α>sin β; ②若函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期是4π,则a =12; ③函数y =sin 2x -sin xsin x -1是奇函数;④函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是增函数. 其中正确命题的序号为________.解析:α=390°>30°=β,但sin α=sin β,所以①不正确; 函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期为T =2π|a |=4π, 所以|a |=12,a =±12,因此②不正确;③中函数定义域是⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+π2,k ∈Z ,显然不关于原点对称,所以③不正确; 由于函数y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,它在(0,π)上单调递增,因此④正确. 答案:④三、解答题(本大题共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a ·b ; (2)若a -b 与a 垂直,求θ. 解:(1)∵a ∥b ,∴θ=0°或180°, ∴a ·b =|a ||b |cos θ=± 2.(2)∵a -b 与a 垂直,∴(a -b )·a =0, 即|a |2-a ·b =1-2cos θ=0, ∴cos θ=22. 又0°≤θ≤180°,∴θ=45°.17.(本小题满分15分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈π2,π,a ·b =25,求52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2. 解:∵a ·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2=52sin 2α-22(cos α-sin α)1+cos α=52×⎝⎛⎭⎫-2425-22⎝⎛⎭⎫-45-351-45=-10 2.18.(本小题满分15分)已知函数ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎡⎦⎤0,π2时,求ƒ(x )的值域; (2)用五点法在下图中作出y =ƒ(x )在闭区间⎣⎡⎦⎤-π6,5π6上的简图;解:ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x =2cos x ⎝⎛⎭⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3.(1)∵x ∈⎣⎡⎦⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝⎛⎭⎫2x +π3≤1,∴当x ∈⎣⎡⎦⎤0,π2时,ƒ(x )的值域为[-3,2]. (2)由T =2π2,得T =π,列表: x -π6 π12 π3 7π12 5π6 2x +π30 π2 π 3π2 2π 2sin ⎝⎛⎭⎫2x +π3 02-219.(本小题满分15分)已知向量OA =(cos α,sin α),α∈[-π,0],向量m =(2,1),n =(0,-5),且m ⊥(OA -n ).(1)求向量OA ; (2)若cos(β-π)=210,0<β<π,求cos(2α-β)的值. 解:(1)∵OA =(cos α,sin α), ∴OA -n =(cos α,sin α+5). ∵m ⊥(OA -n ),∴m ·(OA -n )=0, ∴2cos α+sin α+5=0.① 又sin 2α+cos 2α=1,② 由①②得sin α=-55,cos α=-255, ∴OA =⎝⎛⎭⎫-255,-55. (2)∵cos(β-π)=210,∴cos β=-210.又0<β<π,∴sin β=1-cos 2β=7210.又∵sin 2α=2sin αcos α=2×⎝⎛⎭⎫-55×⎝⎛⎭⎫-255=45,cos 2α=2cos 2α-1=2×45-1=35,∴cos(2α-β)=cos 2αcos β+sin 2αsin β =35×⎝⎛⎭⎫-210+45×7210 =25250=22. 20.(本小题满分15分)已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤-π2,5π12时,求函数y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3的最值. 解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT=1. 又ƒ⎝⎛⎭⎫11π6=0,得A sin ⎝⎛⎭⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sin π6=2,∴A =4,∴ƒ(x )=4sin ⎝⎛⎭⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π6个单位得到g (x )= 4sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=4sin ⎝⎛⎭⎫2x -π6,由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3 =4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π12+π6-2×4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π3+π6=4sin ⎝⎛⎭⎫x +π4-42sin ⎝⎛⎭⎫x +π2 =4⎝⎛⎭⎫sin x ·cos π4+cos x ·sin π4-42cos x =22sin x +22cos x -42cos x =22sin x -22cos x =4sin ⎝⎛⎭⎫x -π4. ∵x ∈⎣⎡⎦⎤-π2,5π12,x -π4∈⎣⎡⎦⎤-3π4,π6, ∴sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-1,12, ∴函数的最小值为-4,最大值为2.。
(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

232a -b 2 a - b 2a - ba - b一、选择题(12 道)必修四综合复习1.已知 AB = (6,1), BC = (x , y ), C D = (-2,-3),且BC ∥ DA ,则 x+2y 的值为( )1 A .0B. 2C.D. -222. 设0 ≤< 2,已知两个向量OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ),则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 23.已知向量 a , b 满足 a = 1, b = 4, 且 a ⋅ b = 2 则 a 与b 的夹角为A.B .C .D .64 3 24. 如图 1 所示,D 是△ABC 的边 AB 上的中点,则向量CD = ()A. - BC + 1 1BA2B. - BC - 1BA 21C. BC - BA 2D. BC + BA25. 设 a 与b 是两个不共线向量,且向量 a +b 与-(b - 2a )共线,则=( )A .0B .-1C .-2D .0.56. 已知向量 a =( 3,1), b 是不平行于 x 轴的单位向量,且a ⋅ b =,则b =()A. ⎛ 3 1 ⎫B.⎛ 1 3 ⎫C.⎛ 1 3 3 ⎫ D .(1,0), ⎪, ⎪ , ⎪⎝ 2 2 ⎭ ⎝ 2 2 ⎭⎝ 4 4 ⎭7.在∆OAB 中, = a , = b , OD 是 AB 边上的高,若 =,则实数等 于( )OAA. a ⋅ (b - a )OB B. a ⋅ (a - b )C. a ⋅ (b - a ) AD ABD. a ⋅ (a - b )8.在∆ABC 中, a , b , c 分别为三个内角 A 、B 、C 所对的边,设向量 m = (b - c , c - a ), n = (b , c + a ) ,若向量 m ⊥ n ,则角 A 的大小为 ( )2A.B .C .D .632 39.设∠BAC 的平分线 AE 与 BC 相交于 E ,且有 BC = CE , 若 AB = 2 A C 则等于()1 1 A 2BC -3D -2310.函数 y = sin x cos x + 3 cos 2x -的图象的一个对称中心是()A. ( , 33 3 , - 3)2 , -3 )B. ( 5 ,- 3 ) C. (- 23 ) D. ( 3 2 62 3 233 2 b 11. (1+ tan 210 )(1+ tan 220 )(1+ tan 230 )(1+ tan 240 ) 的值是()A. 16B. 8C. 4D. 2cos 2 x12.当0 < x <时,函数 f (x ) = 41cos x sin x - sin 2x1 的最小值是( )A. 4B.C . 2D .24二、填空题(8 道) 13.已知向量 a = (cos , s in ) ,向量= ( 3, -1) ,则 2a - 的最大值是.b b14.设向量 a 与 的夹角为,且 a= (3,3) , 2b - a = (-1,1) ,则cos=.15.在∆AOB 中, O A = (2 c os,2 s in ), OB = (5 c os,5sin ) ,若OA ⋅ O B = -5 ,则∆AOB 的面积为.16. tan 20 + tan 40 + tan 20tan 40 的值是 .3 517. ABC 中, sin A = 5 , cos B =13,则cos C =.18. 已知sin + c os = 1, s in - c os = 3 1 ,则sin(- ) =.2⎡ ⎤19. 函数 y = sin x + cos x 在区间 ⎢⎣0, 2 ⎥⎦上的最小值为 .20. 函数 y = (a cos x + b sin x ) cos x 有最大值2 ,最小值-1,则实数 a =, b =.三、解答题(3 道)21. 已知|a|= ,|b|=3,向量 a 与向量 b 夹角为45 ,求使向量 a+b 与a+b 的夹角是锐角时,的取值范围3dongguan XueDa Personalized Education Development Center22 .已知向量 a = (sin ,-2) 与b = (1, c os ) 互相垂直,其中∈(0, ) .2(1)求sin 和cos 的值;(2)若sin(-) =, 0 <<,求cos的值.10223.)已知向量 a = (sin , cos - 2 sin ), b = (1, 2).若| a |=| b |, 0 << , 求的值。
高中数学 模块综合测评 新人教A版必修4-新人教A版高一必修4数学试题

模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)3.(2016•某某阿克苏高一期末)函数y=cos 2x+sin2x,x∈R的值域是()A.[0,1]B.C.[-1,2]D.[0,2]解析:因为函数y=cos 2x+sin2x=cos 2x+cos 2x=cos 2x,且x∈R,所以cos 2x∈[-1,1],所以cos 2x∈[0,1].故选A.答案:A4.已知两向量a=(2,sin θ),b=(1,cos θ),若a∥b,则的值为()A.2B.3C.4D.5解析:∵a∥b,∴2cos θ=sin θ,∴tan θ=2,∴=2+tan θ=4.答案:C5.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A. B. C.π D.2π解析:∵f(x)=2sin=1,∴sin,∴ωx1++2k1π(k1∈Z)或ωx2++2k2π(k2∈Z),则ω(x2-x1)=+2(k2-k1)π.又相邻交点距离的最小值为,∴ω=2,∴T=π.答案:C7.函数y=在一个周期内的图象是()解析:y=cos x·=-2sin x cos x=-sin 2x,故选B.答案:B9.(2016·某某某某二中期中)设函数f(x)=cos (2x+φ)+sin (2x+φ),且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数解析:f(x)=cos(2x+φ)+sin(2x+φ)=2=2cos.∵ω=2,∴T==π.又函数图象关于直线x=0对称,∴φ-=kπ(k∈Z),即φ=kπ+(k∈Z).又|φ|<,∴φ=,∴f(x)=2cos 2x.令2kπ≤2x≤2kπ+π(k∈Z),解得kπ≤x≤kπ+(k∈Z),∴函数的递减区间为(k∈Z).又(k∈Z),∴函数在上为减函数,则y=f(x)的最小正周期为π,且在上为减函数.故选B.答案:B10.函数f(x)=A sin(ωx+φ)的图象如图所示,为了得到g(x)=sin 3x的图象,只需将f(x)的图象() A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度解析:由题中图象可知,A=1,,即T=,∴ω=3,∴f(x)=sin(3x+φ).又f=sin=sin=-1,∴+φ=+2kπ,k ∈Z,即φ=+2kπ,k∈Z,又|φ|<,∴φ=,即f(x)=sin.∵g(x)=sin 3x=sin=sin,∴只需将f(x)的图象向右平移个单位长度,即可得到g(x)=sin 3x的图象,故选C.答案:C11.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b夹角的取值X围是()A. B. C. D.解析:设a与b的夹角为θ,∵Δ=|a|2-4a·b≥0,∴a·b≤,∴cos θ=.∵θ∈[0,π],∴θ∈.答案:B12α,β为锐角,cos(α+β)=,cos(2α+β)=,则cos α的值为()A. B.C. D.以上都不对解析:∵0<α+β<π,cos(α+β)=>0,∴0<α+β<,sin(α+β)=.∵0<2α+β<π,cos(2α+β)=>0,∴0<2α+β<,sin(2α+β)=.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β)=.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知sin α=(2π<α<3π),则sin+cos=.解析:∵2π<α<3π,∴π<,∴sin<0,cos<0.由=1+2sincos=1+,知sin+cos=-.答案:-14.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若=1,则AB的长为. 解析:=()·()=()·|·||·|2+1=1.得||=|=,则AB的长为.答案:15.设f(x)=2cos2x+sin 2x+a,当x∈时,f(x)有最大值4,则a=.解析:f(x)=2cos2x+sin 2x+a=cos 2x+sin 2x+a+1=2sin+a+1.由x∈,∴f(x)max=3+a=4,∴a=1.答案:116.关于函数f(x)=cos+cos,则下列命题:①y=f(x)的最大值为;②y=f(x)最小正周期是π;③y=f(x)在区间上是减函数;④将函数y=cos 2x的图象向右平移个单位后,将与已知函数的图象重合.其中正确命题的序号是.解析:f(x)=cos+cos=cos+sin=cos-sin==coscos,∴y=f(x)的最大值为,最小正周期为π,故①,②正确.又当x∈时,2x-∈[0,π],∴y=f(x)在上是减函数,故③正确.由④得y=cos 2cos,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知α∈,且sin α=,求f.解:(1)由函数最大值为2,得A=2.由题图可得周期T=4=π,由=π,得ω=2.又ω·+φ=2kπ+,k∈Z,及φ∈,得φ=.∴f(x)=2sin.(2)由α∈,且sin α=,得cos α=-=-,∴f=2sin=2.18.(本小题满分12分)如图,在△ABC中,AB=8,AC=3,∠BAC=60°,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的一条直径.(1)请用表示,用表示;(2)记∠BAP=θ,求的最大值.解:(1)=-.(2)∵∠BAC=60°,∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cos θ=3sin θ+13cos θ+8=14sin(θ+φ)+8,∴当sin(θ+φ)=1时,的最大值为22.19.(本小题满分12分)已知函数f(x)=sin (ωx+φ)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f,求cos 的值.解:(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2.又因为f(x)的图象关于直线x=对称,所以2·+φ=kπ+,k=0,±1,±2,….由-≤φ<,得k=0,所以φ==-.(2)由(1)得f sin ,所以sin.由<α<,得0<α-,所以cos=.因此cos=sin α=sin=sincos +cos sin=.20.(本小题满分12分)(2016·某某某某高一期末)已知向量a=(1,cos 2x),b=(sin 2x,-),函数f(x)=a·b.(1)求函数f(x)的单调递减区间;(2)若f,求f的值.解:(1)由题意得f(x)=a·b=sin 2x-cos 2x=2sin.因为函数y=sin x的单调递减区间为,k∈Z,∴由+2kπ≤2x-+2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z,∴函数f(x)的单调递减区间为,k∈Z.(2)∵f(x)=2sin,∴f=2sin=2sin (α+π)=-2sin α=,∴sin α=-,∴f=2sin=2sin=2cos 2α=2(1-2sin2α)=2.21.(本小题满分12分)在如图所示的直角坐标系xOy中,点A,B是单位圆上的点,且A(1,0),∠AOB=.现有一动点C在单位圆的劣弧上运动,设∠AOC=α.(1)求点B的坐标;(2)若tan α=,求的值;(3)若=x+y,其中x,y∈R,求x+y的最大值.解:(1)由任意角的三角函数定义,可得点B的坐标为.(2)∵=(1,0),=(cos α,sin α),∴=cos α.又tan α=,且0≤α≤,∴cos α=,即.(3)方法一:由=x+y,得(cos α,sin α)=x(1,0)+y,∴∴x+y=cos α+sin α=cos α+sin α)=sin,又0≤α≤,∴当α=时,x+y有最大值.方法二:即∴x+y=[cos α+cos(60°-α)]==cos α+sin α=sin.又0≤α≤,∴当α=时,x+y有最大值.22本小题满分12分)(2016•某某揭阳惠来一中检测)已知点A(sin 2x,1),B,设函数f(x)=(x∈R),其中O为坐标原点.(1)求函数f(x)的最小正周期;(2)当x∈时,求函数f(x)的最大值与最小值;(3)求函数f(x)的单调减区间.解:(1)∵A(sin 2x,1),B,∴=(sin 2x,1),,∴f(x)==sin 2x+cos=sin 2x+cos 2x cos -sin 2x cos=sin 2x+cos 2x=sin 2x cos +cos 2x sin=sin.故f(x)的最小正周期T==π.(2)∵0≤x≤,∴≤2x+,∴-≤sin≤1,∴f(x)的最大值和最小值分别为1和-.(3)由+2kπ≤2x++2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z, ∴f(x)的单调减区间是,k∈Z.。
人教版高中数学必修四(全一本)模块检测题试题+答案(精较版)

人教版高中数学 必修四(全)模块检测试题(满分150分,时间120分钟)一、单选题(共12题,每题5分)。
1. 0sin 45cos15cos 45sin15o o o -等于.A - 1.2B - 1.2C.D 2. 已知角A 同时满足sin 0A >且tan 0A <,则角A 的终边一定落在 .A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限 3. 函数cos tan y x x =的大致图象是4. 若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=.A.B - 5.3C 5.3D - 5. 下列函数中最小正周期为π,且图象关于直线3x π=对称的是().s i n A y x π=- ().sin B y x π=+ ().s i n 2C y x π=- ().s i n 2D y x π=-6. 已知点O 为ABC ∆所在平面内一点,若0OA OB OC ++=,则点O 是ABC ∆的 .A 重心 .B 垂心 .C 内心 .D 外心7. 设a 与b 是两个不共线的向量,且a b λ+与()2b a --共线,则实数λ的值为 1.A - 1.B .2C - .2D8. 已知6a =,3b =,12a b ⋅=-,则向量a 在向量b 方向上的投影是 .4A - .4B .2C - .2D9. 已知a 与b 不共线,5AB a b =+,28BC a b =-+,33CD a b =-,下列说法错误的是 .A AB 、BD 可以作为一组基底 .B BC 、BD 可以作为一组基底 .C AB 、CD 可以作为一组基底 .D BD 、CD 可以作为一组基底 10. 已知1,2a b ==,且a b +与a 垂直,则a 与b 的夹角θ等于.60oA .30o B .45o C .135o Dyππ2B11. 设1cos 662o o a =,202tan131tan 13ob =+,c =,则有 .A a b c >> .B a b c << .C a c b << .D b c a <<12. 若O 为ABC ∆所在平面内的一点,且满足()()20OB OCOB OC OA -+-=,则ABC ∆的形状为.A 正三角形 .B 直角三角形 .C 等腰三角形 .D 以上答案均错误 二、填空题(共4小题,每小题5分)13. 在直角坐标系中,终边落在一、三象限的角平分线上的角的集合为 .14. 已知点()P y 为角β终边上的一点,且sin β=,则y = .15. 函数y =+的定义域为 .16. 若函数sin log a y x x =-有5个零点,则实数a 的取值范围为 . 三、解答题17.(10分)用“五点法”列表并作出函数sin 21y x =+在[]0,x π∈内的简图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学必修四模块综合测试题 (满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.下列叙述中正确的是( )A.三角形的内角必是第一象限或第二象限的角B.角α的终边在x 轴上时,角α的正弦线、正切线分别变成一个点C.终边相同的角必相等D.终边在第二象限的角是钝角思路解析:由正弦线、正切线的定义可知B 正确,A 中漏了直角的情况,直角终边在y 轴上,不属于第一象限也不属于第二象限. 答案:B2.若α、β的终边关于y 对称,则下列等式正确的是( )A.sinα=sinβB.cosα=cosβC.tanα=tanβD.cotα=cotβ思路解析:因为α、β的终边关于y 对称,所以β=2kπ+π-α,k ∈Z ,sinβ=sin(2kπ+π-α)=sinα.或者通过定义sinα=ry,也可判断. 答案:A3.函数y=2sin2xcos2x 是( )A.周期为2π的奇函数B.周期为2π的偶函数 C.周期为4π的奇函数 D.周期为4π的偶函数思路解析:y=22sin4x,T=42π=2π,又f (-x )=22sin (-4x )=-22sin4x=-f (x ),它是奇函数.答案:A4.已知向量a =(3,2),b =(x,4),且a ∥b ,则x 的值为( ) A.6 B.-6 C.38-D.38思路解析:因为a ∥b ,所以3×4-2x=0,解得x=6.答案:A5.下面给出四种说法,其中正确的个数是( ) ①对于实数m 和向量a 、b ,恒有m(a-b)=ma-mb ;②对于实数m 、n 和向量a ,恒有(m-n)a=ma-na ;③若ma=mb(m ∈R),则a=b ;④若ma=na(a≠0),则m=n. A.1 B.2 C.3 D.4 思路解析:正确的命题有①②④,③当且仅当m≠0时成立. 答案:C6.已知|a|=1,|b|=2,a 与b 的夹角为60°,c=2a+3b,d=k a -b (k ∈R ),且c ⊥d ,那么k 的值为( ) A.-6 B.6 C.514- D.514思路解析:a·b=1×2×cos60°=1.∵c ⊥d,∴c·d=(2a+3b)·(ka-b)=2ka 2-2a·b+3ka·b-3b 2=2k-2+3k-12=0. ∴k=514. 答案:D7.函数y=3cos 2x+sinxcosx-23的周期是( ) A.4π B.2πC.πD.2π 思路解析:y=212322sin 22cos 13=-++∙x x sin2x+23cos2x=sin(2x+3π), T=22π=π. 答案:C 8.若α∈(0,2π),且tanα>cotα>cosα>sinα,则α的取值范围是( ) A.(4π,2π) B.(43π,π) C.(45π,23π) D.(47π,2π)思路解析:排除法.当α=3π时,cosα<sinα,排除A ; 当α=65π时,cotα<cosα,排除B;当α=611π时,tanα<cosα,排除D.答案:C9.已知|p |=22,|q |=3,p 、q 的夹角为4π,如图1,若=5p +2q ,=p -3q ,D 为BC 的中点,则|AD |为( )图1A.215 B.215 C.7 D.18 思路解析:=21(+)=21(5p+2q+p-3q)=21(6p-q),∴||=222123621)6(21q q p p q p +∙--= =2121534cos32212)22(3622=+⨯⨯⨯-⨯π.答案:A10.要得到函数y=sin(2x-3π)的图象,只要将函数y=sin2x 的图象( ) A.向左平行移动3π个单位 B.向左平行移动6π个单位C.向右平行移动3π个单位D.向右平行移动6π个单位思路解析:由y=sin2x 到y=sin(2x-3π)关键是看x 的变化,即由x 到x-6π,所以需向右平行移动6π个单位.答案:D11.使函数y=sin(2x+φ)+3cos(2x+φ)为奇函数,且在[0,4π]上是减函数的φ的一个值为( ) A.3π B.35π C.32π D.34π思路解析:可考虑代入法.y=sin(2x+φ)+3cos(2x+φ)=2sin(2x+φ+3π). 当φ=3π时,y=2sin(2x+φ+3π)=2sin(2x+32π)是非奇非偶函数,因此排除A.当φ=35π时,y=2sin(2x+φ+3π)=2sin2x 是奇函数,但在[0, 4π]上是增函数,因此排除B.当φ=32π时,符合题意,同样可排除D.答案:C12.函数y=Asin(ωx+φ)(A >0,ω>0)的部分图象如图2所示,则f(1)+f(2)+f(3)+…+f(11)的值等于( )图2A.2B.2+2C.2+22D.-2-22思路解析:由图象可知f(x)=2sin4πx 的周期为8, ∴f(1)+f(2)+f(3)+…+f(11)=f(1)+f(2)+f(3)=2sin 4π+2sin 2π+2sin 43π=2+22.答案:C二、填空题(本大题共4个小题,每小题4分,共16分) 13.已知tanx=6,那么21sin 2x+31cos 2x=________________.思路解析:原式=.111551363136211tan 31tan 21cos sin cos 31sin 21222222=++⨯=++=++x x x x x x 答案:1115514.已知AB =2e 1+k e 2,CB =e 1+3e 2,CD =2e 1-e 2,若A 、B 、D 三点共线,则k=______________. 思路解析:若A 、B 、D 三点共线,则∥,设=λ. ∵=-=e 1-4e 2,∴2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2. ∴λ=2,k=-4λ.∴k=-8. 答案:-815.若|a +b |=|a -b |,则a 与b 的夹角为_______________. 思路解析:方法一:考虑夹角公式. ∵|a +b |=|a -b |,∴(a +b )2=(a -b )2.整理得a ·b =0,∴a ⊥b .∴a 与b 的夹角为90°. 方法二:考虑平行四边形模型.在平行四边形OABC 中,=a ,=b , 则OB =a +b ,CA =a -b , ∵|a +b |=|a -b |,即|OB |=|AC |, ∴平行四边形OABC 为矩形. ∴a 与b 的夹角为90°. 答案:90°16.给出下列五种说法:①函数y=-sin(kπ+x)(k ∈Z )是奇函数;②函数y=tanx 的图象关于点(kπ+2π,0)(k ∈Z )对称;③函数f(x)=sin|x|是最小正周期为π的周期函数;④设θ为第二象限角,则tan 2θ>cos 2θ,且sin 2θ>cos 2θ;⑤函数y=cos 2x+sinx 的最小值为-1. 其中正确的是.思路解析:①∵f(x)=-sin(kπ+x)=⎩⎨⎧∈+=∈=-.,12,sin ,,2,sin Z n n k x Z n n k x f(-x)=f(x),∴f(x)是奇函数,①对. ②由正切曲线知,点(kπ,0)(kπ+2π,0)是正切函数的对称中心,∴②对.③f(x)=sin|x|不是周期函数,③错.④∵θ∈(2kπ+2π,2kπ+π),k ∈Z ,∴2θ∈(kπ+4π,kπ+2π).当k=2n+1,k ∈Z 时,sin 2θ<cos 2θ.∴④错.⑤y=1-sin 2x+sinx=-(sinx-21)2+45,∴当sinx=-1时,y min =1-(-1)2+(-1)=-1.∴⑤对.答案:①②⑤三、解答题(本大题共6小题,共74分) 17.(本小题满分12分) 已知cosα=31,且-2π<α<0, 求αααππαtan )cos()2sin()cot(-+∙--的值.解:∵cosα=31,且-2π<α<0, ∴sinα=322-,cotα=42-. ∴原式=42cos sin sin cot tan )cos(sin )cot(=-=-=--ααααααααt . 18.(本小题满分12分)已知向量OA =(3,-4),OB =(6,-3),OC =(5-m,-(3+m)).(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.解:(1)已知向量=(3,-4),=(6,-3), =(5-m,-(3+m)),若点A 、B 、C 能构成三角形,则这三点不共线.∵=(3,1),=(2-m,1-m), ∴3(1-m)≠2-m. ∴实数m≠21时满足条件. (2)若△ABC 为直角三角形,且∠A 为直角,则AB ⊥AC , ∴3(2-m)+(1-m)=0,解得m=47. 19.(本小题满分12分) 已知f(x)=sin(2x+6π)+sin(2x-6π)+2cos 2x+a ,当x ∈[-4π,4π]时,f(x)的最小值为-3,求α的值.解:∵f(x)=sin(2x+6π)+sin(2x-6π)+2cos 2x+a =3sin2x+cos2x+1+a=2sin(2x+6π)+1+a.∵x ∈[-4π,4π],∴-3π≤2x+6π≤32π.∴f(x)在[-4π,4π]上的最小值为2(-23)+1+a=1-3+a.由题意,知1-3+a=-3,∴a=3-4.20.(本小题满分12分)已知函数y=21cos 2x+23sinxcosx+1,x ∈R . (1)求它的振幅、周期和初相;(2)用五点法作出它的简图; (3)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到的? 解:y=21cos 2x+23sinxcosx+1=41cos2x+43sin2x+45 =21sin(2x+6π)+45. (1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π. (2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出图象如下图所示:x -12π 6π 125π 32π 1211πx 1 0 2π π 23π 2π y=sinx 1 01-1y=21sin(2x+6π)+45 4547 45 43 45(3)方法一:将函数图象依次作如下变换:函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象, 即得函数y=21cos 2x+23sinxcosx+1的图象. 方法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象−−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的−−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象, 即得函数y=21cos 2x+23sinxcosx+1的图象. 21.(本小题满分12分)已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(2π,23π). (1)若|AC |=|BC |,求角α的值;(2)若AC ·BC =-1,求αααtan 12sin sin 22++的值. 解:(1)∵AC =(cosα-3,sinα),BC =(cosα,sinα-3),∴|AC |=αααcos 610sin )3(cos 22-=+-,|BC |=αααsin 610)3(sin cos 22-=-+.由||=||,得sinα=cosα. 又∵α∈(2π, 23π),∴α=45π. (2)由AC ·BC =-1,得(cosα-3)cosα+sinα(sinα-3)=-1. ∴sinα+cosα=32.①又αααααααcos sin 1)cos (sin sin 2tan 12sin sin 22++=++=2sinαcosα.由①式两边平方,得1+2sinαcosα=94, ∴2sinαcosα=95-.∴αααtan 12sin sin 22++=95-.22.(本小题满分14分)已知=(2,1),=(1,7),=(5,1).设M 是直线OP 上的一点(其中O 为坐标原点),当∙取最小值时: (1)求OM ;(2)设∠AMB=θ,求cosθ的值.解:设=t ,则=(2t,t),=(1-2t,7-t),=(5-2t,1-t).MB MA ∙=5t 2-20t+12=5(t-2)2-8.∴t=2时,MB MA ∙最小,这时OM =(4,2). (2)由=(-3,5),=(1,-1), ∴17174-=. ∴cosθ的值是17174-.。