开关电源一般由功率主回路、辅助电源和控制回路组成
电脑电源维修教程

电脑电源维修教程开始我们要知道计算机开关电源的工作原理。
电源先将高电压交流电(220V)通过全桥二极管整流以后成为高电压的脉冲直流电,再经过电容滤波以后成为高压直流电.此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级。
接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。
其中,控制电路是必不可少的部分。
它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。
在计算机开关电源中,因为电源输入部分工作在高电压、大电流的状态下,故障率最高;还有就是输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。
通过对多台电源的维修,总结出了对付电源常见故障的方法。
一、在断电情况下,“望、闻、问、切"由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。
因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。
首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的.在初步检查以后,还要对电源进行更深入地检测。
用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1、VT2击穿。
然后检查直流输出部分.脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。
开关电源工作原理解析

开关电源工作原理解析开关电源是一种将输入电源通过开关器件进行周期性开关而将电能转换成需要的形式和规格的电源。
开关电源主要由开关器件、变压器、滤波器电路、控制电路和反馈电路等组成。
开关器件通常使用MOS管或IGBT作为开关元件,在控制信号的作用下,周期性地切换开关状态,从而实现根据需要将输入电源转换成低压稳定直流电源。
当开关器件处于导通状态时,电源能够通过变压器将电能传输到输出端。
而当开关器件处于断开状态时,输出端便断开与输入电源的连接。
通过开关的快速切换,可以实现高效率的功率转换。
变压器起到了功率变换和电隔离的作用。
输入电压经过变压器变换后,转换成适合输出负载的电压。
变压器的绕组对输出电压和电流起到了调节的作用,使输出电源具有一定的稳定性和适应不同负载的能力。
滤波器电路用于去除开关电源开关产生的脉冲干扰和高频噪声,使得输出端获得平稳的直流电压。
常见的滤波器电路包括电容滤波和电感滤波,可以根据需求选择不同的滤波方式。
控制电路主要对开关器件进行控制,使其按照设计要求进行开关操作。
控制电路使用反馈信号进行调节,通过比较输出电压与设定值的差异,控制开关器件的导通和断开,从而实现稳定的输出电压和电流。
常用的控制方式包括PWM调制和电压反馈等。
另外,开关电源还会配备保护电路,用于保护电源和负载免受过电流、过电压、短路等异常情况的损害。
保护电路可以实时监测输出电压和电流,当检测到异常时,及时切断电路,确保安全可靠的运行。
总之,开关电源通过周期性开关操作,将输入电源转换成稳定的输出电源。
它具有高效率、稳定性好、适应性强等优点,广泛应用于电子设备、通信系统、工业自动化等领域。
TL494LM339方案ATX电源电路工作原理和维修

LWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。
本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。
一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。
一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
ATX微机开关电源维修教程

微机ATX电源电路的工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。
本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。
一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。
一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和内部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
电脑开关电源的工作原理

计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。
对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。
下面对ATX电源控制电路的工作原理进行较详细的阐述,望能对广大维修者有所帮助。
一、ATX型电源电路的组成及工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
请参照图1和ATX电源电路原理图。
1.辅助电源电路只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。
市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。
T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。
反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。
Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。
反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。
同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。
随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。
开关电源的结构和基本原理

BR1
4 72 25 0V ac
K BU 8 06
R35
1 9 -1 0 3 4 -5
R45-48
8 2 1 20 6
2 0CT1 00 2 0A /1 00 V
L3-1
L9
5 *2 0
C21
2 20 0u ,16 V
+12 V2
R53,54
2 K 1 2 06
C4
3 32 1K V
MYV1
8 20 u,2 00 V
R36 D10
C23
D15 D24 D17 D18
F R1 04 F R1 04
D16
IN 5 81 9
L3-2
L6
6 *8
C1
1 02 25 0V ac
1 0K 1 20 6
L1A
L1A Q7
L1B
D14
C30 L3-3 BR4 L3-4 L10 L7
C29
D1
D35
1 N4 14 8 SM D
D5 C39
1 N4 14 8 SMD
1 K 1 2 06
D6
R29
1 N4 14 8 SMD
0 .5R 1 /2W
F R1 05
F R1 04
Q4
Q2
R115
Z1
D2
C16
?
F SD 5L01 6 5
D8
R39
F R1 04
1 12 06
1 02 50 V 0 80 5
R103 R99
B
2 K 0 8 05 2 K 0 8 05
3 VI
R173
5V
开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析开关电源是一种将直流电源转换为可变直流电压输出的电源装置。
它通过开关管的通断控制,以高频脉冲方式调节输出电压,能够实现高效、稳定、可靠的电源转换。
本文将详细解析开关电源的工作原理。
开关电源由以下几个基本组成部分组成:输入滤波电路、整流电路、能量存储元件、控制电路和输出电路。
输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,确保输入电压稳定。
它一般由电容、电感和绕组构成。
输入电压经过滤波电路后,接入整流电路。
整流电路的作用是将交流电转换为脉冲直流电。
常用的整流电路有单相桥式整流电路和三相桥式整流电路。
整流电路通过整流管将输入的交流电转换为直流电,并通过电容滤波电路将脉冲形式的直流电转换为平滑的直流电压。
能量存储元件一般是电感和电容。
电感能存储电能,电容能存储电荷。
在开关电源中,电感和电容组成的电容滤波电路起到储存能量的作用。
它们能够在负载电流突然增加时,释放存储的能量,从而保持输出电压的稳定性。
控制电路是开关电源的核心部分,其中包括开关管的控制电路和反馈电路。
开关管的控制电路负责控制开关管的通断,从而改变输出电压的大小。
反馈电路用于检测输出电压的实际值与设定值之间的差异,并向控制电路提供反馈信号,用于调整开关管的通断状态。
开关电源的输出电压由开关管通断的频率和占空比决定。
开关管的通断由控制电路控制,控制信号通常由脉冲宽度调制(PWM)产生。
PWM信号通过改变脉冲的宽度和间隔,调整开关管的通断时间,从而改变输出电压的大小。
开关电源的优点是高效率、稳定性好和体积小。
相比传统的线性电源,开关电源的转换效率更高,可以达到90%以上。
此外,开关电源的输出电压稳定性好,能够在负载变化较大的情况下保持输出电压的稳定。
由于使用高频脉冲调节输出电压,在相同输出功率的情况下,开关电源体积更小。
总之,开关电源是一种高效、稳定、可靠的电源装置。
它通过开关管的通断控制,以高频脉冲方式调节输出电压,实现电源转换。
开关电源原理详解

开关电源原理详解开关电源(Switching Power Supply)是一种将直流电源转换为不同电压、频率、波形的电源。
它通过开关管将输入电流以高频率开关,然后经过变压器、整流滤波和电压稳定电路,最终得到稳定的直流输出电源。
开关电源具有高效率、小体积和质量稳定等特点,被广泛应用于电子设备、通信系统、工业设备和生活家电中。
下面将详细介绍开关电源的工作原理。
开关电源主要由开关管、变压器、整流滤波电路以及反馈控制电路组成。
1.开关管开关管是开关电源的核心部件,一般采用MOSFET(金属氧化物半导体场效应管)或IGBT(绝缘栅双极型晶体管)。
它的主要作用是根据控制信号将输入电流以高频率开关,实现功率的高效转换。
当控制信号为高电平时,开关管导通,电压负载得到输入电流;当控制信号为低电平时,开关管截止,电压负载断开,这样在开关管导通和截止的切换过程中,输入电流可以快速转换,实现高效的功率传输。
2.变压器变压器主要起到变换输入电压的目的。
它由两个或多个线圈绕在磁性铁芯上构成。
其中一个线圈称为“主线圈”,接收开关管输出的高频脉冲,产生磁场;另一个线圈称为“副线圈”,接收主线圈产生的磁场,并输出变压后的电压。
变压器通过磁耦合原理实现高频信号的传输和电压的变换。
主线圈产生的磁场会感应到副线圈中的电动势,导致输出电压的变化。
变压器的绕组比例决定了输入电压和输出电压的变换比例。
3.整流滤波电路整流滤波电路用于将变压器输出的交流电压转换为直流电压,并去除残余的高频噪声。
它主要由整流二极管和滤波电容组成。
整流二极管用于将交流电压转换为单向的脉冲电压。
当输入电压为正向的时候,整流二极管导通;当输入电压为反向的时候,整流二极管截止。
这样就实现了交流电压向直流电压的转换。
滤波电容通过存储电荷的方式实现电压的平滑,去除残余的高频脉动。
当整流二极管导通时,滤波电容充电;当整流二极管截止时,滤波电容向负载释放储存的电荷,保持输出电压的稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源一般由功率主回路、辅助电源和控制回路组成。
功率主回路主要用来给用户负载供电,而开关电源的辅助电源主要用来给功率主回路的控制电路、驱动电路或电源系统的监控电路供电。
辅助电源的设计不但影响到整个电源的体积、效率、稳定性、可靠性和成本,而且还将影响到整个开关电源的设计策略。
一个重要的原因就是隔离问题。
例如在离线式开关电源中,如果其内部的辅助电源和功率主回路输入共地,那么就需要用光耦或变压器来对输出电压采样信号进行隔离,见图1。
而如果是内部辅助电源和功率主电路输出共地,则一般不需要对电压采样信号隔离,这时只需对驱动信号隔离。
图1 辅助电源和输入共地
2 开关电源辅助电源的特点及种类
由于所需辅助电源的功率一般较小,辅助电源应该力求简单、可靠和小巧。
根据辅助电源与功率主回路的关系,开关电源中的辅助电源可以分为两大类:
(1)独立型:辅助电源独立于功率主回路。
主要用于大功率或中功率电源系统,比如在通讯电源、ATX 电源中,需要电源正常或失败信号或电源远程控制的功能时,在功率主回路即使不工作时,辅助电源也要正常供电。
下面是几种常见的独立型辅助电源设计方法。
第一种方法:传统的线性电源作为辅助电源。
它是用普通的矽钢片低频变压器降压后,又经过四只二极管全波整流,经C5、C6平滑滤波后加到三端稳压器7815输入端。
电路见图2:
图 2 低频变压器构成的辅助电源
这种设计中,低频变压器的体积往往选的足够大,以满足各种安全规范中对绝缘和漏电特性的要求。
但由于它的简单、可靠和方便,以及完全的隔离特性,所以在大功率开关电源系统中,低频变压器不会影
响到整个电源的尺寸和造价时,它将是一个不错的选择。
第二种方法:一种不用低频变压器降压的简易辅助电源。
它的实用电路见图4。
用两只无极性的高频电容C6 、C7,直接从两路220V(经过输入滤波电路之后)电网电压中取得低频脉动电压,并串联两只电阻R2、R3限流。
然后经过四只二极管全波整流,最后再输入集成稳压器7815,以提供所需电压。
IC输入端并联一只稳压二极管箝位,防止浪涌电压损坏7815。
图 3 一种不用低频变压器降压的简易辅助电源
第三种方法:由自激式开关变换器构成非常轻巧的辅助电源,可以方便地产生多路辅助电源。
图4是由一个自激式反激式变换器构成的辅助电源。
图 4 一种自激式反激式高频变换器构成的辅助电源
这个辅助电源适合于110/220Vac输入。
开始时由于通过R1、R2的基级驱动电流,Q1开始导通,绕组P2上的反馈电压将加速Q1的开通过程。
随着Q1的导通,初级线圈P1上的电流将线性增加,而R3上的电流也线性增加,Q发射级电压增加,导致R2上的电流减小,Q1开始关断。
由于P2上的反馈电压方向,所以将加速Q1的关断过程。
在反激阶段,绕组P3和D10把反激的大部分能量回馈到输入,只有一小部分能量通过D11传送到输出。
根据变压器铁芯选择适当的初级线圈,使得在Q1开通阶段储存的能量至少是所需辅助输出能量的3-4倍,这样二极管D10在反激阶段始终导通,次级电压就完全由初级电压和砸数比决定,这样做的好处是易于设定辅助电源的输出电压。
第四种方法:用单片电源芯片,如Topswitch或Tinyswtich系列芯片,可以方便的做成高性能小功率的辅助电源。
图5是topswitch 芯片在单端反激式单片开关电源中的典型应用。
图 5 Topswitch在单端反激式单片开关电源中的应用
Topwitch 器件集PWM信号控制电路及功率开关场效应管于一体,内部集成了自启动电路,所以只要配以少量的外围元器件,就可以构成一个电路结构简洁、成本低、性能稳定、制作及调试方便的单片开关电源,作为电源系统中的辅助电源。
这种方法已得到广泛应用。
(2)非独立型:由主变换器高频变压器输出的一部分构成辅助电源。
主要用于中小功率电源系统,有利于减小整个电源的体积,实现小型化,节约成本。
特点是辅助电源与主变换器二者的工作状态互相制约。
如果辅助电源不给控制电路供电,主变换器将不工作。
而当主电路不工作,辅助电路也随之关闭。
所以在电源的启动阶段需要一些方法给控制电路提供能量,然后过渡到正常的工作状态。
第一种启动方法:启动时直接由直流输入端提供起动电压,如图6。
图6 启动电压由直流输入线提供
这是一个由UC3842构成的反激式小型开关电源,它的辅助电源由主变换器变压器一个绕组提供。
在启动阶段,由直流输入端经过电阻分压后加到UC3842的供电端(7端),给电容C2充电,等到UC3842的7脚电压超过16V时,芯片起振,PWM信号产生,变换器工作,辅助电源电压开始建立。
但由于限流电阻RIN 的作用,有可能使得芯片7脚电压降低至10V而使得芯片停止工作。
之后主电路又通过RIN电阻给UC3842芯片供电,芯片工作。
如此反复,直至芯片正常工作所需的辅助电源电压建立后,电源才正常工作。
第二种启动方法:脉冲发生电路构成启动电路,如图7所示。
启动时由D1、C4、R4、R5和Q组成的脉冲发生电路来驱动Mosfet功率管,主变换器工作,C6、C7上的电压开始增加,直至辅助电源建立后,电源的控制芯片就开始工作。
其产生的PWM信号通过脉冲变压器T1驱动Mosfet,此时由于脉冲变压器T1副
边上的电压幅度增大,双向触发二极管DIAC关闭,脉冲发生电路停止工作,起动过程结束,整个电源开始正常工作。
图7 脉冲发生电路构成启动电路
3 开关电源中的辅助电源设计的原则
虽然辅助电源所需要输出功率不大,但它是开关电源中的非常重要的组成部分,将影响到整个电源的性能。
开关电源正向着轻、小、薄、高可靠、高稳定、高效率和智能化的方向发展,应根据整个开关电源系统的规格要求来选择合适的辅助电源系统,首先在满足可靠性的前提下,设计简单、轻巧和经济的辅助电源。