实验一单管交流放大电路
单管放大电路实验报告

单管放大电路实验报告.单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。
二、实验电路实验电路如图 2.1 所示。
图中可变电阻R W是为调节晶体管静态工作点而设置的。
三、实验原理1.静态工作点的估算将基极偏置电路V CC,R B1和R B 2用戴维南定理等效成电压源。
RB 2开路电压V BB V CC,内阻RB1RB 2R B R B1 // R B2则I BQV BB V BEQ,(1)( R E1R B R E2)I CQ I BQVCEQ VCC(R C R E1RE2)ICQ可见,静态工作点与电路元件参数及晶体管β均有关。
在实际工作中,一般是通过改变上偏置电阻RB1(调节电位器RW )来调节静态工作点的。
RW 调大,工作点降低(ICQ 减小),RW 调小,工作点升高(ICQ 增加)。
一般为方便起见,通过间接方法测量I CQ,先测V E, I CQ I EQ V E /(R E1 R E2)。
2.放大电路的电压增益与输入、输出电阻(R C // R L )R i R B 1 // R B 2 // r be R O R Curbe式中晶体管的输入电阻r =r+(β+1) V /IEQ ≈r+(β+ 1)× 26/ICQ(室温)。
be bb′T bb′3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。
电压增益的大小与频率的函数关系即是幅频特性。
一般用逐点法进行测量。
测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。
由曲线确定出放大电路的上、下限截止频率f H、f L和频带宽度BW= f H- f L。
武科大 单管交流放大电路实验__实验报告

实验一、管交流放大电路实验1. 实验目的1) 学习并掌握单管交流放大电路静态工作点的调试及测量方法; 2) 学习并掌握单管交流放大电路电压放大倍数的测量方法;3) 掌握静态工作点、负载电阻的变化对电压放大倍数及输出波形的影响。
3. 实验原理实验电路如图5.1.1所示,为共射极接法的单管交流放大电路。
图5.1.1 共射极单管交流放大电路图1) 放大电路静态工作点的调试与测量静态是当放大电路没有输入信号时的工作状态。
静态工作点Q 包括B I 、CI 和CE U 三个参数。
此时放大电路的静态工作点由偏置电路b1R 、P1R 、b2R 和e R 决定,改变电位器P1R 的阻值就可以调节B I 的大小,也就改变了静态工作点。
为了使输出电压达到比较大的动态范围,要把静态工作点调整到直流负载线的中间位置。
2) 交流电压放大倍数的测量放大电路的交流电压放大倍数即输出电压与输入电压有效值之比,电压放大倍数要在静态工作点合适、输出波形不失真条件下测得。
3) 电路参数对放大器性能的影响(1) 静态工作点对输出电压波形的影响 静态工作点设置太低,输出波形产生截止失真;静态工作点设置太高,输出波形产生饱和失真。
(2) 输入信号对输出电压波形的影响 静态工作点设置合适,但输入信号如果过大,输出波形也要产生截止、饱和失真(大信号失真)。
(3) 负载电阻L R 对放大倍数的影响 当放大器空栽(负载电阻开路)时,电压放大倍数为C u beRA r β=-当放大器接入负载电阻时,电压放大倍数为L u beR A r β'=-(其中L C L //R R R '=)所以,L R 对放大倍数是有影响的,显然,L R 电阻值越小,电压放大倍数就越低。
(4) 发射极电容e C 对电压放大倍数的影响 e C 接入时,电压放大倍数的计算如(3)所述,把e C 去掉,电压放大倍数为Lu be e(1)R A r R ββ'=-++(其中L C L //R R R '=)所以把e C 去掉后电压放大倍数要减小。
单管交流放大电路实验心得

单管交流放大电路实验心得一、实验目的二、实验原理三、实验器材四、实验步骤五、实验结果分析六、实验心得体会一、实验目的本次单管交流放大电路实验的主要目的是了解单管交流放大电路的基本原理,掌握单管交流放大电路的搭建方法,熟悉单管交流放大电路在不同工作状态下的输出波形特征,并进一步加深对晶体管特性和参数的了解。
二、实验原理单管交流放大电路是由晶体管组成的,其基本原理是利用晶体管具有非线性特性进行信号放大。
在这种电路中,输入信号经过耦合电容进入基极,通过基极-发射极回路进入负载。
当输入信号增强时,发射极电流也随之增强,从而使集电极-发射极间的直流工作点向上移动。
这样就可以使输出信号得到放大。
三、实验器材1. 晶体管:2N3904;2. 降压变压器:220V/12V;3. 万用表;4. 电容:0.1μF;5. 电阻:100Ω;6. 示波器。
四、实验步骤1. 按照电路图连接电路,注意线路的正确连接;2. 将降压变压器的220V端接入交流电源,将12V端接入电路;3. 打开示波器和万用表,并将示波器探头和万用表探头分别连接到输出端和输入端;4. 调节万用表,使其测量集电极与发射极之间的直流工作点电压为5V 左右;5. 调节示波器,观察输出信号的波形特征,并记录下来。
五、实验结果分析通过实验观察,我们可以发现,在单管交流放大电路中,输入信号经过耦合电容进入基极后,会通过基极-发射极回路进入负载。
当输入信号增强时,发射极电流也随之增强,从而使集电极-发射极间的直流工作点向上移动。
这样就可以使输出信号得到放大。
同时,在不同工作状态下,单管交流放大电路的输出波形特征也会有所不同。
例如,在静态工作状态下(即没有输入信号时),输出信号呈现出直线状;而在动态工作状态下(即有输入信号时),输出信号会呈现出较为复杂的波形特征,如正弦波、方波等。
六、实验心得体会通过本次单管交流放大电路实验,我深刻认识到了晶体管的非线性特性和其在电路中的重要作用。
实验一实验报告单级放大电路的设计与仿真

EDA设计(一) 实验报告——实验一单级放大电路的设计与仿真一.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载电阻Ω,电压增益大于50。
2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be 、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。
二.单级放大电路原理图单级放大电路原理图三.饱和失真、截止失真和不失真1、不失真不失真波形图不失真直流工作点静态工作点:i BQ=, i CQ=, v CEQ=2、饱和失真饱和失真电路图饱和失真波形图饱和失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=3、截止失真截止失真电路图截止失真波形图截止失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=四.三极管输入、输出特性曲线和 、r be 、r ce值1、β值静态工作点:i BQ=,i CQ=,v CEQ=V BEQ=β=i C/i B=2、输入特性曲线及r be值:由图:dx=,dy=r be=dx/dy=输入特性曲线3、输出特性曲线及r ce值:由图dx=, 1/dy=r ce=dx/dy=输出特性曲线五.输入电阻、输出电阻和电压增益1、输入电阻测输入电阻电路图由图:v= ,i=μAR i=v/i=μA=Ω2、输出电阻测输出电阻电路图1测输出电阻电路图2 由图:v o’= v o=R o=(v o’/v o-1)R L==Ω3、电压增益测电压增益电路图由图可得A V=六.幅频和相频特性曲线、f L、f H值由图可得f L= f H=Δf= f H - f L=七.实验结果分析1、R iR i理论=[r be+(1+β)R E]//R b1//R b2 =[2976+(1+220)x10]//127k//110k=ΩE1=、R oR o理论=R c=3 kΩE2=/3=1%3、AvI E理论=V B/R E=[ V cc R5/(R2+R5)]/( R6+R1)=[10x110/(127+110)]/2010=r be理论=200+26(1+β)/ I E =2976ΩAv理论=β(R C//R L)/[ r be+(1+β)R E]=220(3kΩ//Ω)/[2976+(220+1)x10]= E3=、V1=10mV时,会出现失真,但加一个小电阻即可减少偏差。
单管放大电路实验报告

单管放大电路实验报告【摘要】本实验通过搭建单管放大电路,研究了该电路的放大特性。
实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。
【关键词】单管放大电路;放大倍数;输入信号;输出信号一、实验目的1. 了解单管放大电路的工作原理;2. 掌握搭建和调试单管放大电路的方法;3. 研究单管放大电路的放大特性。
二、实验器材和仪器示波器、信号发生器、直流电源、电阻、电容、三极管等。
三、实验原理单管放大电路是由一个三极管、少量无源器件和若干衔接接线构成的。
它可以将小信号放大成为大信号,通过不同组合的电容、电阻和三极管可以实现不同的放大倍数。
四、实验步骤和结果1. 按照电路图搭建单管放大电路;2. 将信号发生器接入输入端,示波器接入输出端;3. 通过调节信号发生器的频率和幅值,观察输出信号的变化;4. 记录输入信号的幅值和输出信号的幅值,计算放大倍数;5. 重复步骤3和步骤4,绘制输入信号幅值和输出信号幅值之间的关系曲线。
五、实验结果与分析实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。
这是由于三极管的非线性特性造成的,当输入信号幅值较小时,三极管工作在其饱和状态,此时输出信号的放大倍数较高;当输入信号幅值较大时,三极管工作在其线性状态,此时输出信号的放大倍数较低。
六、实验总结通过本次实验,我们深入了解了单管放大电路的工作原理,并掌握了搭建和调试该电路的方法。
我们还研究了单管放大电路的放大特性,发现输出信号的放大倍数与输入信号的大小有关,这为我们进一步设计和优化放大电路提供了参考。
单管交流放大电路

单管交流放大电路单管交流放大电路一、 实验目的实验目的(一)熟悉实验板上的元器件和电路布线。
(二)观察并测量电路参数的变化对电路的静态工作点(Q)、电压放大倍数(V A )及输出波形的影响。
二、知识要点(一)放大器静态工作点的设置与调整是十分重要的,静态工作点的合理设置能使放大器工作稳定可靠,为获得最大不失真电压,静态工作点应选在交流负载线的中点。
为使工作点稳定,必须满足以下条件 BQ >> I I ≈ I 21 (二)静态工作点可由下式计算CB B B BQ E +R R R =U 211E BEQ BQ EQ CQ R U U =≈I I -,或CCQC CQ R -U E =I)(E C CQ C RE ER C CEQ +R R -I =E -U -U =E UβI =I CQBQ (三)动态参数计算 电压放大倍数和输入输出电阻计算beL i o u r βR =u u =A '-,L c L //R =R R ' be B B i //r //R =R R 21,通常由于21B B be R <<R r 、,所以有be i r R ≈)()(26)1(mV I mV +β+=r r EQ 'bb be ,Ω=r 'bb 300c R R =0(四)输入电阻与输出电阻的测量方法输入电阻为 s i s ii R -u u u =R ×输出电阻为 L 'R u u R )1-(00=式中0u 为空载时的输出电压,'u 0为带负载时的输出电压。
注意!静态工作点用MF-47型指针万用表测量,输入输出电压用交流毫伏表测量或双踪示波器测量。
图2-2 输入、输出电阻测量电路三、实验电路原理图图2—1 单管交流放大电路*四、实验内容及步骤(一)检查实验板或实验装置接线无误后,方可接通电源。
(二)静态工作点和电压放大倍数测量及输出波形的观察。
单管放大电路仿真实验报告

单管放大电路仿真实验报告实验目的:通过搭建单管放大电路并进行仿真实验,掌握单管放大电路的基本原理、电路参数与特性,以及使用仿真软件进行电路设计和分析的能力。
实验器材:电脑、仿真软件(如Multisim、Proteus等)、电源、电阻、电容、二极管、NPN型晶体管、示波器等。
实验原理:共发射极放大模式是指输入信号与晶体管的发射极之间相连,通过控制基极电压来控制管中的电流,从而实现放大作用。
在这种模式下,晶体管的电压放大倍数为低阻输入电阻和高阻输出电阻之商。
共集极放大模式是指输入信号与晶体管的集电极之间相连,通过控制基极电流来控制输出信号的幅度。
晶体管在该模式下的输入电阻很高,输出电阻很低,所以适合用于电压放大和阻抗匹配。
实验步骤:1.搭建共发射极放大模式的单管放大电路。
按照晶体管型号的参数表和电路要求,选择合适的电阻值、电容值和电源电压,并按照电路图进行连线。
2.通过仿真软件验证电路是否正确。
打开仿真软件,选择合适的元件连接到电路中,并设置电路参数。
然后运行仿真,观察输出波形和电流电压等参数。
3.测量并记录电路中各元件的电流、电压值。
使用示波器测量输入信号波形和输出信号波形,记录各点的幅度值。
4.通过仿真结果和实测数据,计算电路的增益、输入电阻、输出电阻、功率增益等参数。
并与理论值进行比较,分析误差原因。
5.调整电路参数,观察电路各项指标的变化,并进行比较分析。
实验结果:根据实验步骤进行操作后,我们得到了如下实验结果:1.得到了理论计算出的电路增益、输入电阻、输出电阻、功率增益等参数,并与仿真结果进行比较。
2.经过调整电路参数的实验,观察到电路中各项指标的变化,并进行了比较分析。
3.实测数据与仿真结果基本吻合,分析了误差产生的原因。
结论:通过单管放大电路的仿真实验,我们掌握了单管放大电路的基本原理、电路参数与特性,以及使用仿真软件进行电路设计和分析的能力。
我们发现,实验结果与理论计算值基本吻合,说明了我们所搭建的电路正确。
晶体管共射极单管交流放大电路实验报告

晶体管共射极单管交流放大电路实验报告实验目的:掌握晶体管共射极单管交流放大电路的工作原理,学习测量放大电压增益和频率响应特性。
实验仪器:数字万用表、双踪示波器、信号发生器、电源、电阻、电容、晶体管等。
实验原理:晶体管共射极单管交流放大电路是一种常用的放大电路,其原理如下:电路图如下所示:```—C1,,C2,+6,Vin ,R1,,,,—R3—,B,—R2,,RL—GND```按照通用放大器的放大电流相性,我们可以得到如下结论:1. 当输入信号Vin正半周的上升使基极电压增加,晶体管开始导通,电容C1(输入耦合电容)开始充电,C2(负载耦合电容)不发生变化。
2. 当输入信号Vin正半周的下降使基极电压减小,晶体管开始封断,电容C1开始放电,C2不发生变化。
实验步骤:1. 按照电路图连接电路:将R1与R2串联,组成电压分压网络,接入信号源Vin。
将R3与RL串联连接,终端接地,RL连接至晶体管集电极C2端。
将信号源接地端接地。
2.将电源正极连接至C2,电源负极接地。
3.连接示波器,并调整电源电压至合适的值。
4.打开示波器,调整信号发生器,设置所需的频率和幅度。
5. 测量输入信号Vin和输出信号Vout的峰峰值。
6. 通过计算得出电流放大倍数Av,即Vout/Vin。
实验结果:在实验中,我们设置了信号发生器的频率为f,幅度为Vin。
通过示波器分别测量输入信号Vin和输出信号Vout的峰峰值。
根据实验数据计算得到Av=Vout/Vin的值,并绘制频率响应曲线。
实验结论:1.实验结果表明,晶体管共射极单管交流放大电路具有一定的放大作用,且放大倍数随着频率的增加而逐渐减小。
2. 放大倍数Av与输入信号Vin和输出信号Vout之间的关系为Av=Vout/Vin。
3.频率响应曲线表明,放大电路在一定频率范围内的放大效果较好,但随着频率的增加或减小,放大效果会减弱。
4.实验中可能存在的误差主要来自于电路连接不良、仪器误差等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一单管交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3。
学习测量放大电路Q点,AV,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
*为了方便示波器观察,本书内所写参考值均用峰值,此电路为共射放大电路二、实验仪器1。
示波器3.数字万用表三、预习要求1。
三极管及单管放大电路工作原理.2.放大电路静态和动态测量方法。
四、实验内容及步骤1。
装接电路与简单测量图1.l 基本放大电路(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。
测三极管B、C和B、E极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。
三极管导通电压U BE=0.7V、UBC=0.7V,反向导通电压无穷大.(2)按图1。
1所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置.2。
静态测量与调整(1)接线完毕仔细检查,确定无误后接通电源。
改变RP,记录I Cβ值(其值较低)。
注意:I b和I c的测量和计算方法①测I b和Ic一般可用间接测量法,即通过测V c和Vb,Rc和R b计算出Ib和Icb为支路电流).此法虽不直观,但操作较简单,建议初学者采用。
②直接测量法,即将微安表和毫安表直接串联在基极和集电极中测量。
此法直观,但操作不当容易损坏器件和仪表。
不建议初学者采用。
(2)按图1.2接线,调整RP使VE=2。
2V,计算并填表1.1.图1。
2工作点稳定的放大电路为稳定工作点,在电路中引入负反馈电阻Re,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流ICQ和管压降U CEQ基本不变.依靠于下列反馈关系:T↑—β↑—ICQ↑—UE↑-U BE↓-IBQ↓—ICQ↓,反过程也一样,其中Rb2的引入是为了稳定Ub.但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri变大了,输出电阻r o不变.ebe L c uR r R R A)1()(ββ++-=,))1((21e be b b i R r R R r β++=,c o R r =由以上公式可知,当β很大时,放大倍数u A 约等于eL c R R R ,不受β值变化的影响.(2) 将信号发生器的输出信号调到f=1KH z,幅值为500mV ,接至放大电路的A点,经过R1、R 2衰减(100倍),V i 点得到5m V的小信号,观察V i 和V O 端波形,并比较相位。
图1。
3所示电路中,R 1、R 2为分压衰减电路,除R 1、R 2以外的电路为放大电路。
之所以采取这种结构,是由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R 2衰减形式.此外,观察输出波形时要调节R b1,使输出波形最大且不失真时开始测量。
(3)信号源频率不变,逐渐加大信号源幅度,观察V O不失真时的最大值并填表1.2.分析图1。
3的交流等效电路模型,由下述几个公式进行计算:Ebe I mVr 26)1(200β++≈,be ce c L V r r R R A β-=,c ce o be b b i R r r r R R r ==,2合适状态时:U B=0.7, U E =0, U C=3。
36, R b =135.4kΩIB=56µA , I C =1.72m A, β=30.7,r be=674Ω(3) 保持V i =5m V不变,放大器接入负载R L,在改变RC数值情况下测量,并将计算结果填表1.3。
当R C =2K时,IB =56.7µA, I C =1。
90mA, β=33。
5,r be =667Ω671。
5Ω(4) i CL P R b1(51K 或150K),增大和减小R P,观察V O 波形变化,若失真观察不明显可增大V i 幅值(>10 mV),并重测,将测量结果填入表1。
4.加V i =10m V以上,调整RP 到适合位置,可观察到截止失真(波形上半周平顶失真)4.测放大电路输入,输出电阻. (1) 输入电阻测量所谓输入电阻,指的是放大电路的输入电阻,不包括R 1、R 2部分.在输入端串接一个5K 1电阻如图1.4,测量V S与V i ,即可计算r i 。
图1。
4 输入电阻测量(2)输出电阻测量(见图1.5)图1。
5 输出电阻测量在输出端接入可调电阻作为负载,选择合适的RL 值使放大电路输出不失真(接示波器监视),测量带负载时VL和空载时的V O ,即可计算出r O。
将上述测量及计算结果填入表1.5中。
用c c ce o be b b i R R r r r R R r ≈==,2公式进行估算1。
注明你所完成的实验内容和思考题,简述相应的基本结论. 2.选择你在实验中感受最深的一个实验内容,写出较详细的报告。
要求你能够使一个懂得电子电路原理但没有看过本实验指导书的人可以看懂你的实验报告,并相信你实验中得出的基本结论.ﻬ实验二 两级交流放大电路两级阻容耦合共射极方大电路,用大电容作极间耦合.优点在于静态工作点互不影响,便于设计、分析、调试,当低频特性差,且大电容不利于集成化,因而多用于分立电路.一、实验目的1.掌握如何合理设置静态工作点.2.学会放大电路频率特性测试方法。
3。
了解放大电路的失真及消除方法。
二、实验仪器1.双踪示波器。
2.数字万用表。
3.信号发生器,三、预习要求1。
复习教材多级放大电路内容及频率响应特性测量方法。
2。
分析图2.1两级交流放大电路。
初步估计测试内容的变化范围.四、实验内容实验电路见图2。
1图2。
1 两级交流放大电路1。
设置静态工作点(1)按图接线,注意接线尽可能短。
(2)静态工作点设置:要求第二级在输出波形不失真的前提下幅值尽量大,第一级为增加信噪比,工作点尽可能低。
(3)在输入A端接入频率为1KHz幅度为100mV的交流信号(一般采用实验箱上加衰减的办法,即信号源用一个较大的信号。
例如100mV,在实验板上经100:l衰减电阻衰减,降为lmV),使V i1为1mV,调整工作点使输出信号不失真.注意:如发现有寄生振荡,可采用以下措施消除:①重新布线,尽可能走短线.②可在三极管b、e两极间加几p到几百p的电容。
③信号源与放大电路用屏蔽线连接,2。
按表2。
l要求测量并计算,注意测静态工作点时应断开输入信号。
L果。
4。
测两级放大电路的频率特性a)将放大器负载断开,先将输入信号频率调到1KHz,幅度调到使输出幅度最大而不失真。
b)保持输入信号幅度不变,改变频率,按表2。
2测量并记录,c)接上负载、重复上述实验。
表2。
21. 整理实验数据,分析实验结果.2。
画出实验电路的频率特性简图,标出f H和fL 。
(fH =148KHz ,f L =196Hz )3.写出增加频率范围的方法。
(引入负反馈、加大所用的电容)实验三 负反馈放大电路一、实验目的1.研究负反馈对放大电路性能的影响。
2.掌握负反馈放大电路性能的测试方法. 二、实验仪器1.双踪示波器. 2.音频信号发生器.3。
数字万用表。
三、预习要求1.认真阅读实验内容要求,估计待测量内容的变化趋势。
2.设图3。
1电路晶体管β值为40,计算该放大电路开环和闭环电压放大倍数.四、实验内容(1) 开环电路①按图接线,RF先不接入.②输入端接入V i =lmV f=lKHz 的正弦波(注意:输入lm V信号采用输入端衰减法见实验一).调整接线和参数使输出不失真且无振荡(参考实验二方法)。
③按表3。
1要求进行测量并填表。
④根据实测值计算开环放大倍数和输出电阻r 0.(2)闭环电路①接通R F 和CF ,按(一)的要求调整电路。
②按表3。
1要求测量并填表,计算A vf 。
③根据实测结果,验证A vf ≈F1.(1)将图3。
1电路开环,逐步加大V i的幅度,使输出信号出现失真(注意不要过份失真)记录失真波形幅度.(2)将电路闭环,观察输出情况,并适当增加V i幅度,使输出幅度接近开环时失真波形幅度.闭环后,引入负反馈,减小失真度,改善波形失真.(3)若RF=3K不变,但RF接入1V1的基极,会出现什么情况?实验验证之。
引入正反馈,产生大约7赫兹的震荡波形。
(4)画出上述各步实验的波形图。
3.测放大电路频率特性(1)将图3.1电路先开环,选择V i适当幅度,保持不变并调节频率使输出信号在示波器上有最大显示。
(2)保持输入信号幅度不变逐步增加频率,直到波形减小为原来的70%,此时信号频率即为放大电路fH。
(3)条件同上,但逐渐减小频率,测得fL.(4)将电路闭环,重复1~3步骤,并将结果填入表3。
2。
21.将实验值与理论值比较,分析误差原因。
2。
根据实验内容总结负反馈对放大电路的影响。
实验十一整流滤波与并联稳压电路一、实验目的1.熟悉单相半波、全波、桥式整流电路。
2.观察了解电容滤波作用。
3。
了解并联稳压电路。
二、实验仪器及材料2。
数字万用表三、实验内容1.半波整流、桥式整流电路实验电路分别如图11.1,图11.2所示。
分别接二种电路,用示波器观察V2及VL的波形。
并测量V2、VD、VL.2。
电容滤波电路实验电路如图11.3(1)分别用不同电容接入电路,R L先不接,用示波器观察波形,用电压表测V L 并记录。
(2)接上RL ,先用R L=1KΩ,重复上述实验并记录. (3)将R L改为150Ω,重复上述实验。
图11.3 电容滤波电路实验电路如图11.4所示,图11。
4 并联稳压电路(1)电源输入电压为10V 不变,测量负载变化时电路的稳压性能。
改变负载电阻R L 使负载电流I L =lmA ,5mA,10mA 分别测量V L 、V R 、计算得:Ω≈2.10Z r ,Ω=10O R 。
(2)负载不变,电源电压变化时电路的稳压性能。
用可调的直流电压变化模拟220V电源电压变化,电路接入前将可调电源调到10V ,然后调到8V、9V 、11V 、12V ,按表13。
1内容测量填表,以10V 为基准,计算稳压系数S r 。
R L =1KΩ1。
整理实验数据并按实验内容计算.2.图11.4所示电路能输出电流最大为多少?为获得更大电流应如何选用电路元器件及参数?ﻬ。