初中数学学法指导:求阴影部分面积的三种方法(由圆、扇形、三角形、四边形等组成的图形面积)
求阴影面积的常用方法_学法指导_不分版本

求阴影面积的常用方法计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和CD ⌒围成的阴影部分图形的面积为_________。
分析:连结CD 、OC 、OD ,如图2。
易证AB//CD ,则∆∆ACD OCD 和的面积相等,所以图中阴影部分的面积就等于扇形OCD 的面积。
易得∠=︒COD 60,故S S OCD阴影扇形==⋅=60636062ππ。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
例2. 如图3是一个商标的设计图案,AB=2BC=8,ADE ⌒为14圆,求阴影部分面积。
分析:经观察图3可以分解出以下规则图形:矩形ABCD 、扇形ADE 、Rt EBC ∆。
所以,S S S S A D E A B C D Rt EBC阴影扇形矩形=+-=⋅+⨯-⨯⨯=+∆9043604812412482ππ。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例3. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
解:因为4个半圆覆盖了正方形,而且阴影部分重叠了两次,所以阴影部分的面积等于4个半圆的面积和与正方形面积的差。
故S a a a 阴影=⋅-=-2221222ππ()()。
求阴影面积的常用方法

求阴影面积的常用方法计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难 点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形 组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现 介绍几种常用的方法。
、转化法 此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相 等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1.如图1,点C 、D 是以AB 为直径的半圆0上的三等分点,AB=12则图中由 弦AC AD 和窗围成的阴影部分图形的面积为 _________________ 。
分析:连结CD OC OD 如图2o 易证AB//CD ,则曲仞和&OUD 的面积相等, 所以图中阴影部分的面积就等于扇形 OCD 勺面积。
易得,故---------- =DJT360、和差法 有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组 合而成的,再利用这些规则图形的面积的和或差来求, 从而达到化繁为简的目的。
例2.如图3是一个商标的设计图案,AB=2BC=B /DF 为4圆,求阴影部分面积。
分析:经观察图3可以分解出以下规则图形:矩形 ABCD 扇形ADE 只迪 J 9°用牢 +4x8-1x4x12 = % + S 360 2'阴影='障屢伽+ £縫删g —' 所以,B图16三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例3.如图4,正方形的边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
涮蔭图4解:因为4个半圆覆盖了正方形,而且阴影部分重叠了两次,所以阴影部分的面£=2心(丝)2-/ =(壬-1)/积等于4个半圆的面积和与正方形面积的差。
初中数学:3大方法教你求阴影面积,必须会!

初中数学:3大方法教你求阴影面积,必须会!
一、公式法
这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。
简单举出2个例子:
二、和差法
攻略一:直接和差法
这类题目也比较简单,属于一目了然的题目。
只需我们用两个或多个常见的几何图形面积进行加减。
攻略二:构造和差法
从这里开始,我们就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。
三、割补法
割补法,是我们拥有较强的转化能力后才能轻松运用的,否则我们看到这样的题目还是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件。
攻略一:全等法
攻略二:对称法
攻略三:平移法
攻略四:旋转法
如果真正掌握了以上内容,我们在面对解决这类题目时就会得心应手,数学分数也能往更高迈进。
有些必争的分数我们就要做到坚持到底,务必拿下。
不仅仅是数学这门学科要这样,其他学科也同样如此。
初中数学几何阴影面积的三种解法

初中数学几何阴影面积的三种解法(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!初中数学几何阴影面积的三种解法一、公式法这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。
阴影部分面积的计算方法

阴影部分面积的计算方法
计算阴影部分面积的方法取决于阴影部分的形状。
以下是一些常见的计算阴影部分面积的方法:
1. 矩形阴影部分面积:如果阴影部分是矩形,那么它的面积可以通过矩形的长和宽相乘来计算。
2. 三角形阴影部分面积:如果阴影部分是三角形,那么它的面积可以通过三角形的底和高相乘再除以 2 来计算。
3. 圆形阴影部分面积:如果阴影部分是圆形,那么它的面积可以通过圆的半径的平方乘以π(圆周率)来计算。
4. 弓形阴影部分面积:如果阴影部分是弓形,那么它的面积可以通过扇形的面积减去三角形的面积来计算。
扇形的面积可以通过圆的半径的平方乘以π再乘以扇形的角度(以弧度表示)来计算,三角形的面积可以通过底和高相乘再除以 2 来计算。
5. 不规则阴影部分面积:如果阴影部分是不规则形状,那么可以将其分成若干个简单的形状,然后计算每个形状的面积,最后将它们相加。
或者使用一些数学工具,如微积分,来计算阴影部分的面积。
需要注意的是,在计算阴影部分面积时,应该确保所使用的单位是一致的。
此外,对于一些复杂的形状,可能需要使用一些数学工具或计算机软件来计算面积。
初中数学学法指导:求阴影部分面积的三种方法(由圆、扇形、三角形、四边形等组成的图形面积)

初中数学学法指导:求阴影部分面积的三种方法求阴影部分的面积,在近几年中考题中,形成一个新的热点,在计算由圆、扇形、三角形、四边形等组成的图形面积时,要注意观察和分析图形,学会分解和组合图形,明确要计算图形的面积,可以通过哪些图形的和或差得到,切勿盲目计算。
现举例谈谈三种主要的方法:一. 和差法和差法是指不改变图形的位置,而将它的面积用规则图形的面积的和或差表示,经过计算后即得所求图形面积。
例1. 如图1所示,半径OA=2cm ,圆心角为90°的扇形AOB 中,C 为AB 的中点,D 为OB 的中点,求阴影部分的面积。
解:连结OC ,过点C 作CE ⊥OB 于E 。
因为C 为AB 的中点,所以 ∠BOC=︒=∠45AOB 21,所以CE=OC ·sin45°=cm 2。
所以22COB cm 2360245S ππ=⨯=扇形 2COD cm 22222121CE OD 21S =⨯⨯⨯=⨯=∆ 所以))(cm 222(S S S 2COD COB -=-=∆π扇形阴影点拨:不要将图形CBD 当作扇形计算,对于不规则图形的面积的计算问题,通常是经过适当的几何变换,把不规则的图形面积求解问题转化为规则图形面积的求解。
二. 移动法移动法是指将图形的位置进行移动,以便为使用和差法提供条件。
具体方法有:平移、旋转、割补、等积变换等。
例2. 如图2所示,AB 是半圆的直径,AB=2R ,C 、D 为半圆的三等分点,求阴影部分的面积。
解:连结OC 、OD 。
因为AC=BD ,所以∠CDA=∠DAB ,所以CD//AB所以COD S S 扇形阴影= 又因为∠COD=︒=∠60AOB 31所以222COD R 61360R 60360R n S S πππ====扇形阴影点拨:此阴影部分为不规则图形,可应用等积方法,转化为规则图形——扇形COD 。
例3. 某种商品的商标图案如图3所示(阴影部分),已知菱形ABCD 的边长为4,︒=∠60A ,BD 是以A 为圆心,AB 长为半径的弧,CD 是以B 为圆心,BC 长为半径的弧,求商标图案的面积。
初中数学阴影面积计算方法讲解

初中数学阴影面积计算方法讲解阴影面积是指在光照、光线等因素影响下,物体表面未被直接照射到的面积部分。
在初中数学中,我们可以通过一些基本的几何知识和方法计算阴影面积。
下面就介绍一下初中数学中常见的几种阴影面积计算方法。
一、计算矩形阴影面积:```A,—BC,—D```在光线OA和OC照射下,阴影面积为ADCB区域。
矩形的阴影面积计算方法为:阴影面积=矩形面积-三角形面积其中,矩形面积为AB * BC,三角形面积可通过以下公式计算:三角形面积 = 1/2 * BC * heightheight为光线OC到AB的距离,可以通过相似三角形的比例关系计算得到:height = (OC / OA) * BC将得到的height代入三角形面积公式,即可计算出阴影面积。
二、计算三角形阴影面积:```A\C,—B```在光线OA和OC照射下,阴影面积为ACB区域。
三角形的阴影面积计算方法为:阴影面积=三角形面积-三个小三角形面积之和其中,三角形面积可以通过以下公式计算:三角形面积=1/2*AC*BC 小三角形面积为:1/2 * AC * height_ACO + 1/2 * BC *height_BCO + 1/2 * AB * height_ABOheight_ACO、height_BCO和height_ABO分别为光线OC到AC、BC、AB的距离,可以通过相似三角形的比例关系计算得到。
将得到的三角形面积和小三角形面积相减,即可计算出阴影面积。
三、计算圆形阴影面积:```O/\/\A,—C\/\/在光线OA和OC照射下,阴影面积为ACO区域。
圆形的阴影面积计算方法为:阴影面积=圆形面积-扇形面积其中,圆形面积为π*r*r,扇形面积可通过以下公式计算:扇形面积=1/2*扇形的弧长*r扇形的弧长可以通过扇形角的度数和圆的周长计算得到:扇形的弧长=(扇形角的度数/360)*2*π*r将得到的扇形的弧长代入扇形面积公式,即可计算出阴影面积。
三种方法求阴影部分的面积

三种方法求阴影部分的面积求解阴影部分的面积的三种方法可以是几何方法、数学方法和计算机图形学方法。
下面将详细介绍这三种方法。
一、几何方法:几何方法是通过利用几何知识来求解阴影部分的面积。
这种方法通常适用于简单的几何形状,如圆、矩形等。
方法如下所示:1.首先确定被阴影投射物体的几何形状,如圆形、矩形等。
2.确定光源的位置和投射角度。
3.根据光线的角度和被投射物体的形状,求解出光线与表面的交点。
4.根据交点之间的连线和被投射物体的形状,求解出阴影部分的面积。
二、数学方法:数学方法是通过数学方程来求解阴影部分的面积。
这种方法可以应用于复杂的几何形状,如曲线、不规则形状等。
方法如下所示:1.将被投射物体的形状建模成数学方程。
2.根据光线的角度和被投射物体的形状方程,求解出光线与表面的交点。
3.根据交点之间的连线和被投射物体的形状方程,求解出阴影部分的面积。
三、计算机图形学方法:计算机图形学方法是通过计算机图形学算法来求解阴影部分的面积。
这种方法适用于复杂的三维场景,可以考虑光线的折射、反射等现象。
方法如下所示:1.通过三维建模软件将场景建模成三维模型。
2.根据光源的位置和投射角度,使用光线追踪算法计算光线与场景中物体的交点。
3.根据交点之间的连线和物体的材质属性,计算出阴影部分的面积。
这三种方法可以根据具体情况选择使用。
如果是简单的几何形状,可以使用几何方法来求解阴影部分的面积;如果是复杂的几何形状,可以使用数学方法;如果是复杂的三维场景,可以使用计算机图形学方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学学法指导:求阴影部分面积的三种方法
求阴影部分的面积,在近几年中考题中,形成一个新的热点,在计算由圆、扇形、三角形、四边形等组成的图形面积时,要注意观察和分析图形,学会分解和组合图形,明确要计算图形的面积,可以通过哪些图形的和或差得到,切勿盲目计算。
现举例谈谈三种主要的方法:
一. 和差法
和差法是指不改变图形的位置,而将它的面积用规则图形的面积的和或差表示,经过计算后即得所求图形面积。
例1. 如图1所示,半径OA=2cm ,圆心角为90°的扇形AOB 中,
C 为AB 的中点,
D 为OB 的中点,求阴影部分的面积。
解:连结OC ,过点C 作CE ⊥OB 于E 。
因为C 为AB 的中点,所以 ∠BOC=
︒=∠45AOB 2
1,所以CE=OC ·sin45°=cm 2。
所以22COB cm 2
360245S ππ=⨯=扇形 2COD cm 2
2222121CE OD 21S =⨯⨯⨯=⨯=∆ 所以))(cm 222(S S S 2COD COB -=-=∆π扇形阴影
点拨:不要将图形CBD 当作扇形计算,对于不规则图形的面积的计算问题,通常是经过适当的几何变换,把不规则的图形面积求解问题转化为规则图形面积的求解。
二. 移动法
移动法是指将图形的位置进行移动,以便为使用和差法提供条件。
具体方法有:平移、旋转、割补、等积变换等。
例2. 如图2所示,AB 是半圆的直径,AB=2R ,C 、D 为半圆的三等分点,求阴影部分的面积。
解:连结OC 、OD 。
因为AC=BD ,所以∠CDA=∠DAB ,所以CD//AB
所以COD S S 扇形阴影= 又因为∠COD=︒=∠60AOB 31所以222COD R 61360R 60360R n S S πππ====扇形阴影
点拨:此阴影部分为不规则图形,可应用等积方法,转化为规则图形——扇形COD 。
例3. 某种商品的商标图案如图3所示(阴影部分),已知菱形ABCD 的边长为4,︒=∠60A ,BD 是以A 为圆心,AB 长为半径的弧,CD 是以B 为圆心,BC 长为半径的弧,求商标图案的面积。
解:观察题图,易知把弓形CD 补到弓形BD 处,恰好。
故阴影部分面积等于BCD ∆面积。
342
34421S BCD =⨯⨯⨯=
∆ 所以34S S BCD ==∆阴影
点拨:本题解法采用了“移动割补”的方法。
三. 代数法
有些阴影部分的图形面积可以借助于列方程(组),然后解方程(组)求出。
例4. 如图4所示,正方形ABCD 的边长为a ,以A 为圆心作BD ,以AB 为直径作AB ,M 是AD 上一点,以DM 为直径,作DM 与AB 相外切,则图中阴影部分面积为___________。
图4 解:2a 72
5π。
点拨:本题阴影部分的面积直接求,不好求解,可用代数法解决。
设以DM 为直径的半圆的圆心为1O ,半径为r ,以AB 为直径的半圆的圆心为2O ,连结21O O ,则有222)2
a
r ()2a ()r a (+=+-,解得:a 31r = 所以21O O DAB S 2
1S 21S S 圆圆扇形阴影--= 2
222a 725)2a (21)a 31(21a 41ππππ=⨯-⨯-=。