初中数学之求阴影面积方法总结完整版

合集下载

(完整版)求阴影部分面积的几种常用方法

(完整版)求阴影部分面积的几种常用方法

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

初中数学之求阴影面积方法总结

初中数学之求阴影面积方法总结

初中数学之求阴影面积方法总结一、公式法这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。

简单举出2个例子:二、和差法攻略一直接和差法这类题目也比较简单,属于一目了然的题目。

只需学生用两个或多个常见的几何图形面积进行加减。

2=360图形面积计算方法S 阴彩 =S AACB~ S 扇形CADS 阴影 =S 4 AOR—S 虽形CoDS 阴彩 =S 半KH b—S 4AOBFr IrS 阴彩SmES 阴够 =3扇形Bm +S 阴彩 =S 半gH C+ S 半圆—S^^ACl3S 阴影 —S 扇形之和=门和F ■厂攻略二构造和差法 从这里开始,学生就要构建自己的数学图形转化思维了, 学会通过添加辅助线进 行求解。

面积计算方法S 阴彫=S 飙RoE +QbOCEQ 扇形 CODS - SQ 阴影_ ,J ΔODCQ 為形DoEς -EJ 阴影一门扇形一 StjΔA0βQ 阴够—J 厨形MOC+ S三、割补法 割补法,是学生拥有比较强的转化能力后才能轻松运用的, 否则学生看到这样的 题目还是会无从下手。

尤其适用于直接求面积较复杂或无法计算时, 通过对图形 的平移、旋转、割补等,为利用公式法或和差法求解创造条件。

攻略一全等法图形转化后的图形EA L )B图形转化后的图形面积计算方法S阴影=S範形ACnFS阴影=S扇形BOCυCS阴够=S扇形ConH攻略二对称法图形 转化后的图形面积计算方法'阴影=S 扇形CfMS 阴耀=Λ OABS — S宀阴影 —C 扇^ACB…QS 阴影=Δ4C7>--S—4 正方形√⅛WQΛ> 攻略三平移法 图形转化后的图形AEIi面积计 算方运S一S 正方^BCFE小结:(一)解决面积问题常用的理论依据1、三角形的中线把三角形分成两个面积相等的部分。

2、 同底同高或等底等高的两个三角形面积相等。

3、 平行四边形的对角线把其分成两个面积相等的部分。

初中数学阴影面积求解小技巧

初中数学阴影面积求解小技巧

初中数学阴影面积求解小技巧
阴影部分面积计算是全国中考的高频考点,常在选择题和填空题中考查。

求阴影部分面积的常用方法有以下三种:
一、公式法(所求面积的图形是规则图形)
二、和差法(所求图形面积是不规则图形,可通过添加辅助线转化为规则图形的和或差)
(1)直接和差法
(2)构造和差法
三、等积变换法(直接求面积无法计算或者较复杂,通过对图形的平移、选择、割补等,为利用公式法或和差法求解创造条件)(1)全等法
(2)对称法
(3)平移法
(4)旋转法
练习题。

求阴影部分面积的几种常用方法

求阴影部分面积的几种常用方法

一、相加法:
将不规则图形分成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。

二、相减法:
将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

三、直接求法:
直接求出不规则图形面积。

四、重新组合法:
将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形。

五、辅助线法:
添一条或若干条辅助线,使不规则图形转
化成基本规则图形,然后再相加、相减。

六、割补法:
把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形。

七、平移法:
将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形。

八、旋转法:
这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一
图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.
九、对称添补法:
作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半。

十、重叠法:
将所求的图形看成是两个或两个以上图形的重叠部分。

初中数学专题辅导:阴影面积求法9种方法(不规则图形)

初中数学专题辅导:阴影面积求法9种方法(不规则图形)

阴影面积求法阴影部分的图形一般是不规则图形或没有可直接利用的公式,因此,同学们常感到困难。

本文指出:求解这类问题的关键是将阴影部分图形转化为可求解的规则图形的组合。

如何转化呢?这里给出常用的9种转化方法。

1. 直接组合例1. 如下图,圆A 、圆B 、圆C 、圆D 、圆E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是()A. B. 1.5 C. 2 D. 2.5ππππ(02年河南省中考)分析:由于每个扇形圆心角的具体角度未知,故无法直接进行计算。

因为五边形ABCDE 的内角和=540°=360°+180°,从而可知所求阴影部分的面积可以重新组合成一个圆和一个半圆的面积,即1.5个圆的面积:,选(B )。

ππ5.1)1(5.12=⋅⨯ 2. 圆形分割例2. 如下图,ΔABC 中,∠C 是直角,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边延长线上的点D 处,则AC 边扫过的图形(阴影部分)的面积是_________(=3.14159……,最后结果保留三个有效数字)。

2cm π(03年济南市中考)解:在中,ABC Rt ∆所以cm AB BC BAC ABC 6213060==︒=∠︒=∠又易证 ,EBD Rt ABC Rt ∆≅∆。

,,所以︒=∠=∠︒=∠=∠=∆∆12060CBD ABE EBD ABC S S EBD ABC 故所求阴影面积为整个图形的总面积减去空白图形的面积,即)。

(===)()=(扇形扇形扇形扇形阴影22211336636012012360120cm S S S S S S S BCDBAE ABC BCD EBD BAE ≈⋅-⋅-+-+∆∆πππ3. 平移例3. 如下图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为________________。

求阴影面积的巧妙解法

求阴影面积的巧妙解法

求阴影面积的巧妙解法有很多,以下是一些常见的方法:
1. 平移法:将不规则的阴影部分通过平移、旋转等方式转化为规则图形,然后计算其面积。

2. 割补法:将阴影部分分割成若干个规则图形,然后计算它们的面积之和。

3. 等积变形法:通过等积变形,将阴影部分转化为与之等积的规则图形,然后计算其面积。

4. 容斥原理法:利用容斥原理,将阴影部分的面积转化为若干个规则图形的面积之差或和。

5. 比例法:利用相似三角形的性质,通过比例关系求出阴影部分的面积。

这些方法都需要根据具体的图形特点进行选择和运用,需要灵活运用数学知识和思维能力。

初中数学几何阴影面积的三种解法

初中数学几何阴影面积的三种解法

初中数学几何阴影面积的三种解法,必须掌握一、公式法
这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。

简单举出2个例子
二、和差法
攻略一直接和差法
这类题目也比较简单,属于一目了然的题目。

只需学生用两个或多个常见的几何图形面积进行加减。

攻略二构造和差法
从这里开始,学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。

三、割补法
割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。

尤其适用于直接求面积较复杂或无法计算时,通过对图形的平
移、旋转、割补等,为利用公式法或和差法求解创造条件。

攻略一全等法
攻略二对称法
攻略三平移法
攻略四旋转法。

中考求阴影部分面积

中考求阴影部分面积

中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。

不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。

现介绍几种常用的方法。

一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。

例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和C D ⌒围成的阴影部分图形的面积为_________。

二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。

三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。

这类题阴影一般是由几个图形叠加而成。

要准确认清其结构,理顺图形间的大小关系。

例4. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。

四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。

例5. 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形ABCD 所在阴影部分的面积。

例2.如图2,PA 切圆O 于A ,OP 交圆O 于B ,且PB=1,PA=3,则阴影部分的面积S=_______.五、拼接法例6. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c 个单位),求阴影部分草地的面积。

六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB 与直径CD 平行,且与小半圆相切,那么图中阴影部分的面积等于_______。

七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学之求阴影面积
方法总结
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
初中数学之求阴影面积方法总结一、公式法
这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。

简单举出2个例子:
二、和差法
攻略一直接和差法
这类题目也比较简单,属于一目了然的题目。

只需学生用两个或多个常见的几何图形面积进行加减。

攻略二构造和差法
从这里开始,学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。

三、割补法
割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。

尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件。

攻略一全等法
攻略二对称法
攻略三平移法
攻略四旋转法
小结:(一)解决面积问题常用的理论依据
1、三角形的中线把三角形分成两个面积相等的部分。

2、同底同高或等底等高的两个三角形面积相等。

3、平行四边形的对角线把其分成两个面积相等的部分。

4、同底(等底)的两个三角形面积的比等于高的比。

同高(或等高)的两个三角形面积的比等于底的比。

5、基本几何图形面积公式:三角形、平行四边形、、菱形、矩形、梯形、圆、扇形。

6、相似三角形面积之比等于相似比的平方
7、反比例函数中k的几何含义
8、在直角坐标系中函数图像构成的图形面积常常利用图形顶点的坐标构造高去求面积
(二)证明面积问题常用的证题思路和方法
1、分解法:通常把一个复杂的图形,分解成几个三角形。

2、补全法:通过平移、旋转、翻折变换把分散的图形拼成一个规则的几何基本图形
3、作平行线法:通过平行线找出同高(或等高)的三角形。

相关文档
最新文档