初三数学专题阴影部分的面积

合集下载

九年级数学求阴影部分的面积

九年级数学求阴影部分的面积
分割法应用举例
在处理不规则多边形或复杂组合图形 时,可以通过分割法将其划分为几个 三角形、矩形等简单图形,然后利用 基本图形的面积公式进行计算。
添补法简化计算过程
添补法原理
在组合图形中添加一些辅助线或基本图形,使得阴影部分形成一个规则的、易于 计算面积的基本图形,然后减去添加部分的面积,得到阴影部分的面积。
提高综合运用能力,培养创新思维
综合运用多种方法
在实际问题中,可能需要综合运用多种方法来求解阴影部分面积。因此,要熟练掌握各种方法,并能够根据问题 的特点选择合适的方法。
培养创新思维
在求解阴影部分面积时,要敢于尝试新的方法和思路。通过不断地尝试和创新,可以锻炼自己的思维能力和创新 能力。
06 练习题与答案解析
添补法应用举例
在处理一些具有对称性或旋转性的组合图形时,可以通过添补法将其转化为一个 完整的、规则的图形,然后利用基本图形的面积公式进行计算。
等积变换思想在解题中体现
等积变换原理
通过图形的平移、旋转、对称等变换, 使得阴影部分与某个已知面积的基本 图形重合或相等,从而直接得到阴影 部分的面积。
等积变换应用举例
1 2
圆的定义及性质
圆是平面上所有与给定点(中心)距离相等的点 的集合。
扇形的定义
由两个半径和它们所夹的弧围成的图形叫做扇形。
3
圆心角、弧长与半径的关系
圆心角的度数等于它所对弧长与半径的比值乘以 180。
弧长、圆心角及扇形面积计算
弧长公式
应用举例
弧长 = (圆心角/360°) × 2πr,其中r 为半径。
分。
02
三角形中的阴影部分
当三角形中有一部分被其他图形遮挡时,被遮挡的部分即为阴影部分。

中考数学专题复习和训练求阴影部分的面积

中考数学专题复习和训练求阴影部分的面积

求阴影部分的面积专题透析:计算平面图形中的面积问题是中考中的常考题型,多以选择题、填空题的形式出现,其中求阴影部分的面积是这类问题的难点.不规则阴影部分常常由三角形、四边形、弓形和圆、圆弧等基本图形组合而成,考查内容涉及平移、旋转、相似、扇形面积等相关知识,还常与函数相结合.在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助转化化归思想,将阴影部分不规则图形转化为规则的易求的图形求解.典例精析:例1.如图,菱形ABCD 的对角线BD AC 、分别为223、,以B 为圆心的弧与AD DC 、相切于点E F 、,则阴影部分的面积是A.π-3233 B.π-3433C.π-43D.π-23 分析:本题的阴影部分是不规则的,要直接求出阴影部分的面积不现实,但我们发现阴影部分是菱形ABCD 减去扇形ABC 的面积;菱形ABCD 可根据题中条件直接求出,要求扇形扇形ABC 的面积关键是求出圆心角∠ABC 的度数和半径;连结BD BE 、交于点O ,所有这些问题均可以化归在Rt △AOB 或Rt △BOC 中利用三角函数和勾股定理来解决. 选D 师生互动练习:1. 如图,Rt △ACB 中,C 90AC 15AB 17∠===,,;以点C 为 圆心的⊙C 与AB 相切于D ,与CA CB 、分别交于E F 、两点,则 图中阴影部分的面积为 .2.如图的阴影部分是一商标图案图中阴影部分,它以正方形ABCD的顶点A 为圆心,AB 为半径作BD ,再以B 为圆心,BD 为半径作弧, 交BC 的延长线与E ,BD,DE 和DE 就围成了这个图案,若正方形的边长为4,则这个图案的面积为A.π4B.8C.π3D.π-38 3.如图,Rt △ABC 中,,C 90A 30∠=∠=,点O 在斜边AB 上,半径为2,⊙O 过点B 切AC 于D ,交BC 边于点E E,则由线段CD EC 、及DE 围成的阴影部分的面积为 . 4. 已知直角扇形AOB 的半径OA 2cm =,以OB 为直径在扇形内作半圆⊙M ,过M 引MP ∥AO 交AB 于P ,求AB 与半圆弧及MP 围成的 阴影部分的面积为 .例2.如图,⊙O 的圆心在定角()0180αα∠<<的角平分线上运动,且⊙O 与α∠的两边相切,图中的阴影部分的面积y 关于⊙O 的半径()x x 0>变化的函数图象大致是分析:连结OA OB OC 、、后,本题关键是抓住阴影部分的面积=四边形ACOB 的面积-扇形BOC 的面积.设阴影部分的面积为y ,⊙O 的半径()x x 0>. ∵⊙O 切AM 于点B ,切AN 于点C , ∴OBA OCA 90,OB OC x,AB AC ∠=∠====,∴BOC 3609090180αα∠=---=-;∵AO 平分MAN ∠,xAB AC 1tan 2α==,且图中阴影部分的面积y =四边形ACOB 的面积-扇形BOC 的面积.∴ ()22180x 1x 1180y 2x x 112360360tan tan 22αππαπαα⎛⎫⎪--=⨯⨯⨯-=- ⎪ ⎪⎝⎭∵x 0> ,且()0180αα∠<<是定角∴阴影部分的面积y 关于⊙O 的半径()x x 0>之间是二次函数关系. 故选C .师生互动练习:1.如图,已知正方形ABCD 的边长为1,E F G H 、、、分别为各边上的点,且AE BF CG ==DH =;设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致为2.2013.临沂中考如图,正方形ABCD 中,AB 8cm =,对角线AC 与BD 相交于点O ,点E F 、分别从B C 、两点同时出发,以/1cm s 的速度沿BC CD 、运动,到点C D 、停止运动.设运动时间为()t s ,OEF 的面积为()2S cm 与()t s 的函数关系式可用图象表示为3.2014.菏泽中考如图在Rt ABC 中,AC BC 2==,正方形CDEF 的顶点D F 、分别是边AC BC 、的动点,C D 、两点不重合.设CD 的长度为x ,ABC 与正方形CDEF 的重叠部分的面积为y ,则下列图象中能表示y 与x 的函数关系的是 例3.如图,由7个形状、大小完全相同的正六边形组成的网格,正六边形 的顶点称为格点.已知每个正六边形的边长为1,△ABC 的顶点在格点上, 则△ABC 的面积为 . 分析: 延长AB ,然后作出过点C 与格点所在的水平直线,一定交于点E .则图中的阴影部分 = △AEC 的面积 - △BEC 的面积. 由正六边形的边长为1,根据正多边形形的性质,可以得出过正六边 形中心的对角线长为2,间隔一个顶点的对角线长为3,则CE 4=;若△AEC 和△BEC 都以CE 为求其面积的底边,则它们相应的高怎样化归在直角三角形中来求出呢 解:由同学们自我完成解答过程 师生互动练习:1.如图已知网格中每个小正方形的边长为2,图中阴影部分的 每个端点位置情况计算图中的阴影部分的面积之和为 .2.如图,已知下面三个图形中网格中的每个正方形的边长都设为1.结果均保留π⑴.图①中的阴影图案是由两段以格点为圆心,分别以小正方形的边长和对角线长为半径的圆弧和网格的边围成.,图中阴影部分的面积为 ;⑵.图②中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.图②中阴影部分的面积是 ;⑶.图③中在AB 的上方,分别以△ABC 的三边为直径作三个半圆围成图中的阴影部分的面积之和为 .3.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的FEBD O A CEC D ABDE OBA C PNMBO A E F D BA C E DB CA F x y 1212O A x y 123412345O C x y 1212O D B αCBAO MNxy OA xy OB xy OC xy ODC E A B ②①③CC交点上,若灰色三角形面积为214,则方格纸的面积为.附专题总结:求含圆图形中不规则阴影部分面积的几个技巧一.旋转、翻折为特殊图形:图①的第一个图是直角扇形OAB和直角扇形OCD搭建的,其中OA=9,OB=4,要求阴影部分的面积,可以将△ODB旋转至△OAC来求扇环BDCA的面积更简便见图①的第二个图.图②的第一个图中是直角扇形OAB和正方形OFED以及矩形OACD,其中OF=1,要求阴影部分的面积,可以将半弓形ODB沿正方形对角线翻折至EFA来求矩形ACEF的面积更简便见图②的第二个图二.图①的第一个图大圆⊙O 的弦并与小圆⊙圆⊙O O图①这样来求圆环的面积更容易;虽三.如图第一个图是以等腰Rt△AOB的直角顶点O为圆心画出的直角扇形OAB和以OA、OB为直径画出的两个半圆组成的图形,要求第一个图形阴影,可以按如图所示路径割补成一个弓形见第二个图中的标示更容易求出阴影图形的面积;如果OA=10,求出第一个图形阴影部分的面积略解:S阴影=2B0A11S S AOB101010255042ππ-=⨯⨯-⨯⨯=-扇形点评:解决.割补法在很多涉及到几何图形的题中都有运用.四.差法求叠合图中形的阴影例1.图①是教材114页的第3题,可以用四个半圆的面积之和减去正方形的面积得到阴影部分的面积;例2.图②自贡市中考题△ABC中,AB=BC=6,AC=10,分别以AB,BC为直径作半圆,则图中阴影部分的面积为.略解:△ABC的底边AC===2ABC1161S2S S21592222ππ⎛⎫⨯⨯-=⨯⨯⨯-⨯=-⎪⎝⎭影点评:本题的图形结构可以看成是三个图形叠合在一起两个半圆和一个等腰三角形端点相接的叠合,具有这种图形结构题其实并不是我们想象那么抽象艰深.比如:本题的阴影部分恰好是两个半圆和一个等腰三角形端点相接的叠合后,两个半圆覆盖等腰三角形后多出来的部分;那么下面的这个题就的计算也就不那么复杂了.举一反三,“难题”不难师生互动练习::见上学期圆单元训练和专题复习的相应部分.迎考精炼:1.如图,AB 是⊙O的直径,弦CD AB,CD⊥=,则S阴影 =A.πB.2π D.23π2. 如图,⊙A、⊙B、⊙C两两不相交,且半径均为,则图中的三个阴影部分的面积之和为A.12πB.8πC.6πD.4π3.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中的阴影部分的面积为2π23πC.2πD.23π4.如图,在Rt△ABC中,C90,AC8BC4∠===, ,分别以AC BC、为直径画半圆,则图中的阴影部分的面积之和为A.2016π- B.1032π- C.1016π- D.20132π-5. 如图,四边形ABCD是正方形, AE垂直于BE于E,且AE3,BE4==,则阴影部分的面积是6. 如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形'''AB C D,图中的阴影部分的面积为A.1 C.1 D.127.如图,ABCD沿对角线AC平移,使A点至AC的中点''''A B C D,新的正方形与原正方形的重叠部分图中的阴影部分的面积是B.12C.148.将n个边长都为4cm的正方形按如图所示的方法摆放,点,,,1nA A风别是正方形对角线的交点,则n个正方形重叠部分的面积的和为A.21cm4B.2n1cm4-C.()24n1cm- D.n21cm4⎛⎫⎪⎝⎭9. 两张宽均为5cm的纸带相交成α角,则这两张带重叠部分图中阴影的面积为A.()225cmsinαB.()225cmcosαC.()250sin cmα D.()225sin cmα10. 如图,△ABC是等边三角形,被一平行于BC的矩形所截,线段AB被截成相等的三部分,则图中的阴影部分的面积是△ABC面积的A.19B.29C.13D.4911.AB是⊙O的直径,以AB为一边作等边△ABC,交⊙O于点E F、,2=,则图中的阴影部分的面积为A.43π- B.23πC.3πD.3π12.如图;三个小正方形的边长都为1,则图中阴影部分面积OC图①CD DB图②BA2A1C'C结果保留π13. 如图①,等边△ABD 和等边△CBD 的边长均为1,将△ABD 沿AC 方向平移得到△'''A B D 的置,得到图 形②,则阴影部分的周长为 .14.如图,△ABC 的边AB 3AC 2==,,Ⅰ、Ⅱ、Ⅲ分别表示以AB AC BC 、、为边的正方形,则图中三个阴影部分的面积之和的最大值为 . 15.若图中正方形F 以上的正方形均是以直角三角形向外作的正方形:①.若正方形A B C D 、、、的边长分别是a b c d 、、、,则正方形F 的面积如何用含a b c d 、、、的式子表示出来为 ;②.如果正方形F 的边长16cm ,那么正方形A B C D 、、、的面积之和是 .16.如图,边长为3的正方形ABCD 绕点按顺时针方向旋转30°后得到的正方形EFCG 交AD 于点H ,S 四边形HFCD = .17.如图, 已知AD DE EF 、、分别是ABC 、ABD 、AED 的中线,若2ABC 24cm S =,则阴影部分DFE 的面积为 .18.如图,在正方形ABCD 内有一折线,其中AE EF EF FC ⊥⊥、,并且AE 6=,EF 8=, AF 10=则正方形与其外接圆之间形成的阴影部分的面积为 . 19.如图把⊙O 向右平移8个单位长度得到⊙O 2,两圆相交于 A 、B,且O 1 A 、O 2 A 分别与⊙O 2、⊙O 1相切,切点均为A 点, 则图中阴影部分的面积为 . 20.如图,矩形ABCD 中,BC 4DC 2==,,以AB 为直径的半圆O 与DC 相切于点E ,则图中的阴影部分的面积是 结果保留π21.在Rt △ABC 中,A 90AB AC 2∠===,,以AB 为直径作圆交BC 于点D ,则图中阴影部分的面积是 .22.如图,在△ABC 中,,AB 5cm AC 2cm ==,将△ABC 绕顶点C 按顺时针方向旋转45°至△11A B C 的位置,则线段AB 扫过的区域图中阴影部分的面积为 2cm .23.如图,半圆A 和半圆B 均与y 轴相切于O ,其直径CD EF 、和x 轴垂直,以O 为顶点的两条抛物线分别经过C E 、和点D F 、,则图中的阴影部分的面积是 .24.如图,抛物线21y x 2=-+向右平移1个单位得到抛物线2y ,则抛物线2y 的顶点坐标为 ;阴影部分的面积S = . 25.如图在边长为2的菱形ABCD ,B 45∠=,AE 为BC 边上的 高,将△ABE 沿AE AE 在直线翻折得△'AB E ,求△'AB E 与四边形 AECD 重叠阴影部分的面积. 26.如图,矩形OBCD 按如右图所示放置在平面直角坐标系中坐标 原点为O ,连结AC 点A C 、的坐标见图示交OB 于点E ;求阴影 部分的四边形OECD 的面积27.如图,在△ABC 中,=90A ∠, O 是BC 边上的一点以O 为圆 心的半圆分别与AB AC 、边相切于点D E 、,连接OD 已知. 求:⑴.tan C ∠.⑵.求图中的阴影部分的面积之和.28.如图,⊙O 的直径AB 为10cm 1,弦AC 为6cm ,ACB ∠的平分线 交⊙O 于点D .⑴.求弦CD 的长; ⑵.求阴影部分的面积;29.如图, 在平面直角坐标系中,以(),10为圆心的⊙P 与y 轴 相切于原点O ,过点(),A 10-的直线AB 于⊙P 相切于点B . ⑴.求AB 的长;⑵.求AB OA 、与OB 围成的阴影部分面积不取近似值; ⑶.求直线AB 上是否存在点M ,使OM PM +的值最小 如果存在,请求出点M 的坐标;如果不存在,请说明理由.FB'EDA BC xy(4,2)(0,-1)E BDC A O BD C A ①B'D 'A'B D C ②FE D A B C 17题H G EF D A B C 16题15题ⅢⅡⅠG F M E B C A 14题18题1086B D C F E A xy –1–2123–1–212O24题A 1C AB 22题DB 21题O DA EBC 20题23题xy 1-1BA O。

九年级数学人教版(上册)小专题15 四种方法求阴影部分的面积

九年级数学人教版(上册)小专题15 四种方法求阴影部分的面积

方法 2 和差法 ★直接和差法
将不规则阴影部分的面积看成是以规则图形为载体的一部分, 其他部分空白且为规则图形,此时采用整体作差法求解.如图:
⇨S 阴影=S△ABC-S 扇形 CAD
⇨ S阴影=S△ABO-S扇形COD
2(. 2021·包头)如图,在 Rt△ABC 中,∠ACB=90°,AB= 5,
方法 4 容斥原理
有的阴影部分面积是由两个基本图形互相重叠得到的.常用的方 法是:两个基本图形的面积-被重叠图形的面积=组合图形的面积.
10.如图,在 Rt△ABC 中,∠ACB=90°,∠A=30°,AC= 3,

分别以点 A,B 为圆心,AC,BC 的长为半径画弧,分别交 AB 于点
D,E,则图中阴影部分的面积是51π2-
与 AB 相交于点 F,连接 OE,OF,则图中阴影部分的面积是
7 2
3-43π .
★构造和差法
先将不规则阴影部分与空白部分组合,构造规则图形或分割后为 规则图形,再进行面积和差计算.如图:
4(. 2021·吉林)如图,在 Rt△ABC 中,∠C=90°,∠A=30°, BC=2.以点 C 为圆心,CB 长为半径画弧,分别交 AC,AB 于点 D, E,则图中阴影部分的面积为 23π- 3 (结果保留 π).
3 2
.
11.如图,正方形 ABCD 的边长为 3,以点 A 为圆心,2 为半径 作圆弧,以点 D 为圆心,3 为半径作圆弧.若图中阴影部分的面积分 别为 S1,S2,则 S1-S2=134π-9 .
BC=2,以点 A 为圆心,AC 长为半径画弧,交 AB 于点 D,交 AC
于点 C,以点 B 为圆心,AC 长为半径画弧,交 AB 于点 E,交 BC

阴影部分面积的计算

阴影部分面积的计算

阴影部分面积的计算专题(对应河南中考第14题)※自学提能力,合作生智慧,展示扬风采一、成功目标: 掌握求阴影部分面积的基本思路,进一步体会几何变换在几何化归中的作用.二、专题概述:对于不规则图形(不能直接利用面积公式求面积的图形)常用以下方法求面积:⑴等积转化法:通过等面积转化,将不规则阴影部分的面积转化为规则图形的面积来计算.如图:DO∥AB,则S阴影=S△DAB+S弓形AmB=S△AOB+S弓形AmB=S扇形OABS阴影22 9013604rrππ==⑵(分割求和法)组合法:将图形适当分割,将阴影部分的面积转化成规则图形面积的和或差.如图:如图,扇形OAB的半径为4,∠AOB=90°,C是AB的中点,D、E分别是OA、OB的中点,连接CD、DE,求图中阴影部分的面积.S阴影=S扇形OBC-S△OGE+S△OCD-S△ODG=S扇形OBC+S△OCD-S△ODE=2222π--;⑶整体作差法:将阴影部分看成一些基本图形覆盖而成的重叠部分,用整体做差法求解.如图:(2012汕头13.2015·安顺)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是133π-(结果保留π).⑷等面积变换法:利用图形在平移、旋转、对称变换前后面积不变的性质,可将阴影部分的面积转化为规则图形的面积进行计算.如图:点D是AB的中点,则S阴影=S△ACD三、河南中考回顾1.(2013·河南)如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3). 若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为______.2.(2014·河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为.POAxyA′P′3.(2015•河南)如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径CD 作交OB 于点D .若OA =2,则阴影部分的面积为 . 4.(2016·河南)如图,在扇形AOB 中,∠AOB =90°,以点A 为圆心, OA 的长为半径作OC 交AB 于点C ,若OA =2,则阴影部分的面积是 .33π-四、2017展望1.(2015•达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )BA . 12πB . 24πC . 6πD . 36π2.(2014·泰安)如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )AA .(2π﹣1)cm 2 B . (2π+1)cm 2 C . 1cm 2 D . 2πcm 23.(2014•吉林2015·聊城)如图,将半径为3的圆形纸片,按下列顺序折叠.若AB 和BC 都经过圆心O ,则阴影部分的面积是 3π (结果保留π)4.(2016·贵港)如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE ,若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 (结果保留π).【答案】2π;5.如图,半径为1的半圆纸片,按如图所示方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .【答案】326π-;2015·17题2016·17题6.(2013•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为4π.7.如图,在扇形OAB中,∠AOB=90°,半径OA=6cm,点C为OB的中点,CD⊥OB交弧AB于点D,则图中阴影部分的面积为.【答案】933+92π-;8.(2014·十堰)如图,在扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为D,当△OCD的面积最大时,则图中阴影部分的面积为.【答案】24π-;五、课外练习1.(2013•宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)(83π)2.2016·滨州)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是233π-.3.(2010•衡阳2012青海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为(结果保留π).【答案】542π-;4.(2015·绥化)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2 ,则图中阴影部分的面积为____________.(结果保留π)【答案】43 32π+;5.(2012·十堰)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为cm2.9 334π-6.(2014•乐山2016用)如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1-S2= .(139 4π-)7.如图,△ABC中,∠A=70°,BC=2,以BC为直径的⊙O与AB、AC分别交于点D、E,则图中阴影部分的面积为.【答案】718π8.(2014·烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.【答案】163π9.(2014•佛山)如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.(5233π-)10.(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.【答案】816433π--;11.(2012•恩施州)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是.【答案】3A.B.2 C.3 D.212.(2014•南昌·)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.13.(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=42,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.。

初中阴影面积题大全

初中阴影面积题大全

初中阴影面积题大全初中阴影面积题大全在初中阶段,阴影面积是一个重要的概念,常常出现在几何题目中。

以下是一些常见的初中阴影面积题目和解答:1. 一个正方形的面积是 8 平方分米,求阴影部分的面积。

解答:设正方形的边长为 x,则阴影部分的面积为 x^2-8。

根据勾股定理,可得 x^2=8+x^2,解得 x=4。

因此,阴影部分的面积为 4 平方分米。

2. 一个长方形的长是 8 分米,宽是 4 分米,求阴影部分的面积。

解答:设长方形的面积为 y,则阴影部分的面积为 y-8-4。

根据题意,可得 y=32,则阴影部分的面积为 32-8-4=10 平方分米。

3. 一个直角三角形的斜边长是 4 厘米,求阴影部分的面积。

解答:设直角三角形的直角边长为 x,则阴影部分的面积为x^2-4。

根据勾股定理,可得 x^2=4+x^2,解得 x=2。

因此,阴影部分的面积为 2^2-4=2 平方厘米。

4. 一个圆的半径是 3 厘米,求阴影部分的面积。

解答:设圆的面积为 y,则阴影部分的面积为 y-3^2。

根据题意,可得 y=18,则阴影部分的面积为 18-3^2=9 平方厘米。

5. 一个正方形的边长是 3 厘米,求阴影部分的面积。

解答:设正方形的面积为 y,则阴影部分的面积为 y-3^2。

根据题意,可得 y=6.3,则阴影部分的面积为 6.3-3^2=6.1 平方厘米。

6. 一个平行四边形的面积是 6.3 平方厘米,求阴影部分的面积。

解答:设平行四边形的底边长为 x,则阴影部分的面积为x^2-6.3。

根据勾股定理,可得 x^2=6.3+x^2,解得 x=3。

因此,阴影部分的面积为 3^2-6.3=0.4 平方厘米。

以上是一些常见的初中阴影面积题目和解答。

在解题时,需要理解阴影部分的面积计算方法,通常采用相似三角形、勾股定理、面积公式等方法求解。

同时,需要注意解题步骤和细节,确保计算正确。

初中数学之阴影部分面积

初中数学之阴影部分面积

则余下草坪的面积可表示为
m2;
现为了增加美感,把这条小路改为宽恒为 1 m 的弯曲小路(如图 8)
则余下草坪的面积为
m2
四、对称法
图8
y
C1
1
9、如图 9,⊙O 的半径为 2,C1 是函数 y=
x2 的图象,C2 是函数 y=
1
-
x2 的图象,
2
2
则阴影部分的面积是
y
10、如图 10,⊙A 和⊙B 都与 x 轴和 y 轴相切,
六、等积法
12、如图 12,是重叠的两个直角三角形,将其中一个直角三角形沿 BC 方向平移
得到△DEF,如果 AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为
cm2
13、如图 13,四边形 ABCD、CEFG 是正方形,B、C、E 在同一直线上,
正方形 ABCD 的边长是 4,则△BDF 的面积是
三、平移法
7、如图 7,平行于 y 轴的直线 l 被
抛物线 y= 1 x2+1,y= 1 x2-1 所截,
2
2
当直线 l 向右平移 3 个单位时,
直线 l 被两条抛物线所截得的
y D
C
B
0
x
A
l 图7
第1个
第2个 图6
第3个
线段扫过的图形面积为
8、在长为 a m,宽为 b m 的一块草坪上修一条宽 1 m 的笔直小路,
设分点分别为 P1,P2,…,Pn-1,过每个分点作 x 轴的垂线,
y 1
Q1Q2
Q3
Qn-1 A
O P1P2P3 … Pn1-1 图 20
分别与抛物线交于点 Q1,Q2,…,Qn-1,再记直角三角形 OP1Q1,P1P2Q2,…

初三数学圆阴影部分面积10种解题方法

初三数学圆阴影部分面积10种解题方法

初三数学圆阴影部分面积10种解题方法01和差法对于不规则图形实施分割、叠合后,把所求的图形面积用规则图形面积的和、差表示,再求面积.贵港中考如图1,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA= 4,∠AOB=120°,则图中阴影部分的面积为( 结果保留π) .图1解析: 图形中的阴影部分是不规则图形,较难直接计算.注意到阴影部分是环形BECA的一部分,因此阴影部分面积等于环形BECA的面积减去图形DCA的面积,又图形DCA的面积等于扇形DOA 的面积减去△ODC的面积.图2如图2,连接OD交弧CE于M.因为OA=4,C是OA的中点,CD⊥OA,所以OD=4,OC=2,DC=2√3,所以∠ODC=30°,∠DOC=60°02割补法对图形合理分割,把不规则图形补、拼成规则图形会,再求面积.吉林中考如图3,将半径为3的圆形纸片,按下列顺序折叠,若弧AB和弧BC都经过圆心O,则阴影部分的面积是( 结果保留π) .图3解析: 观察图形可以发现: 下方树叶形阴影部分的面积分成左右两块后,可以补到上方两个空白的新月形的位置.是否能够完全重合,通过计算验证即可.图4如图4,过点O作OD⊥AB于D,连接OA、OC、OB.由折叠性质知OD=1/2r=1/2AO,03等积变形法运用平行线性质或其他几何图形性质把不规则图形面积转化为与它等面积的规则图形来进行计算.天水中考如图5,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E 是半圆弧的三等分点,弧BE的长为2π/3,则阴影部分的面积为图5解析: 阴影部分是Rt△ABC的一部分,运用平行线的性质可将图形ABE面积转化成扇形BOE面积.连接BD、BE、BO、OE,如图6.图6因为点E、B是半圆弧的三等分点,所以∠DOB=∠BOE=∠EOA=60°,所以∠BAD=∠EBA=∠BAE=30°,所以BE∥AD.04平移法一些图形看似不规则,将某一个图形进行平移变换后,利用平移的性质,把不规则的图形的面积转化为规则图形的面积来计算.2019年黄石中考模拟如图7,从大半圆中剪去一个小半圆( 小半圆的直径在大半圆的直径MN上),点O为大半圆的圆心,AB是大半圆的弦,且与小半圆相切,AB∥MN,已知AB=12cm,则阴影部分的面积是.图7解析: 因为AB∥MN,由平行线间的距离处处相等,可以平移小半圆,使小半圆的圆心与大半圆的圆心重合,这样不规则的阴影图形就变成一个环形.图8如图8.过点O作OC⊥AB,垂足为C,连接OB,设大半圆的半径为R,小半圆的半径为r.05旋转法一些图形看似不规则,把某个图形进行旋转变换后,利用旋转的性质,把不规则图形的面积转化为规则图形的面积,再进行计算.安顺中考如图9,矩形ABCD中,BC=2,DC=4,以AB 为直径的⊙O与DC相切于点E,则阴影部分的面积为图9解析: 若直接利用弓形面积公式求解相当繁琐,根据已知条件及圆的旋转不变性,利用图形的旋转可实现解题.图10如图10,连接OE 交BD于M.因为CD 是⊙O 的切线,所以OE⊥CD,又AB∥CD,则OE⊥AB,而OE=OB,易知△OBM ≌△EDM,把△OBM绕点M旋转180°就会转到△EDM,阴影部分就转化为扇形BOE,恰好是半径为2的圆的四分之一,06对称法一些图形看似不规则,利用轴对称和中心对称的性质,把不规则图形进行轴对称和中心对称变换,转化为规则图形的面积,再进行计算.赤峰中考如图11,反比例函数y=k/x( k>0) 的图象与以原点(0,0)为圆心的圆交A、B两点,且A( 1,√3) ,图中阴影部分的面积等于 (结果保留π) .图11解析: 根据反比例函数图象及圆的对称性———既是轴对称图形,又是中心对称图形,可知图中两个阴影面积的和等于扇形AOB的面积.过点A作AD⊥x轴于D,如图12.图12因为A( 1,√3) ,所以∠AOD=60°,OA=2,又因为点A、B关于直线y=x对称,所以∠AOB=2×( 60°-45°)=30°.07整体法当已知条件不能或不足以直接求解时,可整体思考,化单一、分散为整体,把所求的未知量整体转换为已知量,再将问题整体化求解.安徽中考如图13,半径均为1的⊙A、⊙B、⊙C、⊙D、⊙E两两外离,A、B、C、D、E分别为五边形的五个顶点,则图中阴影部分的面积是图13解析: 由已知条件,分别求阴影部分的圆心角不易求得,但将五个扇形的圆心角合为一整体,它们的圆心角的和也是五边形的外角之和360°,所以阴影部分面积是一个整圆的面积,所以S阴影=π.08方程法有些图形的局部可以看成某个规则图形,或某些图形具有等面积的性质,这时可以把它们的关系用方程( 组) 来表示,再解方程( 组) ,求出图形的面积.2019年武汉模拟如图14,在边长为2的正方形ABCD 中,分别以2为半径,A、B、C、D 为圆心作弧,则阴影部分的面积是 ( 结果保留π) .图14解析: 仔细观察图形,有两种相同特征的图形在正方形内部,一起围成所求的阴影部分.设弧AC与弧BD交于点G,连接BE、EC,如图15.图15设形如AED 图形的面积为x,形如DEG 图形的面积为y,那么S阴影= S正-4 ( x+y) ,只需求出(x+y)的结果即可.09推算法某些题目运用已知条件,和图形的性质或定理进行推理,可把阴影部分面积用某个式子表示,从而求得不规则图形的面积.南宁中考如图16,Rt△ABC 中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC 为直径作三个半圆,那么阴影部分的面积为平方单位.图16解析: 设左边阴影部分面积为S1,右边阴影部分面积为S2,整个图形的面积可以表示成: 以AC 为直径的半圆+ 以BC为直径的半圆+△ABC.也可以表示成: S1+S2+以AB为直径的半圆。

中考数学专题复习和训练--求阴影部分的面积

中考数学专题复习和训练--求阴影部分的面积

合 .在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助
阴影部分(不规则图形)转化为规则的易求的图形求解
.
转化化归 思想,将
典例精析:
例 1.如图 , AB 是⊙ O 的直径,弦 CD AB, C 30 ,CD 2 3 ,则 S 阴影 =
A.
B. 2
2 C. 3
3
分析: 本题的阴影部分是不规则的,要可以转化到规则的阴影部分,比
形中心的对角线长为 2,间隔一个顶点的对角线长为 3 ,则 CE 4 ;若 △AEC 和 △BEC 都以 CE 为求其面积的底边 ,则它们相应的高怎样化归在直角三角形中来求出呢? 解:(由同学们自我完成解答过程)
师生互动练习:
1.如图已知网格中每个小正方形的边长为 2,图中阴影部分的
每个端点位置情况计算图中的阴影部分的面积之和为
小圆⊙ O′向右 平移 至大圆⊙ O 使圆心重合(见 图① 的第二个图) ,这样来求圆环的面积更容易O;
图② 虽然是半圆也可以采用相同的方法求阴影部分半圆环的面积
.
A
B
A
C B
O O'
O
O' O
O
A
B
A
B
C
图① 三 .补转化为一个整体:
图②
如图第一个图是以等腰 Rt△AOB 的直角顶点 O 为圆心画出的直角扇形 OAB 和以 OA 、 OB 为
如转化为扇形 AOD 的面积来求;利用垂径定理和三角函数计算可以得出
C
EC ED,EO EA ,由此可以证明⊿ AEC ≌⊿ DEO ; 所以阴影部分等于
扇形 AOD 的面积,利用扇形面积的计算公式求出结果为
2 . 选D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阴影部分的面积专题
解题方法:
1、熟悉三角形、四边形、圆、扇形面积的公式
2、利用各种图形面积之间的相加或相减的办法 一、选择
1、如图,圆的半径是6,空白部分的圆心角分别是60°与 30°,则阴影部分的面积是 ( )
A 、9π
B 、27π
C 、6π
D 、3π
2. 如图1,扇形OAB 的圆心角为90,且半径为1,分别以OA ,OB 为 直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积, 那么P 和Q 的大小关系是(

A.P Q = B.P Q > C.P Q < D.无法确定 3. 如图2,矩形ABCD 中,1AB =,3BC =,以BC 的中点 为圆心的MPN 与AD 相切,则图中的阴影部分的面积为( )
A.23π
B.34π
C.3
π D.π3
4. 如图,△ABC 中,105A ∠=,45B ∠=,22AB =,AD BC ⊥,为垂足,以为圆心,以AD 为半径画弧EF ,则图中阴影部分的面积为(

A.7236-
π B.7
236-
π+2 C.5
236

D.5
236
-π+2
5.如图两个同心圆的圆心为0,大圆的弦AB 切小圆于点P ,两圆的半径分别为6,3则图中阴影部分的面积为( )
A 、93-π
B 、63-π
C 、93-3π
D 、63-2π Q
O A



N D

A M



E A

O E F




A
A ' P
O
Q B O '
B '
A
D
E
二、填空
1.如图,在Rt △ABC 中,∠C=90°,CA=CB=2。

分别以A 、B 、C 为圆心, 以
2
1
AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是______. 3. 如图,AB 是半圆O 的直径,以O 为圆心,OE 为半径的半圆交AB 于,两点,弦AC 是小半圆的切线,为切点,若4OA =,2OE =,则图中阴影部分的面积为

3 4 5
4. 如图,两个半径为1,圆心角是90的扇形OAB 和扇形O A B '''叠放在一起,点O '在AB 上,四边形OPO Q '是正方形,则阴影部分的面积等于 .
5.在△ABC 中,AB=AC=2cm , ∠B=300,以A 为圆心,AB 为半径BEC , 以BC 为直径作半圆BFC .则商标图案面积等于
7.如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA=3,OC=1,分别连结AC 、BD ,则图中阴影部分的面积为
A B C
D
7 8 9
8.如图,A 是半径为2的⊙O 外一点,OA=4,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA ,连结AC ,则图中阴影部分的面积为_________.
9.如图,两个半圆中,长为6的弦CD 与直径AB 平行且与小半圆相切,那么图中阴影部分的面积等于_____.
10、如图,以正方形ABCD 的边AD 、BC 、CD 为直径画半圆,阴影部分的面积记为m ,空白部分的面积记为
n ,则m 与n 的关系为_____________.
11、如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O 的位置关系是 ,阴影部分面积为 .
三、解答
11、如图,AB 是⊙O 的直径,∠BAC=45°,AB=BC. (1)、求证:BC 是⊙O 的切线; (2)、设阴影部分的面积为a,b, ⊙O 的面积为S ,请写出S 与a,b 的关系式。

12. 如图,在Rt △ABC 中,∠BAC=90°,AC=AC=2,以AB 为直径的圆交BC 于D, 求图形阴影部分的面积.
13. 如图,以正三角形ABC 的AB 边为直径画⊙O ,分别交AC ,BC
于点D, E, AB=6cm ,求DE 的长及阴影部分的面积.
13. 已知如图,矩形ABCD 中AB=1,BC=2,以B 点为圆心,BC 长为半径画弧交AC 于F ,交BA 于E ,求阴影部分的面积。

n A B C
D .B
A
B C
D
F
E
图7-101
21. 如图,已知P A、PB切⊙O于A、B两点,连AB,且P A,PB的长是方程223
x mx
-+=0的两根,AB = m. 试求:(1)⊙O的半径;
(2)由P A,PB,AB
⌒围成图形(即阴影部分)的面积.
26.如图,已知Rt△ABC中,∠ACB=90°,以AB,BC,AC为直径作半圆围成两月形(阴影部分)S1,S2,设△ABC的面积为S.(10分)
求证:S=S1+S2.
O
A
P。

相关文档
最新文档