第三章 土的压缩性与地基沉降计算

合集下载

第三章 计算土的压缩性与地基沉降量

第三章  计算土的压缩性与地基沉降量
h 1 e1

Es
p
p2 p1
e1 e2 1e1
1 e1
式中
Es—土的侧限压缩模量,MPa; α 、e1、e2—与式(3-6)中的含义相同。
学习单元2 计算地基最终沉降量
基础知识 一、地基最终沉降量的概念
地基最终沉降量是指地基在建筑物荷载作用下达到压缩稳定 时,地基表面的沉降量。对于偏心荷载作用下的基础,则以基底 中点沉降量作为其平均沉降量。 计算地基最终沉降量的目的,在 于确定建筑物的最大沉降量、沉降差、倾斜和局部倾斜,并将其 控制在允许的范围内,以保证建筑物的安全和正常使用。
压缩仪中进行的。如图3-1所示 为室内侧限压缩仪(又称固结仪) 示意图,它由压缩容器、加压 活塞、刚性护环、环刀、透水 石和底座等组成。
图3-2 侧限压缩仪示意图
常用的环刀内径为60~80mm,高20mm,试验时,先用金属环 刀取土,然后将土样连同环刀一起放入压缩仪内,土样上下各放 一块透水石,以便土样受压后能自由排水,在透水石上面再通过 加荷装置施加竖向荷载。由于土样受到环刀、压缩容器的约束, 在压缩过程中只能发生竖向变形,不能发生侧向变形,所以这种 方法称为侧限压缩试验。
(3)确定地基沉降计算深度zn。 地基沉降计算深度是指基底以下 需要计算压缩变形的土层总厚度,也称为地基压缩层深度。 在该
深度以下的土层变形小,可略去不计。确定zn时该深度处应符合 σz≤0.2σc的要求;若其下方存在高压缩性土,则要求σz≤0.1σc。
(4)计算各分层的自重应力平均值。
p1i
c(i1)
式中 α —土的压缩系数,MPa-1; e1 —相应于p1作用下压缩稳定后的孔隙比; e2 —相应于p2作用下压缩稳定后的孔隙比。
土在完全侧限条件下的竖向附加应力与相应的应变增量的比

土力学第三篇

土力学第三篇

例题4 某厂房为框架结构,柱基底面为正方形, 边长 l=b=4.0m,基础埋深d=1.0m。上部结构传至基础 顶面的荷重P=1440kN。地基为粉质粘土,地下水位深 3.4m。土的压缩模量: 地下水位以上 Es1 5.5MPa ,地 下水位以下 Es2 6.5MPa ,试用“规范法”计算柱基 中点的沉降量。
2. 饱和土的渗流固结 (1) 饱和土的渗流固结
孔隙水排出;孔隙体积减小; 由孔隙水承担的压力转移到土骨架,成为有效应力。
(0
t u 0
3. 单向固结理论
单向固结是指土中的孔隙水只沿竖直方向渗流, 土体也只在竖向发生压缩。
(1) 单向固结微分方程及其解答
故受压层深度 zn 6m 。
cz
(8)计算各土层的压缩量
si
( 1
a e1
)i
zi
hi
(9)计算柱基最终沉降量
n
s si 16.3 12.9 9.0 6.1 44.3mm i 1
例题3 某厂房为框架结构,柱基底面为正方形, 边长 l=b=4.0m,基础埋深d=1.0m。上部结构传至基 础顶面的荷重P=1440kN。地基为粉质粘土,其天然
0 zi1
Aokaa zdz z i1 i1 0

si
Aaabb Esi
Aokbb Aokaa Esi
i zi
i1zi1
Esi
(3)si
1 (
Esi
i
zi
i
1
zi

1
=
1 Esi
( p0i zi
p0 i 1 zi 1 )
p0 Esi
(i zi
i 1 zi 1 )
n
(4)地基总沉降 s

土力学第三章

土力学第三章

绪论0.3土力学的方法和内容绪论绪论土力学包括哪些内容?§3 土的压缩性与基础沉降计算第3章土的压缩性与基础沉降计算S≦[S]沉降具有时间效应-沉降速率第3章土的压缩性与基础沉降计算概述第3章土的压缩性与基础沉降计算第3章土的压缩性与基础沉降计算§3 土的压缩性与基础沉降计算3.1 压缩试验及压缩性指标砂土:一般不做压缩试验粘性土:固结(压缩)试验。

3.1.1 侧限压缩试验支架加压设备固结容器变形测量3.1.1 侧限压缩试验3.1.1 侧限压缩试验24hr3.1.1 侧限压缩试验i i3.1.2 压缩曲线3.1.2 压缩曲线3.1.3 压缩性指标3.1.3 压缩性指标3.1.3 压缩性指标 2.3.1.3 压缩性指标 2.μ第3章土的压缩性与基础沉降计算§3.1压缩试验及压缩性指标3.1.3 压缩性指标第3章土的压缩性与基础沉降计算§3 土的压缩性与基础沉降计算第3章土的压缩性与基础沉降计算3.2膨胀曲线、再压曲线与先期固结压力的概念3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线固结稳定卸荷瞬时不排水卸荷稳定初始状态3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线3.2.1 膨胀曲线、再压曲线3.2.3 先期固结压力概念3.2.3 先期固结压力概念第3章土的压缩性与基础沉降计算3.3 天然粘性土层的固结状态3.3.1 粘性土的天然固结过程(水下沉积)3.3.2 天然粘性土层的三种固结状态N onsolidation U nder 原、现、未来地面现地面3.3.2 天然粘性土层的三种固结状态O 原、现、未来地面原地面h第3章土的压缩性与基础沉降计算§3.3 天然粘性土层的固结状态3.3.2 天然粘性土层的三种固结状态第3章土的压缩性与基础沉降计算§3.3 天然粘性土层的固结状态3.3.2 天然粘性土层的三种固结状态第3章土的压缩性与基础沉降计算3.4 先期固结压力及现场压缩曲线的确定3.4.1 先期固结压力的确定§3 土的压缩性与基础沉降计算3.4.1 先期固结压力的确定§3.4 先期固结压力及现场压缩曲线的确定第3章土的压缩性与基础沉降计算3.4.2 现场压缩曲线及其确定方法第3章土的压缩性与基础沉降计算§3.4 p c及现场压缩曲线的确定3.4.2 现场压缩曲线及其确定方法第3章土的压缩性与基础沉降计算3.5 基础最终沉降量计算第3章土的压缩性与基础沉降计算§3.5 基础最终沉降量计算3.5.1 用e-p曲线计算3.5.1 用e-p曲线计算3.5.1 用e-p曲线计算1) 确定计算断面、计算点。

土的压缩性与地基沉降计算

土的压缩性与地基沉降计算

土的压缩性与地基沉降符号约定α1-2:土的压缩系数E s:土的压缩模量C c:压缩指数E0:土的变形模量μ:土的泊松比OCR:超固结比U:固结度一、土的压缩试验与压缩曲线室内侧限压缩试验(亦称固结试验)是研究土压缩性的最基本方法。

1、压缩曲线实验得到各级荷载p作用下对应的孔隙比e,从而可绘制出土的e-p曲线及e-lgp曲线:2、压缩系数在曲压缩试验所得的e-p曲线上,常以p1=100kPa、p2=200kPa及相对应的孔隙比e1和e2计算土的压缩系数:。

依α1-2可评价土的压缩性高低:为低压缩性土,为中压缩性土,为高压缩性土。

3、压缩模量土的压缩模量E s是表示土压缩性的又一指标,也采用室内侧限压缩试验获得,依E s可评价土的压缩性高低。

4、压缩指数在曲压缩试验所得的e-lgp曲线上,常出现直线段,直线段的斜率记作,称为压缩指数,在压力较大时为常数,不随压力变化而变化。

C c值越大,土的压缩性越高。

5、变形模量变形模量由现场静载试验确定。

,其中为土的泊松比。

二、基础沉降1、分层总和法计算最终沉降量分层总和法采用完全侧限条件下的压缩性指标计算沉降量,假定土层只发生竖向变形,不发生侧向变形。

求解步骤及注意事项:(1)分层:一般取0.4b或1~2m一层,地下水位线及土层界面应为分层界面;(2)求每一层顶面、底面的自重应力和附加应力,并分别求他们的平均值;(3)确定计算深度,对于一般土层,≤0.2;对于软土层,≤0.1。

(☆)(4)计算各层压缩量;(5)求和。

2、规范法计算最终沉降量略。

3、弹性理论法计算最终沉降量略。

三、地基变形与时间的关系1、地基最终沉降量的组成(1)瞬时沉降:加压之后即时发生的沉降,此时地基土只发生剪切变形,其体积还来不及变化。

(2)固结沉降:荷载作用下随着土孔隙中水分的逐渐挤出,孔隙体积相应减少而发生的沉降。

(3)次固结沉降:孔隙水压力消散后仍在继续缓慢进行的,由土骨架蠕变而引起的沉降。

3下土的压缩性与地基沉降计算例题

3下土的压缩性与地基沉降计算例题

7448
0.9
s
(mm)
54.7 55.6
根据计算表所示△z=0.6m, △sn =0.9mm <0.025Σ si =1.39mm
6.沉降修正系数 s
满足规范要求
根据Es =6.0MPa, 当fak=p0 ,查表得到ys =1.1
7.基础最终沉降量
s= ys s =61.2mm
24
【例9】已知某工程为饱和粘土层,厚度为8.0m,顶部为薄砂层
2.计算地基土的自重应力 自重应力从天然地面起算,z的 取值从基底面起算
3.4m d=1m
b=4m
z(m) 0 1.2 2.4 4.0 5.6 7.2
σc(kPa) 16 35.2 54.4 65.9 77.4 89.0
3.计算基底压力
4.计算基底附加压力
G G Ad 320 kN p0 p d 94kPa
p=P/(l×b)+ γm d=1440/(4×4)+20×1=110.0kPa
(4)基底附加应力
p0=p-γd=110-16 ×1=94kPa
2
(5)计算地基中的附加应力并绘分布曲线见图 (a)。 该基础为矩形,属空间问题,故应用“角点法”求解。为此, 通过中心点将基底划分为四块相等的计算面积,每块的长度 l1=2m,宽度b1=2m。中心点正好在四块计算面积的公共角点 上,该点下任意深度zi处的附加应力为任一分块在该点引起的 附加应力的4倍。计算结果如下表所示。
(题目同例5、例6)
15
解:(1)地基受压层计算深度Zn,按下式计算:
Zn b(2.5 0.4 ln b) 4 (2.5 0.4 ln 4) 7.8m
(2)柱基中点沉降量s,按下式计算:

Chapt3-6-土的压缩性和地基沉降计算-地基的最终沉降量-分层总和法

Chapt3-6-土的压缩性和地基沉降计算-地基的最终沉降量-分层总和法

• 四、例题分析
【例】某厂房柱下单独方形基础,已知基础底面积尺寸
为4m×4m,埋深d=1.0m,地基为粉质粘土,地下水位 距天然地面3.4m。上部荷重传至基础顶面F=1440kN,土
的关天计然算重资度料如=下16图.0。kN试/m分³,别饱用和分重层度总 sa和t=法17和.2规kN范/m法³,计有算
sc
n
c i1
E P c ci(zi
izi1 ) i1
式中:
sc——考虑回弹再压缩影响的地基变形
计算深度取至 基坑底面以下 5m,当基坑底 面在地下水位 以下时取10m
Eci——土的回弹再压缩模量,按相关试验确定
c——考虑回弹影响的沉降计算经验系数,取1.0
Pc——基坑底面以上土的自重应力,kPa
4.0 2.0 0.0840 31.6 65.9
5.6 2.8 0.0502 18.9 77.4 0.24
7.2 3.6 0.0326 12.3 89.0 0.14 7.2
6.确定沉降计算深度zn
根据σz = 0.2σc的确定原则,由计算结果,取zn=7.2m
7.最终沉降计算
根据e-σ曲线,计算各层的沉降量
分层总和法的基本思路是:将压缩 层范围内地基分层,计算每一分层的压 缩量,然后累加得总沉降量。
分层总和法有两种基本方法:e~p 曲线法和e~lgp曲线法。
基础最终沉降量Βιβλιοθήκη 算…3计算原理一般取基底中心点下地基附加应力来计算各分层土的竖向压缩量,认
为基础的平均沉降量s为各分层上竖向压缩量Dsi之和,即
2.分层总和法中附加应力计算应考虑土体在自重作用下的 固结程度,未完全固结的土应考虑由于固结引起的沉降量
相邻荷载对沉降量有较大的影响,在附加应力计算中应考 虑相邻荷载的作用

土的压缩性和地基沉降计算

土的压缩性和地基沉降计算

土的压缩性和地基沉降计算土壤的压缩性和地基沉降计算是土木工程中一个重要的问题,与地基设计和结构安全密切相关。

本文将从土壤的压缩性和地基沉降计算的基本原理、方法以及在实际工程中的应用等方面进行探讨。

一、土壤的压缩性土壤的压缩性指的是土壤在受一定应力作用下发生体积变化的能力。

当土体受到应力作用时,其中的孔隙水和气体会逐渐排出,土体颗粒之间的接触点受到应力的作用,导致土体发生变形。

根据土壤的压缩性质,可以将土壤分为压缩性土和不压缩性土。

压缩性土的体积变化主要是由于土体颗粒重新排列和孔隙压缩导致的,而不压缩性土的体积变化主要是由于土体颗粒的破碎和溶解引起的。

压缩性土的压缩度是评价土壤压缩性的重要参数。

压缩度可以分为初始压缩度和终极压缩度。

初始压缩度是指土壤在施加一定压力之前的初始压缩变形,主要包括初始固结和微观结构的调整。

终极压缩度是指土壤在持续施加一定压力后,接触点进一步调整和颗粒重新排列导致的终极压缩变形。

二、地基沉降计算方法地基沉降计算是指在地基承受荷载的作用下,土壤发生压缩而导致的地基下沉。

地基沉降计算的目的是为了保证结构的安全和稳定,避免地基沉降过大导致结构沉降、损坏甚至倾斜。

地基沉降的计算方法主要分为经验公式法、理论计算法和实测法。

经验公式法是通过以往工程经验总结出的关于地基沉降与荷载、土壤性质等因素之间的经验关系进行计算。

理论计算法是基于土壤力学理论和压缩性原理,通过推导土壤压缩系数、土压力分布等参数,采用有限元分析或解析方法计算地基沉降。

实测法是通过在工程中实测地基沉降数据,将实测数据进行处理分析得到地基沉降。

在实际工程中,地基沉降的计算方法通常是综合应用经验公式法、理论计算法和实测法。

先根据经验公式估算地基沉降量的大致范围,然后根据工程实际情况选择合适的理论计算方法进行计算,最后在工程实施过程中结合实测数据进行验证和修正。

三、地基沉降计算的应用地基沉降计算在土木工程中有着广泛的应用。

首先,在地基设计中,地基沉降计算可以用于确定结构地基的稳定性和安全性,从而选择合适的地基改良方法。

土力学与地基基础(一)X 课程 第三章 土的压缩性与地基沉降计算

土力学与地基基础(一)X 课程 第三章 土的压缩性与地基沉降计算

第三章土的压缩性与地基沉降计算填空题:1、地下水位的升降会引起土中自重应力的变化,地下水位升高则引起土体中的有效自重应力__________,地下水位下降引起土体中的有效自重应力__________。

2、计算自重应力时,地下水位以下的重度应取__________。

3、为了简化计算,基底压力常近似按__________分布考虑。

4、某均质地基,已知其重度γ=17.6kN/m3,则地面下深度为3m处由上部土层所产生的竖向自重应力为__________kPa。

5、均布矩形荷载作用于地表,矩形荷载中心和角点的附加应力分别为σ0和σ1,则σ0和σ1的关系是__________。

6、在相同的压力作用下,饱和粘性土压缩稳定所需时间t1与饱和砂土压缩稳定所需时间t2的关系是__________。

7、若土的初始孔隙比为0.8,某应力增量下的压缩系数为0.3MPa-1,则土在该应力增量下的压缩模量等于__________。

8、按照土体前期固结压力与现有自重应力的关系,可将土分为正常固结土、__________和__________三大类。

9、从应力转化的观点出发,可以认为饱和土的渗透固结无非是:在有效应力原理控制下,土中孔隙压力消散和__________相应增长的过程。

10、在其他条件相同的情况下,固结系数增大,则土体完成固结所需时间的变化是__________。

11、常见的地基最终沉降量的计算方法有__________、__________和弹性力学法。

12、建筑物地基变形的特征有__________、__________、__________和__________四种类型。

选择题:1、自重应力在均匀土层中呈()分布。

(A)、折线(B)、曲线(C)、直线(D)、均匀2、地下水位升高会引起自重应力()。

(A)、增大(B)、减小(C)、不变(D)、不能确定3、某场地自上而下的土层分布为:第一层粉土,厚3m,重度Y为18kN/m3;第二层粘土,厚5m,重度为18.4kN/m3,饱和重度γsat=19.0kN/m3,地下水位距地表5m,则地表下6m 处的竖向自重应力等于()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章土的压缩性与地基沉降计算地基在荷载作用下会产生附加应力,从而引起地基(主要是竖向变形),建筑物基础亦随之沉降。

如果沉降超过容许范围,就会导致建筑物发裂或影响其正常使用,严重者还会威胁建筑物的安全。

因此,在地基基础设计与施工时,必须重视地基变形问题;如果地基不均匀或上部结构荷载差异较大,还应考虑不均匀沉降对建筑物的影响。

为了计算地基的变形量,必须了解土的压缩性。

通过室内或现场试验,求出土的压缩性指标,可计算基础的最终沉降量(地基稳定后的沉降量);并可研究地基变形与时间的关系,以便了解建筑物使用期间某一时刻的的变形量。

因此,研究地基的变形,对于保证建筑物的经济性和安全具有重要意义。

导致地基变形的因素很多.但大多数情况下主要是建筑物荷载引起的。

本章主要介绍土的压缩性、压缩性指标及由建筑物荷载引起的地基最终沉降量的计算。

第一节土的压缩性一、基本概念(一)压缩性土在压力作用下体积缩小的特性称为土的压缩性。

土体积缩小的原因,从土的三相组成来看不外乎有以下三个方面:①土颗粒本身的压缩;②土孔隙中不同形态的水和气体的压缩;③孔隙中部分水和气体被挤出,土颗粒相互移动靠拢使孔隙体积减小。

试验研究表明,在一般建筑物压力100~600KPa作用下,土颗粒及水的压缩变形量不到全部土体压缩变形量的1/400,可以忽略不计。

气体的压缩性较大,密闭系统中,土的压缩是气体压缩的结果,但在压力消失后,土的体积基本恢复,即土呈弹性。

而自然界中土是一个开放系统,孔隙中的水和气体在压力作用下不可能被压缩而是被挤出,由此,土的压缩变形主要是由于孔隙中水和气体被挤出,致使土孔隙体积减小而引起的。

土体压缩变形的快慢与土中水渗透速度有关。

对透水性大的砂土,建筑物施工完毕时,可认为压缩变形已基本结束;对于高压缩性的饱和粘性土,由于渗透速度慢,施工完毕时一般只达到总变形量的5%~20%。

在相同压力条件下,不同土的压缩变形量差别很大,可通过室内压缩试验或现场载荷试验测定。

粘性与无粘性土变形与渗透性关系(二)固结与固结度土的压缩需要一定的时间才能完成,对于无黏性土,压缩过程所需的时间较短。

对于饱和黏性土,由于水被挤出的速度较慢,压缩过程所需的时间就相当长,需几年甚至几十年才能压缩稳定。

土的压缩随时间而增长的过程称为土的固结。

饱和土体在附加应力作用下,只有当土体孔隙中水排出后才可能产生压缩变形。

这种排水与压缩过程称为土的渗透固结,简称固结。

饱和土体中的水发生渗透排水,是由于孔隙中的水在附加应力作用下受到了相应的压力,这种压力称为孔隙水压力,用符号表示。

它高于原来承受的静水压力,故又称为超静水压力。

饱和土体由颗粒骨架和孔隙水两部分组成,在固结过程中,不仅孔隙水受到附加应力作用,颗粒骨架也分担一部分附加应力,后者称为有效应力。

用符号表示。

在固结过程中,这两部分应力的比例不断变化。

当附加应力骤然施加在土体上时,在开始瞬间,孔隙水还来不及排出,土体也没有开始发生固结变形,此时的附加应力完全由孔隙水承担,即孔隙水压力=。

接着开始排水,随着孔隙水的溢出,孔隙水压力逐渐降低,土体逐渐压缩,颗粒骨架的有效应力从零开始逐渐增大。

当孔隙水压力降到零时,渗透排水停止,土体的固结变形也相应完成。

此时附加应力全部由颗粒骨架承担,即有效应力=。

在渗透固结过程中的任一时间(0﹤t﹤∞),附加应力由有效应力与孔隙水应力共同承担。

即: = +在固结开始瞬间,即当t=0时,=,=0;而当t趋于∞时,=0,=。

有效应力增至最大值σ,则饱和土完全固结。

土在固结过程中某一时间t的固结沉降量S t与固结稳定的最终沉降量S之比称为固结度U t,即(3-2)由式(3-2)可知,当t=0时,S t=0,则U t=0,即固结完成0%;当固结稳定时,S t=S,则U t=1,即固结基本上达到100%完成。

固结度变化范围为0~1,它表示在某一荷载作用下经过t时间后土体所能达到的固结程度。

各种土在不同条件下的压缩特性有很大差别,可以通过室内压缩试验和现场载荷试验测定。

二、室内压缩试验与压缩性指标(一)压缩试验与压缩曲线为了了解土的孔隙比随压力变化规律,可在室内用压缩仪进行压缩试验。

试验的顺序大致如下:先用金属环刀切取原状土样,然后将土样连同环刀一起放入压缩仪内(图3-1),再分级加载。

在每级荷载作用下压至变形“稳定”,测出土样稳定变形量后,再加下一级压力。

每个土样一般按p=50、100、200、300、400KPa 加载,根据每级荷载下的稳定变形量,可算出相应压力下的孔隙比。

在压缩过程中,土样不能侧向膨胀,这种方法称为侧限压缩试验。

试验时,逐级对土样施加分布压力,一般按P=50、100、200、300、400KPa 五级加荷,待土样压缩相对稳定后(符合现行《土木试验方法标准》(GB/T50123-1999)有关规定要求)测定相应变形量,而可用孔隙比的变化来表示。

设为土样初始高度,为土样受压后的高度,为压力作用下土样压缩稳定后的压缩量,则(图3-1)。

图3-3 土样侧限压缩孔隙体积变化示意图根据土的孔隙比定义,初始孔隙比为设土样横断面积为A,则,代入上式得(a)用某级压力作用下的孔隙比和稳定压缩量表示土粒体积(b)忽略土粒体积变形,故式(a)与式(b)相等,由此可解得某级荷载P i作用下压缩稳定后的孔隙比e i与初始孔隙比e0、压缩量S i之间的关系:(3-3)式中,其中分别为土粒的相对密度、水的密度和土样的初始干密度(即试验前土样的干密度)。

根据某级荷载下的稳定变形量S i,按式(3-3)即可求出该级荷载下的孔隙比e i。

然后以横坐标表示压力p、纵坐标表示孔隙比e,可绘出e-p关系曲线,此曲线称为压缩曲线,如图3-2所示。

图3-2 压缩曲线(二)压缩指标在图3-2所示的压缩曲线中,当压力变化范围不大时,可以将压缩曲线上的小段曲线用其割线来代替。

若点压力为,相应的孔隙比为;点的压力为,相应的孔隙比为,则段的斜率可表尔示为(3-4)a值表示单位压力增量所引起的孔隙比的变化,称为土的压缩系数。

式(3-4) 式中的负号表示随着压力p的增加,孔隙比e减小.《地基规范》规定:和的单位用KPa表示,的单位用表示,则上式可写为:显然,a值越大,表明曲线斜率大即曲线越陡,说明压力增量一定的情况下孔隙比增量越大,则土的压缩性就越高。

因此,压缩系数a值是判断土压缩性高低的一个重要指标。

由图3-2还可以看出,同一种土的压缩系数并不是常数,而是随所取压力变化范围的不同而改变的。

为了评价不同种类土的压缩性大小,必须用同一压力变化范围来比较。

工程实践中,常采用P=100~200kPa压力区间相对应的压缩系数来评价土的压缩性。

《建筑地基基础设计规范》(GB 50007一2002)按的大小将地基土的压缩性分为以下三类:除了采用压缩系数作为土的压缩性指标外,工程上还采用压缩模量作为土的压缩性指标。

(三) 压缩指数C c根据压缩试验资料,如果横坐标采用对数值,可绘出e-logp曲线,从图可以看出,e-logp曲线的后半段接近直线。

它的斜率称为压缩指数,用表示:压缩指数愈大,土的压缩性愈高,一般﹥0.4时属高压缩性土;﹤0.2为低压缩性土;=0.2~0.4时属中等压缩性土。

e-logp曲线除了用于计算之外,还用于分析研究土层固结历史对沉降计算的影响,这不作详述。

e0e1C ce2logP1 logP2 logP(四)压缩模量Es土的压缩模量是指在完全侧限条件下,土的竖向附加应力与应变增量的比值。

它与一般材料的弹性模量区别在于:①土在压缩试验时,不能侧向膨胀,只能竖向变形;②土不是弹性体,当压力卸除后,不能恢复到原来的位置。

除了部分弹性变形外,还有相当一部分是不可恢复的残余变形。

在压缩试验过程中,在作用下至变形稳定时,土样的高度为为,此时土样的孔隙比为,当压力增至,待土样变形稳定后,其稳定变形量为,此时土样的高度为,相应的孔隙比为,根据式可得:根据的定义及式(3-7)可得:式中—土的竖向附加应力;—土的竖向应变增量。

土的压缩模量是表示土压缩性高低的又一个指标。

从上式可见,与成反比,即愈大,愈小,土愈软弱。

一般﹤4Mpa属高压缩性土;=4~15Mpa属中等压缩性土;﹥15Mpa为低压缩性土。

三、土压缩性的原位测试土的压缩性指标除了由室内压缩试验测定外,还可以通过野外静荷载试验确定。

变形模量是指土在无侧限条件下受压时,压应力与相应应变之比值,其物理意义和压缩模量一样,只不过变形模量是在无侧限条件下由现场静荷载试验确定,而压缩模量是在有侧限条件下由室内压缩试验确定的。

现场原位荷载试验同时可测定地基承载力。

变形模量是在现场原位进行测定的,所以它能比较准确地反映土在天然状态下的压缩性。

进行荷载试验前,先在现场挖一个正方形的试验坑,其深度等于基础的埋置深度,宽度一般不小于承压板宽度(或直径)的3倍。

承压板的面积不应小于0.25㎡,对于软土不应小于0.5㎡。

图3-3 荷载试验装置试验开始前,应保持试验土层的天然湿度和原状结构,并在试坑底部铺设约200mm厚的粗、中砂层找平。

当测试土层为软塑、流塑状态的黏性土或饱和松散砂土时,荷载板周围应铺设200~300mm厚的原土作为保护层。

当试验标高低于地下水位时,应先将水疏干或降至试验标高以下,并铺设垫层,待水位恢复后进行试验。

加载方法视具体条件采用重块或液压千斤顶。

图3-3为液压千斤顶加载装置示意图。

试验的加荷标准应符合下列要求:加荷等级应不小于8级,最大加载量不应少于荷载的2倍。

每级加载后,按间隔10、10、10、15、15min,以后为每隔30min读一次沉降量,当连续2h内,每小时的沉降量小于0.1mm时,则认为已趋于稳定,可加下一级荷载。

第一级荷载(包括设备重量)宜接近于开挖试坑所卸除土的重量(其相应的沉降量不计),其后每级荷载增量,对较松软土采用10~25KPa;对较坚硬土采用50KPa。

并观测累计荷载下的稳定沉降量S(mm)。

直至地基土达到极限状态,即出现下列情况之一时终止加载:(1)荷载板周围的土有明显侧向挤出;(2)荷载P增加很小,但沉降量s却急剧增大,荷载—沉降(P—S)曲线出现陡降段;(3)在某一级荷载下,24h内沉降速率不能达到稳定标准;(4)沉降量与承压板宽度或直径之比(s/b)大于或等于0.06。

满足前三种情况之一时,其对应的前—级荷载定为极限荷载。

图3-4 荷载试验P—S曲线根据试验观测记录,可以绘制承压板底面应力与沉降量的关系曲线,即P—S曲线,如图3-4所示。

从图中可以看出,承压板的沉降量随应力(或称压力)的增大而增加,p-s曲线分为三个阶段:①oa为直线段,荷载较小时,p与s呈直线变化;②ab为曲线段,随着荷载增加,沉降速率也增加,地基产生局部剪切破坏;③bc为陡降段,s急剧增加,地基土达到破坏,称为破坏阶段。

相关文档
最新文档