2020年湖北省咸宁市通城县九年级第一次调研数学试题(附带详细解析)
2020届初三中考数学一诊联考试卷含答案解析 (湖北)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.我们规定:a*b=,则下列等式中对于任意实数 a、b、c 都成立的是()①a+(b*c)=(a+b)*(a+c)②a*(b+c)=(a+b)*c③a*(b+c)=(a*b)+(a*c)④(a*b)+c= +(b*2c)A.①②③B.①②④C.①③④D.②④2.一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.3.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.116B.12C.38D.9164.有一首《对子歌》中写到“天对地,雨对风,大陆对长空”,现有四张书签,除正面写上“天”“地”“雨”“风”四个字外其他均无区别.从这四张书签中随机抽取两张,则抽到的书签正好配成“对子”的概率是()A.12B.13C.14D.165.如图,AB是⊙O的弦,CD是⊙O的直径,CD=15,CD⊥AB于M,如果sin∠ACB=,则AB=()A.24B.12C.9D.66.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.正方形D.菱形7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发, 沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小9.若关于x 的分式方程21133x m x x--=--的解为正数,且关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,则符合条件的所有整数m 的取值之和为( ) A .﹣7 B .﹣9 C .﹣12 D .﹣1410.下列命题中是真命题的是( )A .三角形的外角等于与它不相邻的两内角之和B .顺次连接任意四边形各边中点所得的四边形是矩形C.三角形的外心到三角形三边的距离相等D.对角线相等且互相垂直的四边形是正方形二、填空题(共4题,每题4分,共16分)11.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.若12ADAC=,则AFFG=_____.12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.13.市政府为了解决市民看病难的问题,决定下调药品的价格。
湖北咸宁2019-2020学年九年级数学中考一模试卷(含答案)

湖北咸宁2019-2020学年九年级数学中考一模试卷(含答案)一、单选题1.﹣2 的倒数是()A. 2B. ﹣3C. ﹣D.【答案】C【考点】有理数的倒数2.下列说法中正确的是()A. 带根号的数是无理数B. 无理数不能在数轴上表示出来C. 无理数是无限小数D. 无限小数是无理数【答案】C【考点】无理数的认识3.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是( )A. α+β=180°B. α+β=90°C. β=3αD. α﹣β=90°【答案】 D【考点】平行线的判定与性质4.下列计算正确的是( )A. a3+a2=a5B. a3•a2=a5C. (2a2)3=6a6D. a6÷a2=a3【答案】B【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,积的乘方5.以下问题,不适合普查的是()A. 了解一批灯泡的使用寿命B. 学校招聘教师,对应聘人员的面试C. 了解全班学生每周体育锻炼时间D. 进入地铁站对旅客携带的包进行的安检【答案】A【考点】全面调查与抽样调查6.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图7.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】C【考点】轴对称图形8.将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为()A. y=(x﹣2)2+1B. y=x2+1C. y=(x+1)2+1D. y=(x﹣1)2【答案】B【考点】二次函数图象的几何变换9.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③△ABD是等腰三角形;④点D到直线AB的距离等于CD的长度.A. 1B. 2C. 3D. 4【答案】 D【考点】角平分线的性质,等腰三角形的判定,作图—基本作图10.如图图中,不能用来证明勾股定理的是()A. B. C. D.【答案】 D【考点】勾股定理的证明二、填空题11.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为________千米.【答案】1.18×105【考点】科学记数法—表示绝对值较大的数12.填空:(1)方程x+ 的根是10,则另一个根是________.(2)如果方程有等值异号的根,那么m=________.(3)如果关于x的方程,有增根x=1,则k=________.(4)方程的根是________.【答案】(1)8(2)m≠±1,m=,c≠0(3)3(4)±2【考点】解分式方程13.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是________.【答案】【考点】列表法与树状图法14.CD为⊙O的直径,弦AB⊥CD于点E,CD=10,AB=8,则tan∠DAE=________.【答案】2或【考点】垂径定理,锐角三角函数的定义,相交弦定理15.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD 折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为________.【答案】或【考点】翻折变换(折叠问题),相似三角形的判定与性质三、解答题16.如果关于x的不等式组无解,则a的取值范围是________.【答案】【考点】解一元一次不等式组17.先化简,再求值:(x﹣2+ )÷ ,其中x=﹣.【答案】原式===2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【考点】利用分式运算化简求值18.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有________人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【答案】(1)100(2)解:喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)解:选择“唱歌”的学生有:1200× =480(人)(4)解:根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是=.【考点】用样本估计总体,扇形统计图,条形统计图,列表法与树状图法19.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,点P从点C开始沿射线CA方向以1cm/s的速度运动;同时,点Q也从点C开始沿射线CB方向以3cm/s的速度运动.(1)几秒后△PCQ的面积为3cm2?此时PQ的长是多少?(结果用最简二次根式表示)(2)几秒后以A、B、P、Q为顶点的四边形的面积为22cm2?【答案】(1)解:设t秒后△PCQ的面积为3平方厘米,则有PC=t cm,CQ=3t cm,依题意,得:t×3t=3,(舍去)由勾股定理,得:PQ=答:秒后△PCQ的面积为3平方厘米,此时PQ的长是(2)解:① 当P在线段AC上,Q在线段BC上时,S四边形APQB= S△ABC﹣S△PQC,得(舍去)② 当P在线段AC上,Q在线段BC延长线上时,S四边形APBQ= S△AQC﹣S△PBC=,得③ 当P在线段AC的延长线上,Q在线段BC延长线上时,S四边形ABQP= S△PQC﹣S△ABC=(不符合题意,舍去),(或者得,,都不符合题意,舍去)综上:或答,经过秒或秒,以A、B、P、Q为顶点的四边形的面积为22cm2【考点】几何图形的动态问题,一元二次方程的实际应用-几何问题20.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10),过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣4t=2t,解得t=.∴当t=秒时,四边形AEFD为菱形.(2)解:①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=40﹣4t,即40﹣4t=t,解得t=8;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣4t=4t,解得t=5.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=8或5秒时,△DEF为直角三角形.【考点】平行四边形的判定与性质,菱形的判定,几何图形的动态问题21.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)求△AOB的面积.(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.【答案】(1)解:把A(2,1)代入y=,得:m=2,∴反比例函数的解析式为y=,把B(﹣1,n)代入y=,得:n=﹣2,即B(﹣1,﹣2),将点A(2,1)、B(﹣1,﹣2)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=x﹣1(2)解:在一次函数y=x﹣1中,令y=0,得:x﹣1=0,解得:x=1,则S△AOB=×1×1+ ×1×2=(3)解:由图象可知,当x>2或﹣1<x<0时,一次函数的值大于反比例函数的值.【考点】待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题22.如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O 于点E,交CD的延长线于点B.(1)求证:直线CD是⊙O的切线;(2)如果D点是BC的中点,⊙O的半径为3cm,求的长度.(结果保留π)【答案】(1)证明:∵AC是⊙O切线,∴OA⊥AC,∴∠OAC=90°,∵CO平分∠AOD,∴∠AOC=∠COD,在△AOC和△DOC中,∴△AOC≌△DOC,∴∠ODC=∠OAC=90°,∴OD⊥CD,∴直线CD是⊙O的切线(2)解:∵OD⊥BC,DC=DB,∴OC=OB,∴∠OCD=∠B=∠ACO,∵∠B+∠ACB=90°,∴∠B=30°,∠DOE=60°,∴的长度==π.【考点】切线的判定,弧长的计算23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【答案】(1)解:设AB=x米,可知BC=(32-x)米,根据题意得:x(32-x)=252.解这个方程得:x1=18,x2=14,答:x的长度18m或14m.(2)解:设周围的矩形面积为S,则S=x(32-x)=-(x-16)2+256.∵在P处有一棵树与墙CD,AD的距离是17m和6米,∴6≤x≤15.= -(15-16)2+256=255(平方米).∴当x=15时,S最大答:花园面积的最大值是255平方米.【考点】一元二次方程的实际应用-几何问题,二次函数的实际应用-几何问题24.已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ =2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.(1)如图1求证:AP=BQ;(2)如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;(3)设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.【答案】(1)证明:如图1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ(2)解:如图2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴PQ=2 ,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH 中,AH= =∴PA=AH﹣PH= -(3)解:结论:EP+EQ= EC理由:如图3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC= EN,∴EP+EQ= EC【考点】全等三角形的判定与性质,勾股定理,旋转的性质,等腰直角三角形25.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【答案】(1)解:由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3(2)解:①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),=S△ACD+S△FCD= ×2×3+ ×2×(4﹣3)=4;∴S四边形ACFD②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t= ,当t= 时,﹣t2+2t+3= ,当t= 时,﹣t2+2t+3= ,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【考点】待定系数法求二次函数解析式,二次函数与一次函数的综合应用,二次函数的实际应用-几何问题。
2020届初三中考数学一诊联考试卷含参考答案 (湖北)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则BG的长为()A.1 B.2 C.1.5 D.2.52.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.2﹣3=﹣63.如图,D 、E 分别是ABC ∆的边AB 、BC 上的点,DE AC ,AE 、CD 相交于点O ,则下列结论一定正确的是( )A .BD EO AD AO =B .CO CE CD CB =C .AB CO BD OD = D .BD OD BE OE= 4.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .5.如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD=6,则菱形ABCD 的面积是( )A .6B .12C .24D .486.下列运算正确的是( )A 4=±B .(﹣3ab 3)2=6a 2b 5C .2a -2=214a D .5325533ab ab b ÷= 7.如图,A ,B 两地被池塘隔开,小明先在直线AB 外选一点C ,然后步测出AC,BC的中点M,N,并步测出MN的长为6.5m.由此,他可以知道A.B间的距离为()A.12m B.12.5m C.13m D.13.5m8.如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A.60°B.50°C.40°D.30°9.已知点 A 在函数y1=-1x(x>0)的图象上,点 B 在直线 y2=kx+1+k(k 为常数,且k≥0)上.若 A,B 两点关于原点对称,则称点 A,B 为函数 y1,y2 图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对10.下列几何体中,俯视图...为三角形的是()A.B.C.D.二、填空题(共4题,每题4分,共16分)11.已知()211m y m x +=-是关于x 的二次函数,则m=_______.12.在平面直角坐标系中,△ABC 的一个顶点是A (2,3),若以原点O 为位似中心,画三角形ABC 的位似图形△A ′B ′C ′,使△ABC 与△A ′B ′C ′的相似比为23,则A ′的坐标为_____.13.如图,在平面直角坐标系中,抛物线y =ax 2﹣2ax +3(a 为常数且a ≠0)与y 轴交于点人过点A 作AC ∥x 轴交抛物线于点C ,以AC 为对角线作菱形ABCD ,若菱形的顶点B 恰好落在x 轴上,则菱形ABCD 的面积为_____.14.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,点F 在边AC 上,并且CF =1,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_____.三、解答题(共6题,总分54分)15.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x(分)之间的关系如图所示.(1)甲的速度为 千米/分,甲乙相遇时,乙走了 分钟.乙的速度为 千米/分.(2)求从乙出发到甲乙相遇时,y 与x 的函数关系式.(3)乙到达A 地时,甲还需 分钟到达终B 地.16.如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点A 、B ,与y 轴交于点C ,直线y =x +4经过点A 、C ,点P 为抛物线上位于直线AC 上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP //AO 时,求∠PAC 的正切值;(3)当以AP 、AO 为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P 的坐标.17.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD ,设AD =m ,DC =n ,BE =p ,DE =q .(1)若tanC=2,BE=3,CE=2,求点B到CD的距离;(2)若m=n, B D=,求四边形ABCD的面积.18.“莓好河南,幸福家园”,2019年某省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x(千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)求y1、y2与x之间的函数关系式;(2)请在图中画出y1与x之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园。
湖北省咸宁市2019-2020学年中考一诊数学试题含解析

湖北省咸宁市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知反比例函数2y x-=,下列结论不正确的是( ) A .图象经过点(﹣2,1)B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >22.平面上直线a 、c 与b 相交(数据如图),当直线c 绕点O 旋转某一角度时与a 平行,则旋转的最小度数是( )A .60°B .50°C .40°D .30°3.若a 与5互为倒数,则a=( ) A .15B .5C .-5D .15-4.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC V 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE V ∽DBF V .证明:①又DF//AC Q ,DE //BC Q ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴V ∽DBF V .A .③②④①B .②④①③C .③①④②D .②③④①5.下列事件是确定事件的是( ) A .阴天一定会下雨B .黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C .打开电视机,任选一个频道,屏幕上正在播放新闻联播D .在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书A.100°B.80°C.60°D.50°7.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%8.在实数﹣3.5、、0、﹣4中,最小的数是()A.﹣3.5 B.C.0 D.﹣49.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°10.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣711.|﹣3|=()12.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .112二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.14.在直角三角形ABC 中,∠C=90°,已知sinA=,则cosB=_______. 15.-3的倒数是___________16.计算2(32) 的结果等于______________________.17.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m ,两侧离地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞的高度为_______m .(精确到0.1m )18.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(6分)如图,在平面直角坐标系中,矩形OCDE 的三个顶点分别是C (3,0),D (3,4),E (0,4).点A 在DE 上,以A 为顶点的抛物线过点C ,且对称轴x =1交x 轴于点B .连接EC ,AC .点P ,Q 为动点,设运动时间为t 秒.(1)求抛物线的解析式.(2)在图①中,若点P 在线段OC 上从点O 向点C 以1个单位/秒的速度运动,同时,点Q 在线段CE 上从点C 向点E 以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t 为何值时,△PCQ 为直角三角形?(3)在图②中,若点P 在对称轴上从点A 开始向点B 以1个单位/秒的速度运动,过点P 做PF ⊥AB ,交AC 于点F ,过点F 作FG ⊥AD 于点G ,交抛物线于点Q ,连接AQ ,CQ .当t 为何值时,△ACQ 的面积最大?最大值是多少?21.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).22.(8分)如图,分别延长▱ABCD 的边CD AB ,到E F ,,使DE BF =,连接EF ,分别交AD BC ,于G H ,,连结CG AH.,求证:CG //AH .23.(8分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,求该抛物线的解析式;求梯形COBD的面积.24.(10分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤初一 1 2 3 6初二0 1 10 1 8(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一84 88.5初二84.2 74(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性). 25.(10分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.2,26.(12分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.27.(12分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】【详解】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-2<0,图象在第二、四象限,故本选项正确;C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;D选项:当x>0时,y<0,故本选项错误.【分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论. 【详解】解:∵∠1=180°﹣100°=80°,a ∥c , ∴∠α=180°﹣80°﹣60°=40°. 故选:C .【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补. 3.A 【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案. 详解:根据题意可得:5a=1,解得:a=15, 故选A . 点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键. 4.B 【解析】 【分析】根据平行线的性质可得到两组对应角相等,易得解题步骤; 【详解】证明:DE //BC Q ②,ADE B ∠∠∴=④,①又DF//AC Q , A BDF ∠∠∴=③,ADE ∴V ∽DBF V .故选B .试题分析:找到一定发生或一定不发生的事件即可.A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选D.考点:随机事件.6.B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B7.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.【点睛】掌握实数比较大小的法则9.A【解析】【分析】如图,过点C作CD∥a,再由平行线的性质即可得出结论.【详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.10.C先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.11.C【解析】【分析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.12.C【解析】【分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为1 36,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-4<x<1将P (1,1)代入解析式y 1=mx ,先求出m 的值为12,将Q 点纵坐标y=1代入解析式y=12x ,求出y 1=mx 的横坐标x=-4,即可由图直接求出不等式kx+b >mx >-1的解集为y 1>y 1>-1时,x 的取值范围为-4<x <1.故答案为-4<x <1.点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x 轴的交点坐标是解题的关键. 14.. 【解析】试题分析:解答此题要利用互余角的三角函数间的关系:sin (90°-α)=cosα,cos (90°-α)=sinα. 试题解析:∵在△ABC 中,∠C=90°, ∴∠A+∠B=90°, ∴cosB=sinA=.考点:互余两角三角函数的关系. 15.13- 【解析】 【分析】乘积为1的两数互为相反数,即a 的倒数即为1a,符号一致 【详解】∵-3的倒数是13- ∴答案是13- 16.743+ 【解析】 【分析】根据完全平方式可求解,完全平方式为()2222a b a ab b ±=±+ 【详解】2223232322743()()=++=+【点睛】此题主要考查二次根式的运算,完全平方式的正确运用是解题关键 17.9.1建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标 【详解】如图,以地面为x 轴,门洞中点为O 点,画出y 轴,建立直角坐标系 由题意可知各点坐标为A (-4,0)B (4,0)D (-3,4) 设抛物线解析式为y=ax 2+c (a≠0)把B 、D 两点带入解析式 可得解析式为2464y 77x =-+,则C (0,647) 所以门洞高度为647m≈9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键 18.49【解析】 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案. 【详解】 画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况, ∴两次摸出的球都是红球的概率是49, 故答案为49. 【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.规定日期是6天.本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解. 【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭解方程可得x=6,经检验x=6是分式方程的解. 答:规定日期是6天.20.(1)y =﹣x 2+2x+3;(2)当t =1511或t =913时,△PCQ 为直角三角形;(3)当t =2时,△ACQ 的面积最大,最大值是1. 【解析】 【分析】(1)根据抛物线的对称轴与矩形的性质可得点A 的坐标,根据待定系数法可得抛物线的解析式; (2)先根据勾股定理可得CE ,再分两种情况:当∠QPC =90°时;当∠PQC =90°时;讨论可得△PCQ 为直角三角形时t 的值;(3)根据待定系数法可得直线AC 的解析式,根据S △ACQ =S △AFQ +S △CPQ 可得S △ACQ =1FQ AD 2⋅=﹣14(t ﹣2)2+1,依此即可求解. 【详解】解:(1)∵抛物线的对称轴为x =1,矩形OCDE 的三个顶点分别是C (3,0),D (3,4),E (0,4),点A 在DE 上, ∴点A 坐标为(1,4),设抛物线的解析式为y =a (x ﹣1)2+4,把C (3,0)代入抛物线的解析式,可得a (3﹣1)2+4=0,解得a =﹣1.故抛物线的解析式为y =﹣(x ﹣1)2+4,即y =﹣x 2+2x+3; (2)依题意有:OC =3,OE =4,∴CE 5, 当∠QPC =90°时,∵cos ∠QPC ==PC OCCQ CE, ∴3325-=t t ,解得t =1511;当∠PQC =90°时,∵cos ∠QCP ==CQ OCCP CE, ∴2335=-t t ,解得t =913. ∴当t =1511或 t =913时,△PCQ 为直角三角形;(3)∵A (1,4),C (3,0), 设直线AC 的解析式为y =kx+b ,则有:k b 43k b 0+=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩.故直线AC 的解析式为y =﹣2x+2. ∵P (1,4﹣t ),将y =4﹣t 代入y =﹣2x+2中,得x =1+2t, ∴Q 点的横坐标为1+2t ,将x =1+2t 代入y =﹣(x ﹣1)2+4 中,得y =4﹣24t .∴Q 点的纵坐标为4﹣24t ,∴QF =(4﹣24t )﹣(4﹣t )=t ﹣24t ,∴S △ACQ =S △AFQ +S △CFQ =12FQ•AG+12FQ•DG , =12FQ (AG+DG ), =12FQ•AD , =12×2(t ﹣24t ),=﹣14(t ﹣2)2+1, ∴当t =2时,△ACQ 的面积最大,最大值是1. 【点睛】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用. 21.(1)23;(2)这两个数字之和是3的倍数的概率为13. 【解析】 【分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率. 【详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个, ∴指针所指扇形中的数字是奇数的概率为23, 故答案为23; (2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种, 所以这两个数字之和是3的倍数的概率为39=13. 【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式. 22.证明见解析 【解析】分析:根据平行四边形的性质以及已知的条件得出△EGD 和△FHB 全等,从而得出DG=BH ,从而说明AG 和CH 平行且相等,得出四边形AHCG 为平行四边形,从而得出答案. 详解:证明:在▱ABCD 中,AB//CD AD//CB AD CB ,,=,E F EDG DCH FBH ,∠∠∠∠∠∴===,又 DE BF =,EGD ∴V ≌()FHB AAS V ,DG BH ∴=,AG HC ∴=,又AD//CB Q ,∴四边形AGCH 为平行四边形, AH //CG ∴.点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG 为平行四边形.23.(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形【解析】 【分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积. 【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1. ∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2, ∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1. ∵A (-1,0),∴B (2,0),即OB=2. ∴()OCDA 133S 62+⨯==梯形.24.(1)1,2,19;(2)初一年级掌握生态环保知识水平较好. 【解析】 【分析】(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格; (2)根据平均数、众数、中位数的统计意义回答. 【详解】(1)补全表格如下: 整理、描述数据:初一成绩x 满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个. 故答案为:1.分析数据:在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2. 故答案为:19,2.(2)初一年级掌握生态环保知识水平较好.因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.【点睛】本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.25.凉亭P到公路l的距离为273.2m.【解析】【分析】分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【详解】详解:作PD⊥AB于D.设BD=x,则AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD,即31+x),解得:x≈273.2,∴PD=273.2.答:凉亭P到公路l的距离为273.2m.【点睛】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.26.(1)详见解析(2)1 4【解析】【分析】设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为a、b,其余两把钥匙分别为m、n,根据题意,可以画出树形图,再根据概率公式求解即可.【详解】(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为a、b,其余两把钥匙分别为m、n,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果;(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P(一次打开锁)=21 84 =.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.27.(1)证明见解析;(2)9﹣3π【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD 得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD 为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.。
2020年中考数学第一次模拟考试(湖北) (全解全析)

【解析】延长 CM 交 AD 于点 G ,
∵将四边形 AEFB 沿 EF 翻折,∴ AE ME ,A EMC ,BF FN ,B N , AB MN ,
数学 第 3页(共Байду номын сангаас8页) 3
∵四边形 ABCD 是菱形,∴ AB BC CD AD , B D , A B 180 ,∵
18
,∴DE=
17 18
,∵C(2,0),AC⊥OC,反比例函数
y=
k x
(k>0)
k
在第一象限内的图象过点 A,且与 BC 交于点 D,∴A(2,
),∵点 D 的横坐标为 3,∴D(3, k
),
2
3
∴DE=
k
–
k
,即 17
=
k
–
k
17
,解得 k= ,故选
D.
2 3 18 2 3
3
10.【答案】B
【解析】通过观察可得:第①个图形中有11 1 11 1 个小正方体;第②个图形中有
∵在△ADE 与△CBF 中,AD=BC,∠ADE=∠CBF,DE=BF,
∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.
19.【解析】(1)样本容量为 6÷12%=50;
(2)14 岁的人数为 50×28%=14、16 岁的人数为 50–(6+10+14+18)=2,
12 6 1310 1414 1518 16 2
11.【答案】 x 4
【解析】由题意,得 x–4≠0,解得:x≠4,故答案为: x 4 .
3
12.【答案】
4
【解析】根据题意,从有 4 根细木棒中任取 3 根,有 2、3、4;3、4、5;2、3、5;2、4、5,共 4 种
湖北省咸宁市2020年第一次中考模拟考试数学试卷

湖北省咸宁市2020年第一次中考模拟考试数学试卷一、选择题1.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A.1B.2C.3D.42.如图,点是边长为1的菱形对角线上的一个动点,点,分别是边,的中点,则的最小值是( )A. B.1 C. D.23.如图,正方形ABCD 内接于圆O ,4AB =,则图中阴影部分的面积是( ).A .416π-B .3216π-C .1632π-D .816π-4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以O 为圆心,任意长为半径所画的弧; (2)弧②是以P 为圆心,任意长为半径所画的弧; (3)弧③是以A 为圆心,任意长为半径所画的弧; (4)弧④是以P 为圆心,任意长为半径所画的弧; 其中正确说法的个数为( ) A .4B .3C .2D .15.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =3,则△ACE 的面积为( )A .1B .3C .2D .236.下列运算中正确的是( ) A .236x x x ⋅= B .238()x x =C .222()xy x y -=-D .633x x x ÷=7.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( )A .若这5次成绩的中位数为8,则x =8B .若这5次成绩的众数是8,则x =8C .若这5次成绩的方差为8,则x =8D .若这5次成绩的平均成绩是8,则x =8 8.已知反比例函数y =﹣8x,下列结论中错误的是( ) A.图象在二,四象限内 B.图象必经过(﹣2,4) C.当﹣1<x <0时,y >8D.y 随x 的增大而减小9.在ABC ∆中,E 、F 是BC 边上的三等分点,BM 是AC 边上的中线,AE 、AF 分BM 为三段的长分别是x 、y 、z ,若这三段有x y z >>,则::x y z 等于( )A .3:2:1B .4:2:1C .5:2:1D .5:3:210.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,以点A 为圆心作圆,如果圆A 与线段BC 没有公共点,那么圆A 的半径r 的取值范围是( )A .5≥r≥3B .3<r <5C .r =3或r =5D .0<r <3或r >511.下列水平放置的四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个12.已知AB =10,C 是射线AB 上一点,且AC =3BC ,则BC 的长为( )A.2.5B.103C.2.5或5D.103或5 二、填空题13.平面直角坐标系xOy 中,若P (m ,m 2+4m+3),Q (2n ,4n ﹣8)是两个动点(m ,n 为实数),则PQ长度的最小值为_____.14.在△ABC 中,AB =AC ,过点A 作AD ⊥AC 交射线CB 于点D ,若△ABD 是等腰三角形,则∠C 的大小为_____度.15.如图,在由边长都为1的小正方形组成的网格中,点A ,B ,C 均为格点,点P ,Q 分别为线段AB ,BC 上的动点,且满足AP BQ =. (1)线段AB 的长度等于__________;(2)当线段AQ CP +取得最小值时,请借助无刻度直尺在给定的网格中画出线段AQ 和CP ,并简要说明你是怎么画出点Q ,P 的:_______________________.16.分解因式:x 2﹣x=_____.17.如图,在圆心角为120°的扇形OAB 中,半径OA =2,C 为»AB 的中点,D 为OA 上任意一点(不与点O 、A 重合),则图中阴影部分的面积为____.18.已知三角形两边的长分别为5、2,第三边长为奇数,则第三边的长为_____. 三、解答题19.如图,在△ABC 中,∠ACB =90°,AC =4,BC =3,点D 为边AB 的中点.点P 从点A 出发,沿AC 方向以每秒1个单位长度的速度向终点C 运动,同时点Q 从点C 出发,以每秒2个单位长度的速度先沿CB 方向运动到点B ,再沿BA 方向向终点A 运动,以DP 、DQ 为邻边构造▱PEQD ,设点P 运动的时间为t 秒.(1)设点Q 到边AC 的距离为h ,直接用含t 的代数式表示h ; (2)当点E 落在AC 边上时,求t 的值;(3)当点Q 在边AB 上时,设▱PEQD 的面积为S (S >0),求S 与t 之间的函数关系式; (4)连接CD ,直接写出CD 将▱PEQD 分成的两部分图形面积相等时t 的值.20.某水果批发商经营甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系y 0.2x =甲,乙种水果的销售利润y 乙(万元)与进货量x (吨)之间的函数关系如图所示. (1)求y 乙(万元)与x (吨)之间的函数关系式;(2)如果该批发商准备进甲、乙两种水果共.........10..吨.,设乙种水果的进货量为t 吨,请你求出这两种水果所获得的销售利润总和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润总和最大,最大利润是多少?21.我市今年中考体育测试,男生必考项目是1000米跑,男生还须从以下六个项目中任选两个项目进行考核:①坐位体前屈、②立定跳远、③掷实心球、④跳绳、⑤50m、⑥引体向上.(1)男生在确定体育选项中所有可能选择的结果有种;(2)已知某班男生只在①坐位体前屈、②立定跳远、④跳绳中任选两项,请你用列表法或画树状图法,求出两名男生在体育测试中所选项目完全相同的概率.22.甲、乙两家商场平时以同样价格出售相同的商品.春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中不超过200元的不打折,超过200元后的价格部分打7折.设商品原价为x元,顾客购物金额为y元.(I).根据题意,填写下表:商品原价100 150 250 …甲商场购物金额(元) 80 …乙商场购物金额(元) 100 …(Ⅱ).分别就两家商场的让利方式写出y关于x的函数关系式;(Ⅲ).若x≥500时,选择哪家商场去购物更省钱?并说明理由.23.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=23AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.24.在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.(1)如图①,在△ABC 中,∠A =2∠B ,且∠A =60°.求证:a 2=b (b+c )(2)如图②,在△ABC 中,最大角∠A 是最小角∠C 的2倍,且c =7,b =8,求a 的长.(3)若一个三角形的一个内角等于另一个内角的2倍,我们则称这样的三角形为“倍角三角形”.问题(1)中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC ,如图③,∠A =2∠B ,关系式a 2=b (b+c )是否仍然成立?并证明你的结论.25.世界500强H 公司决定购买某演唱会门票奖励部分优秀员工,演唱会的购票方式有以下两种, 方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元(其中总费用=广告赞助费+门票费);方式二:如图所示,设购买门票x 张,总费用为y 万元 (1)求用购票“方式一”时y 与x 的函数关系式;(2)若H 、A 两家公司分别釆用方式一、方式二购买本场演唱会门票共400张,且A 公司购买超过100张,两公司共花费27.2万元,求H 、A 两公司各购买门票多少张?【参考答案】一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B D C B D D D D D BC二、填空题 13.14.30或60.15.取格点,,,D E F G .连接,BD EF ,它们相交于点T ,连接,AT CG ,分别交,BC AB 于点,Q P ,则线段AQ 和CP 即为所求. 16.x (x ﹣1) 17.23π.18. 三、解答题19.(1)当0<t≤32时,h =2t ,当32<t≤4时,h =61655t -+;(2)3t 4=;(3)当0≤t<114时,2633510S t t =-+;当114<t≤4时,2633510S t t =-;(4)t 的值为1211或2411. 【解析】 【分析】(1)分点Q 在线段BC ,线段AB 上两种情形分别求解即可. (2)利用平行线等分线段定理解决问题即可.(3)分点Q 在线段BD ,在线段AD 上两种情形分别求解即可.(4)当点E 落在直线CD 上时,CD 将▱PEQD 分成的两部分图形面积相等.有两种情形:①当点E 在CD 上,且点Q 在CB 上时 (如图3所示),②当点E 在CD 上,且点Q 在AB 上时(如图4所示),分别求解即可解决问题. 【详解】解:(1)当0<t≤32时,h =2t . 当32<t≤4时,h =3﹣35(2t ﹣3)=61655t -+. (2)当点E 落在AC 边上时,DQ ∥AC , ∵AD =DB , ∴CQ =QB , ∴2t =34, ∴t =34. (3)①如图1中,当0≤t<114时,作PH ⊥AB 于H ,则PH =PA•sinA=311,52t DQ =﹣2t ,∴S =2311633252510t t t t ⎛⎫⋅-=-+ ⎪⎝⎭. ②如图2中,当114<t≤4时,同法可得2311633252510S t t t t ⎛⎫=⋅-=-⎪⎝⎭.(4)当点E落在直线CD上时,CD将▱PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,易证Rt△PGE≌Rt△DHQ,∴PG=DH=2,∴CG=2﹣t,GE=HQ=CQ﹣CH=2t﹣32,∵CD=AD,∴∠DCA=∠DAC∴在Rt△CEG中,tan∠ECG=323224tGECG t-==-,∴t=1211.②当点E在CD上,且点Q在AB上时(如图4所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF=12PC=42t-,PE=DQ=112﹣2t,∴在Rt△PEF中,cos∠EPF=44211522tPFPE t-==-,∴t=24 11综上所述,满足要求的t的值为1211或2411.【点睛】本题考查四边形综合题、平行四边形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论,学会利用参数构建方程解决问题,属于中考压轴题.20.(1)2y0.1x 1.4x=-+乙;(2)甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润总和最大,最大利润是5.6万元.【解析】【分析】(1)根据题意列出二元一次方程组,求出a、b的值即可求出函数关系式的解.(2)由题意可得2W y y0.210t(0.1t 1.4t)=+=-+-+甲乙(),用配方法化简函数关系式即可求出w的最大值.【详解】(1)根据图象,可设2y ax bx=+乙(其中0a≠,a,b为常数),由题意,得解得1.342 2.4.a ba b,+=⎧⎨+=⎩解得=-0.1b 1.4.a⎧⎨=⎩,∴2y0.1x 1.4x=-+乙.(2)∵乙种水果的进货量为t吨,则甲种水果的进货量为10t-()吨,由题意,得22W y y0.210t(0.1t 1.4t)0.1t 1.2t2=+=-+-+=-++乙甲().将函数配方为顶点式,得2W0.1(t6) 5.6=--+.∵0.10-<,∴抛物线开口向下.∵0t10<<,∴6t=时,W有最大值为5.6.∴1064-=(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润总和最大,最大利润是5.6万元.【点睛】本题考查学生利用二次函数解决实际问题的能力,注意二次函数的最大值往往要通过顶点坐标来确定.21.(1)30;(2)16.【解析】【分析】(1)画树状图可得所有等可能结果;(2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(1)根据题意画图如下:一共有30种不同的情况,故答案为:30;(2)画树状图如下:由树状图知,共有18种等可能结果,其中两名男生在体育测试中所选项目完全相同的有3种结果, 所以两名男生在体育测试中所选项目完全相同的概率为31186=. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(Ⅰ)120,150,200,235;(Ⅱ)甲商场0.8y x =(0)x ≥;乙商场y=(0200)0.760(200)x x x x ≤≤⎧⎨+>⎩;(Ⅲ)当600x =时,选择这两家商场一样合算;当x 600>时,选择乙商场更省钱;当500x<600≤时,选择甲商场更省钱 【解析】 【分析】(Ⅰ)根据题意分别求出购物金额即可;(Ⅱ)根据题意可得y 1的解析式,分别讨论0200x ≤≤时和x>200时,根据题意可得y 2的解析式;(Ⅲ)设顾客甲商场与乙商场的购物金额的差为y 元,得出x≥500时y 关于x 的解析式,根据一次函数的性质解答即可. 【详解】(Ⅰ)150×80%=120(元), 150×100%=150(元), 250×80%=200(元),200+(250-200)×70%=235(元), 故答案为:120,150,200,235 (Ⅱ)甲商场()0.80y x x =≥; 乙商场:当0≤x≤200时,y=x ,当x>200时,y=200+(x-200)×70%=0.7x+60,∴y=()02000.760(200)x x x x ⎧≤≤⎨+>⎩(Ⅲ)设顾客甲商场与乙商场的购物金额的差为y 元. ∵x 500≥,()y 0.8x 0.7x 60∴=-+,即y 0.1x 60=-.当y=0时,即0.1x 600-=,得600x =.∴当600x =时,选择这两家商场一样合算.∵0.10>,∴y 随x 的增大而增大.∴当600x >时,有0y >,选择乙商场更省钱;当500x<600≤时,有0y <,选择甲商场更省钱 【点睛】本题考查一次函数的实际应用,熟练掌握一次函数的性质是解题关键.23.(1)证明见解析;(2)tan∠D=23;(3)AB=2028119.【解析】【分析】(1)如图,过点O作OF⊥AB,,求出OC=OF,证明OF为⊙O半径,且OF⊥AB,即可求解;(2)连接CE,根据∠ACE=∠D,且∠A=∠A,求出△ACE∽△ADC,可得23AC CEAD CD==,即可求解;(3)根据△ACE∽△ADC,得AC AEAD AC=,根据AO=AO,OC=OF,证明Rt△AOF≌Rt△AOC,求出AF=AC=12,根据∠B=∠B,∠OFB=∠ACB=90°,证明△OBF∽△ABC,可得OF OB BFAC AB BC==,求出BF,即可求解.【详解】证明:(1)如图,过点O作OF⊥AB,∵AO平分∠BAC,OF⊥AB,∠ACB=90°∴OC=OF,∴OF为⊙O半径,且OF⊥AB∴AB是⊙O切线.(2)连接CE∵DE是直径∴∠DCE=90°∵∠ACB=90°∴∠DCE=∠ACB∴∠DCO=∠ACE∵OC=OD∴∠D=∠DCO∴∠ACE=∠D,且∠A=∠A∴△ACE∽△ADC∴2233ADAC CEAD CD AD===∴tan∠D=CECD=23(3)∵△ACE∽△ADC∴AC AE AD AC=∴AC2=AD(AD﹣10),且AC=23AD∴AD=18∴AC=12∵AO=AO,OC=OF∴Rt△AOF≌Rt△AOC(HL)∴AF=AC=12∵∠B=∠B,∠OFB=∠ACB=90°∴△OBF∽△ABC∴OF OB BF AC AB BC==即512125OB BFBF BO==++∴5+25=12 60512 BO BFBF OB ⎧⎨+=⎩∴BF=600 119∴AB=FA+BF=12+600119=2028119【点睛】本题考查的是圆的综合运用,熟练掌握相似三角形和全等三角形是解题的关键. 24.(1)见解析;(2)a1053)关系式a2=b(b+c)仍然成立,见解析. 【解析】【分析】(1)先证△ACB为直角三角形,知a 3,b=12c,据此可得a23)2=234c,b(b+c)=1 2c(12c+c)=234c,从而得出答案;(2)延长CA至点D,使AD=AB,连接BD,证△CBD∽△DAB得BD CDAB BD=,据此可得BD105C=∠D知a=BC=BD105(3)延长BA至D,使AD=AC=b,连结CD,证△ADC∽△CDB得AD CDCD DB=,据此可得答案.【详解】解:(1)证明:∵∠A=2∠B=60°,∴∠B=30°,则∠C=180°﹣∠A﹣∠B=90°,∴△ACB为直角三角形,在Rt△ACB中a 3,b=12c,所以a2=(32c)2=234c,b(b+c)=12c(12c+c)=234c,所以a2=b(b+c);(2)如图1,延长CA至点D,使AD=AB,连接BD,则∠D=∠ABD=12∠CAB=∠C,∴△CBD∽△DAB,∴BD CD AB BD=,∴BD2=AB•CD=7×(8+7)=105,∴BD=105,又∠C=∠D,∴a=BC=BD=105(3)对于任意的倍角△ABC,∠A=2∠B,关系式a2=b(b+c)仍然成立,如图2,延长BA至D,使AD=AC=b,连结CD,则∠CAB=2∠D,∴∠B=∠D,BC=CD=a,∴△ADC∽△CDB∴AD CD CD DB=,即b aa b c =+.所以a2=b(b+c).【点睛】本题是三角形的综合问题,解题的关键是掌握直角三角形的概念、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识点.25.(1)y=10+0.02x;(2)H、A两公司购买门票分别为270张和130张【解析】【分析】(1)方式一中,总费用=广告赞助费10+门票单价0.02×票的张数;(2)方式二中,当x>100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;设A公司购买了a张门票,则H公司购买了(400﹣a)张门票,进而根据(1)得A公司的总费用,再根据两公司共花费27.2万元,列出方程解答便可.【详解】解:(1)方式一:单位赞助广告费10万元,该单位所购门票的价格为每张0.02万元,则y=10+0.02x;(2)方式二:当x>100时,设解析式为y=kx+b.将(100,10),(200,16)代入,得10010 20016k bk b+=⎧⎨+=⎩,解得k0.06 b4=⎧⎨=⎩,所以y=0.06x+4.设A公司购买了a张门票,则H公司购买了(400﹣a)张门票,根据题意得:0,06a+4+[10+0.02(400﹣a)]=27.2,解得:a=130,∴400﹣a=270,答:H、A两公司购买门票分别为270张和130张.【点睛】本题考查了一次函数的应用,待定系数法求一次函数的解析式的运用,及一元一次方程解决实际问题的运用,在解答的过程中求出一次函数的解析式y=0.06x+4.是解答的关键,根据自变量不同的取值,对总门票费分情况进行探讨是解决本题的易错点.。
湖北省咸宁市2020版中考数学一模试卷A卷

湖北省咸宁市2020版中考数学一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2020七上·南丹月考) -(-5)的倒数是()A . 5B . –5C .D .2. (2分)估算:+3的值()A . 在5和6之间B . 在6和7之间C . 在7和8之间D . 在8和9之间3. (2分)(2020·福田模拟) 如图为某队员射击10次的成绩统计图,该队员射击成绩的众数与中位数分别是()A . 7,7B . 7,7.5C . 8,7D . 8,7.54. (2分) (2018七上·天河期末) 据统计,到2017年底,广州市的常住人口将达到14330000人,这个人口数据用科学记数法表示为()A .B .C .D .5. (2分) (2017七下·广州期中) 如图,把长方形纸片沿EF折叠,使D,C分别与D′,C′重合,若∠EFB=65°,则∠AED′等于()A .B .C .D .6. (2分)某几何体的三种视图如图所示,则该几何体是()A . 三棱柱B . 长方体C . 圆柱D . 圆锥7. (2分)若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A . a≥1B . a>1C . a≤1D . a<18. (2分)(2019·湖南模拟) 如图,在圆O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD 的中点,则AC的长是()A . 4B . 2C .D .二、填空题 (共7题;共8分)9. (1分) (2016八下·云梦期中) 若a= ,则(a﹣1)2=________.10. (1分)计算:(a+1)(a﹣1)(a2+1)(a4+1)=________.11. (1分) (2016八上·卢龙期中) 一个多边形的内角和是它的外角和的3倍,则这个多边形是________边形.12. (1分) (2017九上·平舆期末) 在平面直角坐标系中,将抛物线y=x2﹣x﹣12向上(下)或左(右)平移m个单位,使平移后的抛物线恰巧经过原点,则|m|的最小值为________.13. (2分)(2017·丽水) 如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是________;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.14. (1分)△ABC与▱DEFG按如图方式放置,点D、G分别在边AB、AC上,点E、F分别在边BC上,若BE=DE,CF=FG,则∠A的大小为________度.15. (1分) (2019八上·温州开学考) 已知直线y=-2x+2与y轴、x轴分别交于点A和B,请写出线段AB的垂直平分线的函数解析式________三、解答题: (共8题;共78分)16. (5分)(2020·萧山模拟) 已知x=-3,求代数式的值。
湖北省咸宁市2019-2020学年中考数学一模考试卷含解析

湖北省咸宁市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10122.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定3.若分式11x有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠04.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+95.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π6.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或6-=-,则括号内的数是()7.若()53A.2-B.8-C.2 D.88.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a29.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP 的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为()A.B.C.D.10.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.311.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE 交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm12.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q 从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t (s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5= D .当t=12s 时,△PBQ 是等腰三角形 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在圆心角为90°的扇形OAB 中,半径OA=1cm ,C 为»AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为_____cm 1.14.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________.15.化简:①16=_____;②2(5)-=_____;③510⨯=_____.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正方形.作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆心,大于AB 的长为半径作弧,两弧分别相交于M 、N 两点;(3)作直线MN 与⊙O 交于C 、D 两点,顺次连接A 、C 、B 、D .即四边形ACBD 为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.17.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.18.如图,如果两个相似多边形任意一组对应顶点P 、P′所在的直线都是经过同一点O ,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O 叫做位似中心,已知△ABC 与△A′B′C′是关于点O 的位似三角形,OA′=3OA ,则△ABC 与△A′B′C′的周长之比是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B .求证:△AED ≌△EBC ;当AB=6时,求CD 的长.20.(6分)已知关于x 的方程x 1+(1k ﹣1)x+k 1﹣1=0有两个实数根x 1,x 1.求实数k 的取值范围; 若x 1,x 1满足x 11+x 11=16+x 1x 1,求实数k 的值.21.(6分)综合与探究:如图,已知在△ABC 中,AB=AC ,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点()3,1C -在二次函数21332y x bx =-++的图像上. (1)求二次函数的表达式;(2)求点 A ,B 的坐标;(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.22.(8分)定义:任意两个数a ,b ,按规则c =b 2+ab ﹣a+7扩充得到一个新数c ,称所得的新数c 为“如意数”.若a =2,b =﹣1,直接写出a ,b 的“如意数”c ;如果a =3+m ,b =m ﹣2,试说明“如意数”c为非负数.23.(8分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.24.(10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.25.(10分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.26.(12分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.27.(12分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400 200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】将2098.7亿元用科学记数法表示是2.0987×1011,故选:C.点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10na 的形式,其中110a ≤<,n 是比原整数位数少1的数.2.C【解析】【分析】因为R 不动,所以AR 不变.根据三角形中位线定理可得EF=12AR ,因此线段EF 的长不变. 【详解】如图,连接AR ,∵E 、F 分别是AP 、RP 的中点,∴EF 为△APR 的中位线,∴EF= 12AR ,为定值. ∴线段EF 的长不改变.故选:C .【点睛】本题考查了三角形的中位线定理,只要三角形的边AR 不变,则对应的中位线的长度就不变. 3.C【解析】【分析】【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.4.B【解析】【分析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.5.C【分析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,∴△COD是等边三角形,∴OC=CD,正六边形的周长:圆的直径=6CD:2CD=3,故选:C.【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.6.C【解析】【分析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.7.C【解析】【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解:253-=-,故选:C.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.8.D【解析】【分析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a2+3a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.9.C【解析】【分析】先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.【详解】由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,y=12x,当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C.故选C.10.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.11.C【解析】【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【详解】∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,(cm).故选C.【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.12.D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm ,BEC 11S 40BC EF 10EF 5EF 22∆==⋅⋅=⋅⋅=, ∴EF=1.∴EF 84sin EBC BE 105∠===. (3)结论C 正确,理由如下:如图,过点P 作PG ⊥BQ 于点G ,∵BQ=BP=t ,∴2BPQ 11142y S BQ PG BQ BP sin EBC t t t 22255∆==⋅⋅=⋅⋅⋅∠=⋅⋅⋅=. (4)结论D 错误,理由如下:当t=12s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图,连接NB ,NC .此时AN=1,ND=2,由勾股定理求得:NB=82,NC=217.∵BC=10,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12π+2﹣12 【解析】试题分析:如图,连接OC ,EC ,由题意得△OCD ≌△OCE ,OC ⊥DE ,DE==,所以S 四边形ODCE =×1×=,S △OCD =,又S △ODE =×1×1=,S 扇形OBC ==,所以阴影部分的面积为:S 扇形OBC +S △OCD ﹣S △ODE =+﹣;故答案为.考点:扇形面积的计算.14..【解析】【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:.故答案为:.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.15.4 5 2【解析】【分析】根据二次根式的性质即可求出答案.【详解】①原式24=4;②原式=5-=5;③原式502,故答案为:①4;②5;③2【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】【分析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.17.28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.18.1:1【解析】分析:根据相似三角形的周长比等于相似比解答.详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC 与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD ∥EC∴四边形AECD 是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3 点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 20. (2) k≤54;(2)-2. 【解析】试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k 的取值范围;(2)由根与系数的关系可得x 2+x 2=2﹣2k 、x 2x 2=k 2﹣2,将其代入x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2中,解之即可得出k 的值.试题解析:(2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2,∴△=(2k ﹣2)2﹣4(k 2﹣2)=﹣4k+5≥0,解得:k≤, ∴实数k 的取值范围为k≤. (2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2,∴x 2+x 2=2﹣2k ,x 2x 2=k 2﹣2.∵x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2,∴(2﹣2k )2﹣2×(k 2﹣2)=26+(k 2﹣2),即k 2﹣4k ﹣22=0, 解得:k=﹣2或k=6(不符合题意,舍去).∴实数k 的值为﹣2.考点:一元二次方程根与系数的关系,根的判别式.21.(1)2113362y x x =-++;(2)(1,0),(0,2)A B -;(3)192. 【解析】【分析】(1)将点(3,1)C -代入二次函数解析式即可;(2)过点C 作CD x ⊥轴,证明BAO ACD ≅V V 即可得到1,2OA CD OB AD ====即可得出点 A ,B 的坐标; (3)设点E 的坐标为()2(0)E m m ->,,解方程21132362m m -++=-得出四边形ABEF 为平行四边形,求出AC ,AB 的值,通过ABC V 扫过区域的面积=EFC ABEF S S ∆+四边形代入计算即可.【详解】解:(1)∵点(3,1)C -在二次函数的图象上,21333132b ∴-⨯++=-. 解方程,得16b = ∴二次函数的表达式为2113362y x x =-++. (2)如图1,过点C 作CD x ⊥轴,垂足为D .90CDA ∴∠=︒90CAD ACD ∴∠+∠=︒.90BAC ∠=︒Q ,90BAO CAD ∴∠+∠=︒BAO ACD ∴∠=∠.在Rt BAO V 和Rt ACD △中,∵90BOA ADC BAO ACD AB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BAO ACD ∴≅V V .∵点C 的坐标为(3)1-,, 1,312OA CD OB AD ∴====-=.(1,0),(0,2)A B ∴-.(3)如图2,把ABC ∆沿x 轴正方向平移,当点B 落在抛物线上点E 处时,设点E 的坐标为()2(0)E m m ->,. 解方程21132362m m -++=-得:3m =-(舍去)或72m = 由平移的性质知,AB EF =且//AB EF ,∴四边形ABEF 为平行四边形,72AF BE ∴== 2222215AC AB OB AO ==+=+QABC ∴V 扫过区域的面积=EFC ABEF S S ∆+四边形=171255222OB AF AB AC ⋅+⋅=⨯+192=. 【点睛】本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.22.(1)4;(2)详见解析.【解析】【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a =2,b =﹣1∴c =b 2+ab ﹣a+7=1+(﹣2)﹣2+7=4(2)∵a =3+m ,b =m ﹣2∴c =b 2+ab ﹣a+7=(m ﹣2)2+(3+m )(m ﹣2)﹣(3+m )+7=2m 2﹣4m+2=2(m ﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.23.(1)y=12x;(2)1;【解析】【分析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(32m,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=1.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.24.见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.25.(1)点的坐标为;(2);(3)或.【解析】【分析】(1)点A在反比例函数上,轴,,求坐标;(2)梯形面积,求出B点坐标,将点代入即可;(3)结合图象直接可求解;【详解】解:(1)∵点在的图像上,轴,.∴,∴∴点的坐标为;(2)∵梯形的面积是3,∴,解得,∴点的坐标为,把点与代入得解得:,.∴一次函数的解析式为.(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的另一个交点为E,联立,得点E的坐标为即的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或.【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键.26.S1,S3,S4,S5,1【解析】【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.故答案为S1,S3,S4,S5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题. 27.(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】【分析】(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y=200+50×40010x-.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.“五一”期间,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了 45 场比赛,则这次参加比赛的队伍有( )
A.12 支B.11 支C.9 支D.10 支
8.二次函数 的部分对应值如下表:
x
…
-3
-2
03Βιβλιοθήκη 5…y…
7
0
-8
22.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
(1)求该快递公司投递总件数的月平均增长率;
(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
20.小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你将有关内容补充完整.例题:求一元二次方程 的两个解.
(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法)求解.解方程: ;
(2)解法二:利用二次函数图象与坐标轴的交点求解,如图1所示,把方程 的解看成是二次函数y=的图象与x轴交点的横坐标,即x1,x2就是方程的解.
(3)解法三:利用两个函数图象的交点求解.
①把方程 的解看成是一个二次函数y=的图象与一个一次函数y=的图象交点的横坐标;
-5
7
…
则以下四个结论:①图象的开口向上;②函数的最小值为-8;③方程 的两根分别-2,4;④若y<-5,则-1<x<3.其中正确结论的个数是()
A.1个B.2个C.3个D.4个
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.点P( ,5)关于原点对称点的坐标为_____.
10.已知x1、x2是方程 的两个实根,则 =____.
23.如图,四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC.
(操作)(1)将△ABD绕点D沿顺时针方向旋转60°,在图中画出旋转后的三角形.
(探究)(2)结合所画图形探究BD与AB,BC之间的数量关系,并证明你的结论.
(应用)(3)若AB=6,BC=8,试求四边形ABCD的面积.
24.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.
16.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=8,BD=6.则下列四个结论:①∠AEB=∠BDC;②AE∥BC;③△BDE是等边三角形;④△ADE的周长是14.其中正确的结论是_____(把你认为正确结论的序号都填上).
评卷人
得分
②画出这两个函数的图象,用x1,x2在x轴上标出方程的解.
21.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
11.已知抛物线y=ax2+bx+c(a>0)的顶点为(2,4),若点(﹣2,m),(3,n)在抛物线上,则m_____n(填“>”、“=”或“<”).
12.12.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s= v2,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车_______(填“会”或“不会”)有危险.
绝密★启用前
2020年湖北省咸宁市通城县九年级第一次调研数学试题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.下列图标中,既是轴对称图形,又是中心对称图形的是()
13.若关于x的一元二次方程 有实数根,则实数k的取值范围为_____.
14.将抛物线 向上平移5个单位能过原点,还可以通过多种的平移方法也能过原点,请再写出一个平移过程:_______.
15.如图,一段抛物线: (0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,第6段抛物线C6的顶点坐标为_____.
三、解答题
17.已知 ,求代数式 值.
18.如图甲,已知ED是△FBC的中位线,沿线段ED将△FED剪下后拼接在图乙中△BEA的位置.
(1)从△FED到△BEA的图形变换,可以认为是(填平移或轴对称或旋转)变换;
(2)试判断图乙中四边形ABCD的形状,并证明你的结论.
19.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
A.-1B.1和3C.-1和3D.3
5.一同学推铅球,铅球高度y(m)关于时间x(s)的函数表达式为y=ax2+bx(a≠0).若铅球在第7秒与第14秒时的高度相等,则在第m秒时铅球最高,则m的值为()
A.7B.8C.10.5D.21
6.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A. B. C. D.
2.若 , 是方程 =8的两根,则 的值是()
A.8B.-8C.0D.
3.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为( )
A.42°B.48°
C.52°D.58°
4.一元二次方程 的根是( )