图像特征提取与分析ppt课件
合集下载
SURF算法分析ppt课件

• 透视变换矩阵是由Szeliski提出的图像变换法,首先通 过建立图像序列之间的变换模型,然后通过迭代算法 求出模型的变换参数,实现对图像序列的拼接,这就 是著名的8参数透视变换模型。对于相邻两幅图像之间 的变换关系,可以用一个具有8个参数的变换模型来描 述:
最新编辑ppt
23
•
•
(3.1)
•
(3.2)
• •
最新编辑ppt
31
最后总结
• Stitching函数不足之处:在拼接过程中 如遇到图像特征不明显,如一面墙的图 片,则无法采集到有用的特征点,在采 用此方法过程中会出现越界现象。
最新编辑ppt
32
•Thank you for your attention!
最新编辑ppt
33
最新编辑ppt
最新编辑ppt
15
标出特征点的图像
最新编辑ppt
16
二.特征点 匹配
最新编辑ppt
17
特征点匹配
步骤1. 在检测特征点的过程中,计算了 Hessian 矩阵
的行列式,与此同时,计算得到了 Hessian 矩阵的迹,矩
阵的迹为对角元素之和。
按照亮度的不同,可以将特征点分为两种,第一种为
特征点及其周围小邻域的亮度比背景区域要亮,Hessian
变
化
量
51
99 147 195
6*n
27
51 75 99
Octaves
15
27 39 51
构建尺
9
15 21 27
变化量 n*6 度空间
Scale
最新编辑ppt
11
1.6极值点抑制
为了在目标影像上确定SURF特征点,我们使用了 3*3*3的模板在3维尺度空间进行非最大化抑制,根据 预设的Hessian阈值H,当h大于H,而且比临近的26个 点的响应值都大的点才被选为兴趣点。最后进行插值 精确。
最新编辑ppt
23
•
•
(3.1)
•
(3.2)
• •
最新编辑ppt
31
最后总结
• Stitching函数不足之处:在拼接过程中 如遇到图像特征不明显,如一面墙的图 片,则无法采集到有用的特征点,在采 用此方法过程中会出现越界现象。
最新编辑ppt
32
•Thank you for your attention!
最新编辑ppt
33
最新编辑ppt
最新编辑ppt
15
标出特征点的图像
最新编辑ppt
16
二.特征点 匹配
最新编辑ppt
17
特征点匹配
步骤1. 在检测特征点的过程中,计算了 Hessian 矩阵
的行列式,与此同时,计算得到了 Hessian 矩阵的迹,矩
阵的迹为对角元素之和。
按照亮度的不同,可以将特征点分为两种,第一种为
特征点及其周围小邻域的亮度比背景区域要亮,Hessian
变
化
量
51
99 147 195
6*n
27
51 75 99
Octaves
15
27 39 51
构建尺
9
15 21 27
变化量 n*6 度空间
Scale
最新编辑ppt
11
1.6极值点抑制
为了在目标影像上确定SURF特征点,我们使用了 3*3*3的模板在3维尺度空间进行非最大化抑制,根据 预设的Hessian阈值H,当h大于H,而且比临近的26个 点的响应值都大的点才被选为兴趣点。最后进行插值 精确。
数字图像处理课件ppt

06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换
医学图像处理PPT

医学图像处理PPT
医学图像处理是利用计算机软、硬件技术对医学图像进行处理和分析的一门 跨学科技术,广泛应用于医学研究、临床诊断和治疗等领域。
医学图像处理的定义和作用
医学图像处理是对医学图像进行数字化、分析和增强的过程,以提取有用的信息以辅助医疗决策、疾病诊断和 治疗策略制定。
常用的医学图像处理方法
使用X射线、超声波、磁共振等设备对 患者进行图像扫描和采集。
图像存储和传输
采用DICOM等标准格式进行图像存储和 传输,便于医疗信息交流和共享。
图像分割
图像分割是将医学图像中的区域进行分离和提取,以便进行进一步的特征分析和量化测量。
医学图像的特征提取
通过计算和分析医学图像中的特征,如纹理、形状和灰度分布等,以辅助疾 病诊断和治疗。
图像数字化
将医学图像从模拟信号转换为数字信号,便于存储和处理。
图像滤波和去噪
使用滤波器去除图像中的噪声,提高图像质量和可读性。
图像增强和锐化
通过调整图像的对比度、亮度和边缘等特征,使图像更清晰、细节更突出。
图像的数字化和采集
1
图像数字化过程2Βιβλιοθήκη 将采集到的模拟信号转换为数字信号,
并存储在计算机中。
3
图像采集设备
基于机器学习的医学图像处理
利用机器学习和深度学习算法对医学图像进行自动分类、分割和诊断,提高 疾病检测的准确性和效率。
医学图像配准
医学图像配准是将不同时间点或不同模态的医学图像进行对齐和匹配,以便 进行病变追踪和治疗效果评估。
医学图像的三维重建
通过将多个二维图像叠加和融合,以重建出患者的三维解剖结构,提供更全面的信息。
《图像识别》课件

应用领域
包括人脸识别、车牌识别、 街景识别、医学影像处理、 军与象素处理
通过摄像机等设备采集图像,并 对图像进行预处理,如调整亮度、 对比度等。
空间域滤波与频率域滤波 技术
通过滤波器对图像进行去噪和增 强等处理。
边缘检测与特征提取技术
通过卷积核等手段提取图像特征, 如边缘、纹理、颜色等,作为分 类的依据。
学有所用
将图像识别技术应用到实际生 产和生活中,提高工作效率和 生活品质。
未来充满机遇
图像识别技术将继续发展和突 破,为未来的科技发展带来更 多可能。
图像识别的挑战和未来
1.
多模态数据融合
2.
对抗性攻击与防御
3.
图像识别的发展趋势
如何将图像、文本、语音等多 种数据进行融合,实现更准确 的图像识别。
如何避免恶意攻击对图像识别 造成的影响,提高识别的安全 性。
越来越多的行业开始应用图像 识别技术,未来发展潜力巨大。
结语
实战演练
通过实际项目案例,掌握图像 识别应用的基本方法和技巧。
机器学习与图像识别
1 机器学习算法概述
包括决策树、朴素贝叶斯、支持向量机、神经网络等算法,用于对图像特征进行分类和 识别。
2 监督学习与无监督学习
监督学习利用已标注的数据进行训练,无监督学习则是利用未标注的数据进行训练。
3 特征选择和分类器构建
特征选择需要寻找最具判别性的特征,分类器构建则需要根据具体应用场景选择最优的 算法。
《图像识别》PPT课件
本课程旨在介绍图像识别的概念、原理和应用领域,并探讨机器学习和深度 学习在图像识别中的应用。
概述
定义和意义
图像识别是通过计算机模拟 人类视觉过程,识别图像中 的信息,从而实现自动识别 和分类的技术。
《图形图像处理》课件

素。
图像翻转
将图像水平或垂直翻转 ,用于产生镜像效果或
对称效果。
图像滤波与锐化
滤波
通过应用滤波器来减少图像中的噪声 和干扰,如平滑滤波器和锐化滤波器 。
锐化
增强图像的边缘和细节,使图像更加 清晰和鲜明,通常使用卷积核对图像 进行处理。
色彩调整与校正
色彩调整
改变图像的整体色调和饱和度,以实现所需的视觉效果。
详细描述
图形图像处理技术的发展历程可以追溯到20世纪50年 代,当时计算机刚刚问世不久,人们就开始尝试使用计 算机来处理和分析图像数据。随着计算机技术的不断发 展,图形图像处理技术也不断取得突破,包括数字图像 处理技术的兴起、计算机图形学的诞生和发展等。在这 些技术的发展过程中,涌现出了一批杰出的科学家和工 程师,如拉普拉斯、傅里叶、霍夫曼等,他们的研究成 果为图形图像处理技术的发展做出了重要贡献。
图像的数字化
采样
将连续的图像转换为离散 的像素集合的过程。
量化
将每个像素的灰度值或颜 色值转换为数字的过程。
位深
描述像素值范围的一个参 数,决定了图像的细节程 度。
图像的编码与压缩
编码方式
常见的图像编码方式有JPEG、 PNG、BMP等,每种方式都有其
特点和适用场景。
压缩技术
通过去除图像中的冗余信息,减小 图像文件大小的技术,常见的有 JPEG2000等。
色彩校正
通过调整单个颜色通道的强度来平衡图像的色彩,以纠正偏 色或增强颜色对比度。
边缘检测与特征提取
边缘检测
识别图像中的边缘和轮廓,有助于提取物体的形状和结构。
特征提取
从图像中提取有意义的信息,如角点、线条、纹理等,用于识别、匹配和分类 。
图像翻转
将图像水平或垂直翻转 ,用于产生镜像效果或
对称效果。
图像滤波与锐化
滤波
通过应用滤波器来减少图像中的噪声 和干扰,如平滑滤波器和锐化滤波器 。
锐化
增强图像的边缘和细节,使图像更加 清晰和鲜明,通常使用卷积核对图像 进行处理。
色彩调整与校正
色彩调整
改变图像的整体色调和饱和度,以实现所需的视觉效果。
详细描述
图形图像处理技术的发展历程可以追溯到20世纪50年 代,当时计算机刚刚问世不久,人们就开始尝试使用计 算机来处理和分析图像数据。随着计算机技术的不断发 展,图形图像处理技术也不断取得突破,包括数字图像 处理技术的兴起、计算机图形学的诞生和发展等。在这 些技术的发展过程中,涌现出了一批杰出的科学家和工 程师,如拉普拉斯、傅里叶、霍夫曼等,他们的研究成 果为图形图像处理技术的发展做出了重要贡献。
图像的数字化
采样
将连续的图像转换为离散 的像素集合的过程。
量化
将每个像素的灰度值或颜 色值转换为数字的过程。
位深
描述像素值范围的一个参 数,决定了图像的细节程 度。
图像的编码与压缩
编码方式
常见的图像编码方式有JPEG、 PNG、BMP等,每种方式都有其
特点和适用场景。
压缩技术
通过去除图像中的冗余信息,减小 图像文件大小的技术,常见的有 JPEG2000等。
色彩校正
通过调整单个颜色通道的强度来平衡图像的色彩,以纠正偏 色或增强颜色对比度。
边缘检测与特征提取
边缘检测
识别图像中的边缘和轮廓,有助于提取物体的形状和结构。
特征提取
从图像中提取有意义的信息,如角点、线条、纹理等,用于识别、匹配和分类 。
《数字图像处理基础》课件

数字图像的表示与存 储方式
讨论数字图像的表示方法,包 括二进制表示、向量图像和光 栅图像等。
第三章:数字图像预处理
1
图像增强
2
探讨图像增强的方法和技术,如直方图
均衡化、增强对比度等。
3
图像边缘检测
4
介绍常用的边缘检测算法,如Sobel、滤波
解释图像滤波的概念和作用,介绍常用 的滤波器及其应用。
《数字图像处理基础》 PPT课件
数字图像处理基础PPT课件将帮助您深入了解数字图像处理的原理、方法和应 用。通过本课程,您将掌握数字图像处理领域的基本概念和技巧,为将来的 进一步学习和应用打下坚实的基础。
第一章:数字图像处理概述
数字图像处理介绍
了解数字图像处理的定义和基本原理,并掌握其在各个领域中的应用。
第五章:数字图像特征提取与识别
图像特征提取
介绍图像特征提取的目的和方 法,如灰度共生矩阵和尺度不 变特征变换(SIFT)。
模板匹配
解释模板匹配的原理和应用, 讨论常见的模板匹配算法。
目标检测
探讨目标检测的技术和方法, 如基于特征的方法和深度学习 方法。
第六章:数字图像处理算法优化
1
图像处理算法优化的意义
图像二值化
讲解图像二值化的原理和算法,介绍基 于阈值的二值化方法。
第四章:数字图像分割
图像分割概述
解释图像分割的概念和作用,并 探讨常见的图像分割方法。
基于边缘分割
介绍基于边缘检测的图像分割方 法,包括Canny边缘检测和Sobel 边缘检测。
基于区域分割
讨论基于区域的图像分割方法, 如区域生长和分水岭算法。
数字图像技术趋势
讨论数字图像处理技术的趋势,如增强现实和虚拟现实的发展。
《图像处理》PPT课件

约有75%的信息是通过视觉系统获取的。 数字图象处理是用数字计算机处理所获 取视觉信息的技术。
1.2 图像技术及图像的分类
1.2.1 图像技术
图像技术在广义上是各种与图像有关的技术的总称。 数字图像,主要应用的是计算机图像技术。这包括利 用计算机和其他电子设备进行和完成的一系列工作。 例如:
图像的采集、获取、编码(压缩)、存储和传输。
数字图像处理
ppt课件
1
前言
数字图像处理(Digital Image Processing)是一门关于如何用计
算机对图象进行处理的学科。本课程既讲解基本原理和方法,也 强调编程实践(MATLAB实现)。
教材:数字图像处理及MATLAB实现,余成波编著, 重庆大学出版社,2003
参考书:
1. Digital Image Processing, R. C. Gonzalez, Prentice Hall, 2002. 2. (中文版,阮秋琦译,电子工业出版社)
➢ 图形(Graphics):图形是图像的一种抽象,它反映
图像的几何特征,例如点、线、面等。图形是描述产 生图像中的点的过程和方法。
ppt课件
4
➢动画(Animation):动画属于动态图像的一种。它与
视频的区别在于视频的采集来源于自然的真实图像,而 动画则是利用计算机产生出来的图像或图形,是合成动 态图像。动画包括二维动画、三维动画等多种形式。
ppt课件
6
灰度图象(128x128)及其对应的数值矩阵(仅列出一部分(26x31))
125,153,158,157,127,70,103,120,129,144,144,150,150,147,150,160,165,160,164,165, 167,175,175,166,133, 60,
1.2 图像技术及图像的分类
1.2.1 图像技术
图像技术在广义上是各种与图像有关的技术的总称。 数字图像,主要应用的是计算机图像技术。这包括利 用计算机和其他电子设备进行和完成的一系列工作。 例如:
图像的采集、获取、编码(压缩)、存储和传输。
数字图像处理
ppt课件
1
前言
数字图像处理(Digital Image Processing)是一门关于如何用计
算机对图象进行处理的学科。本课程既讲解基本原理和方法,也 强调编程实践(MATLAB实现)。
教材:数字图像处理及MATLAB实现,余成波编著, 重庆大学出版社,2003
参考书:
1. Digital Image Processing, R. C. Gonzalez, Prentice Hall, 2002. 2. (中文版,阮秋琦译,电子工业出版社)
➢ 图形(Graphics):图形是图像的一种抽象,它反映
图像的几何特征,例如点、线、面等。图形是描述产 生图像中的点的过程和方法。
ppt课件
4
➢动画(Animation):动画属于动态图像的一种。它与
视频的区别在于视频的采集来源于自然的真实图像,而 动画则是利用计算机产生出来的图像或图形,是合成动 态图像。动画包括二维动画、三维动画等多种形式。
ppt课件
6
灰度图象(128x128)及其对应的数值矩阵(仅列出一部分(26x31))
125,153,158,157,127,70,103,120,129,144,144,150,150,147,150,160,165,160,164,165, 167,175,175,166,133, 60,
《医学图象处理》课件

1 概述
2 分类
医学图像包括X射线、CT扫描、MRI等多 种模态,提供了人体内部结构和功能的可 视化展示。
医学图像可以分为结构图像(如X射线) 和功能图像(如PET扫描),每种图像有 不同的特点和应用。
医学图像处理的基本任务
1 图像增强
通过去除噪声、增强对比度等技术,改善图像质量,使医生能够更清晰地识别病变。
2 纹理分析
提取并量化图像中的纹理特征,用于区分不同类型的组织和病变。
3 局部特征描述
通过提取局部特征点和描述符,对医学图像进行匹配和配准。
医学图像三维重建技术
1 体素重建
通过对医学图像中的体素进行堆叠和插值,重建出三维的图像。
2 表面重建
根据医学图像中的边缘和特征点,重建出物体的三维表面模型。
3 成像重建
医学图像处理在临床上的应用
1 病变检测和诊断
2 手术导航和规划
3 病理分析与研究
通过医学图像处理技术, 医生可以更准确地检测 和诊断各种病变,如肿 瘤和血管异常。
利用医学图像重建技术, 医生可以在手术前精确 导航和规划手术过程, 提高手术成功率。
医学图像处理技术可以 帮助病理学家分析组织 切片图像,研究疾病的 病理特征和发展过程。
利用多幅二维医学图像的投影信息,恢复出三维物体的内部结构。
常用的医学图像处理工具
1 ImageJ
一款开源的图像处理软 件,提供了多种用于医 学图像分析和处理的工 具。
2 3D Slicer
用于医学图像的可视化 和分析,提供了各种算 法和插件用于医学图像 的处理。
3 OpenCV
一套用于计算机视觉和 图像处理的通用开源库, 提供了丰富的图像处理 算法和工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法与颜色直方图相似,但它同时考虑了空间信息。
设H是颜色直方图矢量,CCV的计算步骤: 图像平滑:目的是为了消除邻近像素间的小变化的 影响。 对颜色空间进行量化,使之在图像中仅包含n个不 同颜色。 在一个给定的颜色元内,将像素分成相关或不相关 两类。 根据各连通区的大小,将像素分成相关和不相关两 部分 。
包含多角网络的区域 一幅图像或一个区域中的连接成分数C和孔数H不会受图像的伸
长、压缩、旋转、平移的影响,但如果区域撕裂或折叠时,C和 H就会发生变化。可见,区域的拓扑性质对区域的全局描述是很 有用的,欧拉数是区域一个较好的描述子。
2.凹凸性
凹凸性是区域的基本特征之一,区域凹凸性可通过以下方法进行判 别:区域内任意两像素间的连线穿过区域外的像素,则此区域为凹 形。相反,连接图形内任意两个像素的线段,如果不通过这个图形 以外的像素,则这个图形称为是凸的。任何一个图形,把包含它的 最小的凸图形叫这个图形的凸闭包。
这里,max=255。 彩色图像变换成灰度图像的公式为:
其中R,G,B为彩色图像的三个分量,g为转换后的灰度值。
8.2.3 颜色集
颜色直方图和颜色矩只是考虑了图像颜色的整体分布, 不涉及位置信息。
颜色集表示则同时考虑了颜色空间的选择和颜色空间 的划分
使用颜色集表示颜色信息时,通常采用颜色空间HSL
(a)
(b)
4-邻域和8-邻域
邻域与邻接
互为4-邻域的两像素叫4-邻接。
互为8-邻域的两像素叫8-邻接。
像素的连接
对于图像中具有相同值的两个像素A和B,如果所有和A、B具
有相同值的像素序列
存在,并且
和 互为4-邻接或8-邻接,那么像素和叫做4-连接或8-连接,
以上的像素序列叫4-路径或8-路径。
像素的连接
连接成分
在图像中,把互相连接的像素的集合汇集为一组,于是具有若干个 0值的像素和具有若干个l值的像素的组就产生了。把这些组叫做连 接成分,也称作连通成分。 在研究一个图像连接成分的场合,若1像素的连接成分用4-连接或8连接,而0像素连接成分不用相反的8-连接或4-连接就会产生矛盾。 假设各个1像素用8-连接,则其中的0像素就被包围起来。如果对0像 素也用8-连接,这就会与左下的0像素连接起来,从而产生矛盾。因 此0像素和1像素应采用互反的连接形式,即如果1像素采用8-连接, 则0像素必须采用4-连接。
间 ,即
。
采用量化器QM对 重新量化,使得视觉上明显不同 的颜色对应着不同的颜色集,并将颜色集映射成索 引m。
颜色集可以通过对颜色直方图设置阈值直接生成,如 对于一颜色m,给定阈值 ,颜色集与直方图的关系如 下:
因此,颜色集表示为一个二进制向量
8.2.4 颜色相关矢量
颜色相关矢量CCV(Color Correlation Vector) 表示
可区别性 可靠性 独立性好 数量少
8.2 颜色特征描述
8.2.1 颜色矩 8.2.2 颜色直方图 8.2.3 颜色集 8.2.4 颜色相关矢量
8.2.1 颜色矩
颜色矩是以数学方法为基础的,通过计算矩来 描述颜色的分布。 颜色矩通常直接在RGB空间计算 颜色分布的前三阶矩表示为:
8.2.2 颜色直方图
特征形成
根据待识别的图像,通过计算产生一组原始特征,称 之为特征形成。
特征提取
原始特征的数量很大,或者说原始样本处于一个高维空间中,通 过映射或变换的方法可以将高维空间中的特征描述用低维空间的 特征来描述,这个过程就叫特征提取 。
特征选择
从一组特征中挑选出一些最有效的特征以达到降低特征空间维数 的目的,这个过程就叫特征选择。 选取的特征应具有如下特点:
设一幅图像包含M个像素,图像的颜色空间被 量化成N个不同颜色。颜色直方图H定义为:
(8-4)
hi 为第i种颜色在整幅图像中具有的像素数。
归一化为: (8-5)
由于RGB颜色空间与人的视觉不一致,可将RGB空间转 换到视觉一致性空间。除了转换到前面提及的HSI空间 外,还可以采用一种更简单的颜色空间:பைடு நூலகம்
8.3 形状特征描述
8.3.1 几个基本概念 8.3.2 区域内部空间域分析 8.3.3 区域内部变换分析 8.3.4 区域边界的形状特征描述
8.3.1几个基本概念
邻域与邻接
对于任意像素(i,j),(s,t)是一对适当的整数,则把像素的 集合{(i+s,j+t)}叫做像素(i,j)的邻域. 直观上看,这是像素(i,j)附近的像素形成的区域. 最经常采用的是4-邻域和8-邻域
第8章 图像特征提取与分析
本章重点:
图像特征及特征提取的基本概念。 常见的图像特征提取与描述方法,如颜色 特征、纹理特征和几何形状特征提取与描 述方法。
8.1 基本概念 8.2 颜色特征描述 8.3 形状特征描述 8.4 图像的纹理分析技术 8.5 小结
8.1 基本概念
目的
让计算机具有认识或者识别图像的能力,即图像识别。 特征选择是图像识别中的一个关键问题。特征选择和 提取的基本任务是如何从众多特征中找出最有效的特 征。
定义: 设BM是M维的二值空间,在BM空间的每个轴对应唯一
的索引m。一个颜色集就是BM二值空间中的一个二 维矢量,它对应着对颜色{m}的选择,即颜色m出现 时,c[m]=1,否则,c[m]=0。
实现步骤:
对于RGB空间中任意图像,它的每个像素可以表示
为一个矢量
。
变换T将其变换到另一与人视觉一致的颜色空
连接性矛盾示意图
在0-像素的连接成分中,如果存在和图像外围的1行或1列的0-像 素不相连接的成分,则称之为孔。不包含有孔的1像素连接成分 叫做单连接成分。含有孔的l像素连接成分叫做多重连接成分。
8.3.2区域内部空间域分析
区域内部空间域分析是不经过变换而直接在图像的空间 域,对区域内提取形状特征。 1.欧拉数
图像的欧拉数是图像的拓扑特性之—,它表明了图像的连通性。下 图 (a)的图形有一个连接成分和一个孔,所以它的欧拉数为0,而下 图(b)有一个连接成分和两个孔,所以它的欧拉数为-1。
可见通过欧拉数可用于目标识别。
具有欧拉数为0和-1的图形
用线段表示的区域,可根据欧拉数来描述。如下图中的多边形网,把 这多边形网内部区域分成面和孔。如果设顶点数为W,边数为Q,面 数为F,则得到下列关系,这个关系称为欧拉公式。 图中的多边形网,有7个顶点、11条边、2个面、1个连接区、3个孔, 因此,由上式可得到 E 7 11 2 1 3 2 。
设H是颜色直方图矢量,CCV的计算步骤: 图像平滑:目的是为了消除邻近像素间的小变化的 影响。 对颜色空间进行量化,使之在图像中仅包含n个不 同颜色。 在一个给定的颜色元内,将像素分成相关或不相关 两类。 根据各连通区的大小,将像素分成相关和不相关两 部分 。
包含多角网络的区域 一幅图像或一个区域中的连接成分数C和孔数H不会受图像的伸
长、压缩、旋转、平移的影响,但如果区域撕裂或折叠时,C和 H就会发生变化。可见,区域的拓扑性质对区域的全局描述是很 有用的,欧拉数是区域一个较好的描述子。
2.凹凸性
凹凸性是区域的基本特征之一,区域凹凸性可通过以下方法进行判 别:区域内任意两像素间的连线穿过区域外的像素,则此区域为凹 形。相反,连接图形内任意两个像素的线段,如果不通过这个图形 以外的像素,则这个图形称为是凸的。任何一个图形,把包含它的 最小的凸图形叫这个图形的凸闭包。
这里,max=255。 彩色图像变换成灰度图像的公式为:
其中R,G,B为彩色图像的三个分量,g为转换后的灰度值。
8.2.3 颜色集
颜色直方图和颜色矩只是考虑了图像颜色的整体分布, 不涉及位置信息。
颜色集表示则同时考虑了颜色空间的选择和颜色空间 的划分
使用颜色集表示颜色信息时,通常采用颜色空间HSL
(a)
(b)
4-邻域和8-邻域
邻域与邻接
互为4-邻域的两像素叫4-邻接。
互为8-邻域的两像素叫8-邻接。
像素的连接
对于图像中具有相同值的两个像素A和B,如果所有和A、B具
有相同值的像素序列
存在,并且
和 互为4-邻接或8-邻接,那么像素和叫做4-连接或8-连接,
以上的像素序列叫4-路径或8-路径。
像素的连接
连接成分
在图像中,把互相连接的像素的集合汇集为一组,于是具有若干个 0值的像素和具有若干个l值的像素的组就产生了。把这些组叫做连 接成分,也称作连通成分。 在研究一个图像连接成分的场合,若1像素的连接成分用4-连接或8连接,而0像素连接成分不用相反的8-连接或4-连接就会产生矛盾。 假设各个1像素用8-连接,则其中的0像素就被包围起来。如果对0像 素也用8-连接,这就会与左下的0像素连接起来,从而产生矛盾。因 此0像素和1像素应采用互反的连接形式,即如果1像素采用8-连接, 则0像素必须采用4-连接。
间 ,即
。
采用量化器QM对 重新量化,使得视觉上明显不同 的颜色对应着不同的颜色集,并将颜色集映射成索 引m。
颜色集可以通过对颜色直方图设置阈值直接生成,如 对于一颜色m,给定阈值 ,颜色集与直方图的关系如 下:
因此,颜色集表示为一个二进制向量
8.2.4 颜色相关矢量
颜色相关矢量CCV(Color Correlation Vector) 表示
可区别性 可靠性 独立性好 数量少
8.2 颜色特征描述
8.2.1 颜色矩 8.2.2 颜色直方图 8.2.3 颜色集 8.2.4 颜色相关矢量
8.2.1 颜色矩
颜色矩是以数学方法为基础的,通过计算矩来 描述颜色的分布。 颜色矩通常直接在RGB空间计算 颜色分布的前三阶矩表示为:
8.2.2 颜色直方图
特征形成
根据待识别的图像,通过计算产生一组原始特征,称 之为特征形成。
特征提取
原始特征的数量很大,或者说原始样本处于一个高维空间中,通 过映射或变换的方法可以将高维空间中的特征描述用低维空间的 特征来描述,这个过程就叫特征提取 。
特征选择
从一组特征中挑选出一些最有效的特征以达到降低特征空间维数 的目的,这个过程就叫特征选择。 选取的特征应具有如下特点:
设一幅图像包含M个像素,图像的颜色空间被 量化成N个不同颜色。颜色直方图H定义为:
(8-4)
hi 为第i种颜色在整幅图像中具有的像素数。
归一化为: (8-5)
由于RGB颜色空间与人的视觉不一致,可将RGB空间转 换到视觉一致性空间。除了转换到前面提及的HSI空间 外,还可以采用一种更简单的颜色空间:பைடு நூலகம்
8.3 形状特征描述
8.3.1 几个基本概念 8.3.2 区域内部空间域分析 8.3.3 区域内部变换分析 8.3.4 区域边界的形状特征描述
8.3.1几个基本概念
邻域与邻接
对于任意像素(i,j),(s,t)是一对适当的整数,则把像素的 集合{(i+s,j+t)}叫做像素(i,j)的邻域. 直观上看,这是像素(i,j)附近的像素形成的区域. 最经常采用的是4-邻域和8-邻域
第8章 图像特征提取与分析
本章重点:
图像特征及特征提取的基本概念。 常见的图像特征提取与描述方法,如颜色 特征、纹理特征和几何形状特征提取与描 述方法。
8.1 基本概念 8.2 颜色特征描述 8.3 形状特征描述 8.4 图像的纹理分析技术 8.5 小结
8.1 基本概念
目的
让计算机具有认识或者识别图像的能力,即图像识别。 特征选择是图像识别中的一个关键问题。特征选择和 提取的基本任务是如何从众多特征中找出最有效的特 征。
定义: 设BM是M维的二值空间,在BM空间的每个轴对应唯一
的索引m。一个颜色集就是BM二值空间中的一个二 维矢量,它对应着对颜色{m}的选择,即颜色m出现 时,c[m]=1,否则,c[m]=0。
实现步骤:
对于RGB空间中任意图像,它的每个像素可以表示
为一个矢量
。
变换T将其变换到另一与人视觉一致的颜色空
连接性矛盾示意图
在0-像素的连接成分中,如果存在和图像外围的1行或1列的0-像 素不相连接的成分,则称之为孔。不包含有孔的1像素连接成分 叫做单连接成分。含有孔的l像素连接成分叫做多重连接成分。
8.3.2区域内部空间域分析
区域内部空间域分析是不经过变换而直接在图像的空间 域,对区域内提取形状特征。 1.欧拉数
图像的欧拉数是图像的拓扑特性之—,它表明了图像的连通性。下 图 (a)的图形有一个连接成分和一个孔,所以它的欧拉数为0,而下 图(b)有一个连接成分和两个孔,所以它的欧拉数为-1。
可见通过欧拉数可用于目标识别。
具有欧拉数为0和-1的图形
用线段表示的区域,可根据欧拉数来描述。如下图中的多边形网,把 这多边形网内部区域分成面和孔。如果设顶点数为W,边数为Q,面 数为F,则得到下列关系,这个关系称为欧拉公式。 图中的多边形网,有7个顶点、11条边、2个面、1个连接区、3个孔, 因此,由上式可得到 E 7 11 2 1 3 2 。