可穿戴式汗液传感器
可穿戴设备中的生物传感器应用研究

可穿戴设备中的生物传感器应用研究一、简介随着科技的快速发展,可穿戴设备成为了人们的新宠儿。
可穿戴设备的概念最早源于健康监测,而最近几年人们对于健康的重视与科技的进步,使得可穿戴设备在生物传感器应用方面变得越来越重要。
生物传感在可穿戴设备中的应用是过去十年最激动人心的技术之一,极大地提高了人们生活的质量。
本文旨在探讨生物传感器在可穿戴设备中的应用研究,从智能手环、智能手表、智能衣物等方面进行分析。
二、智能手环中的生物传感器应用研究智能手环是一种基于传统手表和运动手环的智能设备,通过内置传感器监测用户的运动情况、心率、睡眠等数据。
其中,生物传感器是智能手环不可或缺的组成元素。
智能手环中的生物传感器可以通过光学、电学以及磁学等方式监测血氧饱和度等数据。
这些数据能够为用户提供更加准确、及时的健康服务,例如运动记录、健康监测以及失眠诊断等。
目前,市面上的智能手环一般都内置了心率监测功能,升级后亦可以监测血氧饱和度等生物指标。
在这样一个信息爆炸的时代,智能手环中的生物传感器让用户能够根据自己的生理表现,作出更好的健康选择。
三、智能手表中的生物传感器应用研究智能手表是一种全新类型的智能硬件,与人们的生活息息相关。
智能手表内置传感器,可以监测用户的步数、血氧饱和度等生物指标,同时还可以接入天气预报等多个功能,具有更为广泛的应用,更是给人们生活增添了无数便利。
生物传感器在智能手表中的应用,大大增加了智能手表的功能。
传感器可以随时随地监测用户的生理数据,提醒用户宜行走或静待,甚至是帮用户订餐或购物,力图为用户体验做出更大的优化。
智能手表中的生物传感器不仅提高了用户体验,而且在医学场景下具有应用潜力,可用于监测病人的生理指标。
四、智能衣服中的生物传感器应用研究智能衣物是一种让人类感应技术无处不在的嵌入式系统,可以穿上身去监测你的心率、体温以及呼吸等生理指标,尤其适合户外爱好者或者一些积极训练者。
智能衣物的应用主要是通过内置的传感器对用户进行连续监测,从而发现异常情况,例如持续性心率异常、体温异常、以及呼吸异常等。
能够测量汗水中化学成分的传感器

能够测量汗水中化学成分的传感器
佚名
【期刊名称】《传感器世界》
【年(卷),期】2016(0)2
【摘要】1月28日《自然》杂志介绍了美国加州大学伯克利分校Ali Javey团队研制的一种新型可穿戴传感器,该设备可测量汗水中特定分子水平,通过识别汗水中有用的生物标记物,获得个人生理和健康的实时信息,健进大规模实时生理和临床研究。
【总页数】1页(P47-47)
【关键词】分子水平;传感器;化学成分;测量;美国加州大学;《自然》杂志;实时信息;生物标记物
【正文语种】中文
【中图分类】TP212
【相关文献】
1.温湿度传感器测量中温度变化对相对湿度测量的影响 [J], 刘鑫
2.基于WIFI技术的信号测量方法在三分力传感器测量中的应用 [J], 沈海钢;朱玉柱;侯珏
3.手工测量法与压力传感器测量法在中心静脉压监测中的效果比较 [J], 刘洁霞;宋向阳
4.大陆集团:高速、高精度测量技术能够早期检测出输送带损伤——倍福XFC极速控制技术在工业及采矿业输送带监测系统中的应用 [J],
5.浅谈电磁测量在传感器测量系统中的应用 [J], 陈怡伶
因版权原因,仅展示原文概要,查看原文内容请购买。
「刷新智能」想用汗液实时连续分析你的健康指数

「刷新智能」想用汗液实时连续分析你的健康指数
“汗液检测”这个名词你可能还不熟悉,但它已经成了一个新的技术趋势。
为什幺呢?汗液检测可以无创地、非入侵式地检测人体生物信息。
汗液里包
含大量的健康指标,例如钾离子、钠离子代谢速度、糖尿病趋势等等,而在
医学界这些数据此前通常从血液中获得。
因此汗液检测有望成为一种更便捷的检测方式。
以往汗液检测存在比较大的难点,一方面检测设备大,通常要在电化学工作站里完成检测;另一方面
汗液样本量要求高,汗液保存困难,通常需要大量汗液,而人们在工作、休
息等场合下往往汗水量不够。
36 氪近期接触的「刷新智能」则通过传感系统突破了这两个技术瓶颈,
可以把检测设备缩小到一个芯片中,芯片适用于智能手环等可穿戴设备。
另
一方面,只需要采集米粒大小的微量汗液就可以完成检测,因此汗液检测场
景扩展到更多日常生活场景中,全天都可以实时监测汗水成分。
「刷新智能」ReST 汗液检测系统「刷新智能」对标的是美国公司Eccrine System,36 氪此前曾对其做过报道,该公司在2016 年就获得了美国军方与。
可穿戴技术的新型传感器和芯片技术研究

可穿戴技术的新型传感器和芯片技术研究可穿戴技术日益流行,很多人戴手环、智能手表,但是这些设备的功能还比较有限。
想要达到更准确的监测和数据采集效果,就要使用新型传感器和芯片技术。
现在市场上的智能手环或智能手表基本都配备了心率传感器、加速计、陀螺仪等基本传感器,可测量的指标有限。
而新型传感器则有很多种,如TMD3782、BMG250、SPH0645LM4H等,它们能够检测光线、气压、温度、声音等指标。
例如,SPH0645LM4H是一种全向麦克风,可以高精度采集人声、环境声和噪声数据,为智能助理和语音识别提供更加准确的语音信息。
此外,可以将新型传感器与芯片技术相结合,实现更快的数据处理和传输。
如现在市场上流行的芯片MW300可以处理上述几种传感器的数据,并通过蓝牙将处理后的数据传输到手机上。
这样,在保证准确性的同时,用户也可以更加方便地查看自己的健康数据或运动数据。
同时,采用新型传感器和芯片技术还可以实现更多的功能和创新的应用。
以新型传感器TMD3782为例,它能够感知光线,并且可以区分红、绿、蓝三色。
配合芯片技术,可以实现更多的应用,如在家里自动调节灯光的亮度和颜色,或者在运动时调整屏幕亮度和颜色以保护用户的视力。
此外,新型传感器和芯片技术的研究还可以为医疗保健领域带来很多机会。
可以通过传感器实时监测生命体征数据,如心率、血氧、呼吸等,及时发现并处理突发情况。
采用芯片技术,可以将这些数据整合并通过互联网进行传输,医生或家庭成员可以方便地远程监测病人的健康情况。
并且,这种方式还可以降低医疗成本和减轻人力负担。
可穿戴技术正在逐步走向个性化、科技化和智能化,新型传感器和芯片技术的研究将会为这个市场带来更多的机会和挑战。
无论在健康管理还是智能家居领域,都将发挥巨大的作用。
当然,我们也需要保持警觉,关注新技术带来的安全隐患,并适时加以规范和管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
News &HighlightsWearable Elizabeth K.Senior Technology Writersors could take the place of invasive blood draws.They might ana-lyze creatinine,to assess kidney function,or cortisol,to track the stress response.Wearable sweat sensing devices could potentially allow continuous biomonitoring,eliminating the need for bulky equipment,repeat visits to labs,or hospital stays.Recently,an international team led by John A.Rogers,the direc-tor of the Center for Bio-Integrated Electronics at Northwestern University,unveiled what may be the most sophisticated proto-type sweat sensor developed to date (Fig.1).The device not only monitors lactate,glucose,chloride,and pH,but also sweat rate and loss [1].The ability to measure these last two parameters is particularly novel,and crucial for understanding their effects on the composition of sweat samples.The Rogers group’s device features a flexible elastomeric system of microfluidic channels,valves,and chambers that are removable and can be swapped out for new ones,enabling reuse.The natural action of sweat glands pumps sweat through holes in the bottom of the device into the channels and analysis chambers,each contain-ing a sensor for a different substance.While enzymes in biofuel cell-based,electrochemical sensors catalyze reactions that increase with concentration to assess lactate and glucose levels,the device measures chloride and pH colorimetrically by comparison to color calibration markings.The device transmits and receives data to andfrom the same cell phone that powers it via near-field communica-tion (NFC)ing this external power source makes the patch up to 20times lighter and four times smaller than devices that rely on batteries.Other labs take different approaches.At the California Institute of Technology (Caltech),medical engineering assistant professor Wei Gao and his team believe sweat can be used for many compli-cated analyses involving substances such as heavy metals,drug molecules,and hormones and other proteins.Before moving to Cal-tech,Gao was a postdoctoral fellow in the laboratory of engineer-ing professor Ali Javey at University of California,Berkeley (UC Berkeley),where he helped develop a wearable sensor for caffeine as a model for detecting methylxanthine drugs [2].Unlike the devices powered via NFC,the Gao lab’s prototypes use tiny batter-ies.For some continuous monitoring applications,Gao said,staying close to a cell phone may not be practical.Yet another team,headed by Hong Liu at Southeast University in Nanjing,recently designed a wearable glucose sweat sensor that,unlike the Rogers’device,does not rely on enzymes [3].These biomolecular components present a number of issues for sensor development.For example,enzymes are sensitive to pH,tempera-ture,and ionic strength;they can degrade over time;and the1.Developed by an international team of collaborators,this prototype,battery-sweat sensor can monitor lactate,glucose,chloride,pH,and sweat rate and loss.sensor wirelessly transmits and receives data to and from the same cell phone that powers it by via near-field communication (NFC)technology.Credit:John Rogers,Northwestern University.process of attaching them to electrodes can affect their activity. The Liu group’s sensor,usingfluorocarbon-coated gold electrodes, measures current generated during the electrochemical oxidation of glucose.Even though thefield is nascent,the potential of wearable sweat sensors has already attracted the attention of companies such as Gatorade.The company’s Sports Science Institute is collaborating with the Rogers’lab and the United States Air Force to test a wearable sweat sensor that measures hydration via electrolyte concentrations[4].Through his company Epicore Biosystems, Rogers is also working with the skin care company L’Oreal to devel-oping a wearable skin pH sensor that can detect unbalanced skin pH levels linked to conditions such as dryness and eczema.L’Oreal and its skincare brand La Roche-Posay unveiled the investigational device,called My Skin Track pH,at the huge annual Consumer Electronics Show in Las Vegas in January2019.The company plans to have the prototype tested by dermatologists this year[5].But commercial applications may take some time to be realized.In pursuing wearable sweat sensors,developers have taken on two inextricably linked challenges,of engineering and biology.Because the sophisticated technology needed to begin reliably analyzing sweat has only recently been achieved,the scientific study of sweat has just begun,said Gao’s mentor UC Berkeley professor Javey,who co-directs the university’s Sensor and Actuator Center.‘‘Sweat is a highly under-explored class of biofluid,”Rogers agreed.Addressing the biology part of the challenge is not simple.Sweat rates affect biomarker concentrations,and biomarkers in sweat vary from person to person,changing daily or even hourly,all of which makes it difficult to correlate sweat-excreted biomolecules with health.In addition,not all biomolecule concentrations in sweat correlate well with those in blood.Much more research is needed,involving hundreds or even thousands of human subjects, before definitive claims can be made about sweat and health[6,7].Key to these biological studies,however,will be continued advances in wearable sensor engineering.For example,Eccrine Systems,a company co-founded by Jason Heikenfeld,the head of the Novel Device Lab at the University of Cincinnati,is working with technology covered by the university’s2018patent for sen-sors that can correlate measurements of substances in sweat with the time the substances were collected[8,9].The invention enables researchers to generate sweat pharmacokinetic profiles,a critical step for ensuring sensor reliability.All this research activity suggests that wearable sweat sensors have great promise to become important medical and consumer devices,although it is early and likely that different applications will require different types of sensors.‘‘At this stage,we need to explore any and all of these techniques,”Javey said.References[1]Bandodkar AJ,Gutruf P,Choi J,Lee KH,Sekine Y,Reeder JT,et al.Battery-free,skin-interfaced microfluidic/electronic systems for simultaneous electrochemical,colorimetric,and volumetric analysis of sweat.Sci Adv 2019;5(1):eaav3294.[2]Tai LC,Gao W,Chao M,Bariya M,Ngo QP,Shahpar Z,et al.Methylxanthine drugmonitoring with wearable sweat sensors.Adv Mat2018;30(23):1707442. [3]Zhu X,Ju Y,Chen J,Liu D,Liu H.Nonenzymatic wearable sensor forelectrochemical analysis of perspiration glucose.ACS Sensors2018;3(6):1135–41.[4]Sumra H.Gatorade’s sweat-reading hydration wearable is almost ready forprime time[Internet].London:Wareable Ltd.;2018Mar20[cited2019Mar20].Available from:https:///wearable-tech/gatorade-sweat-hydration-wearable-2019.[5]Lugmayr L.CES2019healthcare wearable:L’Oreal My Skin Track pH breakscover[Internet].Wearable Technologies;2019Jan8[cited2019Mar6].Available from:https:///2019/01/ces-2019-healthcare-wearable-loreal-my-skin-track-ph-breaks-cover/.[6]Bariya M,Nyein HYY,Javey A.Wearable sweat sensors.Nat Electron2018;1:160–71.[7]Brothers MC,DeBrosse M,Grigsby CC,Naik RR,Hussain SM,Heikenfeld J,et al.Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms.Acc Chem Res2019;52(2):297–306.[8]CincyTech.Wearable sweat sensor pioneer issued key device patent[Internet].Washington,DC:EurekAlert!/AAAS;2018Dec18[cited2019Mar6].Available from:https:///pub_releases/2018-12/c-wss121818.php. [9]Heikenfeld JC,inventor;University of Cincinnati,assignee.Sweat sensing withchronological assurance.United States patent US10136831B2.2018Nov27.360 E.K.Wilson/Engineering5(2019)359–360Engineering 2 (2016) xxx–xxxNews & Highlights可穿戴式汗液传感器Elizabeth K. WilsonSenior Technology Writer汗液和血液一样含有电解质和生物分子,可以揭示人类从水合作用到肾功能的各方面生理状况。