沸石分子筛和活性炭吸附_脱附甲苯性能对比(PDF)
活性炭与分子筛吸附乙烯诱导巴厘菠萝开花的研究

活性炭与分子筛吸附乙烯诱导巴厘菠萝开花的研究刘胜辉;吴青松;张秀梅;孙伟生;孙光明【摘要】为了开发一种新的菠萝催花方法,以200 mg/L乙烯利溶液为对照,研究了两种吸附乙烯饱和的吸附剂(活性炭和沸石分子筛)对菠萝品种巴厘的综合催花效果.结果表明:(1)活性炭吸附乙烯的能力及释放乙烯的速度极显著高于分子筛;(2)沸石分子筛与乙烯利均可诱导巴厘菠萝100%成花,活性炭处理抽蕾率为30%~60%,二者花期要比乙烯利延迟1~2 d;(3)催花后的菠萝小果数及单果重与乙烯吸附剂的投入量有关,吸附剂投放多,会降低菠萝果实的小果数及果重,0.1~0.2 g分子筛以及活性炭处理催花后所结的菠萝小果数均极显著高于对照乙烯利,单果重无显著差异;(4)分子筛及活性炭催花与乙烯利催花所结的果实在可溶性固形物、总酸和维生素C 含量上无显著差异.沸石分子筛吸附乙烯可以成功诱导巴厘菠萝开花,是一种新型的菠萝催花方法.【期刊名称】《广东农业科学》【年(卷),期】2014(041)010【总页数】4页(P38-41)【关键词】活性碳;分子筛;乙烯吸附剂;巴厘菠萝;催花【作者】刘胜辉;吴青松;张秀梅;孙伟生;孙光明【作者单位】中国热带农业科学院南亚热带作物研究所;海南省菠萝种质创新与利用工程技术研究中心,广东湛江524091;中国热带农业科学院南亚热带作物研究所;海南省菠萝种质创新与利用工程技术研究中心,广东湛江524091;中国热带农业科学院南亚热带作物研究所;海南省菠萝种质创新与利用工程技术研究中心,广东湛江524091;中国热带农业科学院南亚热带作物研究所;海南省菠萝种质创新与利用工程技术研究中心,广东湛江524091;中国热带农业科学院南亚热带作物研究所;海南省菠萝种质创新与利用工程技术研究中心,广东湛江524091【正文语种】中文【中图分类】S668.3菠萝是我国重要的南亚热带果树之一,具有重要的加工和鲜食价值[1]。
VOC废气处理——活性炭与沸石转轮处理工艺对比分析

VOCs废气处理——活性炭与沸石转轮处理工艺对比分析作者:一气贯长空01沸石转轮及活性炭处理工艺1、沸石转轮处理工艺沸石转轮所具有的结构和特征与晶体相同,其表面结构为固体骨架,内部的孔穴可以吸附分子,孔穴之间存在孔道,孔道相互连接,分子在孔道中经过,由于孔穴的性质洁净,所以分子筛的孔径分布相对均一。
分子筛可以进行选择性吸附,依据其晶体内部孔穴的大小对分子的吸附和分子大小有关,吸附小分子,而较大分子会被排斥。
2、沸石转轮吸附浓缩原理沸石转轮的处理区、脱附区、冷却区组成浓缩区,有3个处理工序,分别为吸附、脱附、冷却,沸石转轮在各个区内运转是连续的。
VOC首先通过过滤装置,经过沸石转轮的处理区被沸石转轮吸附剂吸附,最后净化后的气体会从沸石转轮的处理区间中排出。
而有一部分的VOc吸附于沸石转轮中,在再生区经热风处理后脱附、浓缩。
沸石转轮在冷却区被冷却,经过冷却区的空气,再经过加热后作为再生空气使用,达到节能的效果。
3、沸石转轮吸附浓缩性能特点1)浓缩比大:浓缩倍数最低5倍,最高可达到15倍,处理设备的规格将会大大缩小,其优点是可以降低后续处理设备建造及运行成本。
2)运行费用低:沸石转轮吸附VOC时会产生压差,压降低,电力能耗会很大程度地降低。
3)操作简单,维护方便:沸石转轮整体系统先进,其设计结构是采用预组及模块化设计,安装方便,其操控模式特点为持续性及无人化。
4)吸、脱附效果好,废气处理效率高(95%以上):经过转轮浓缩后的废气,满足国家排放标准。
5)运行安全稳定:沸石转轮的组成主要是无机氧化物,不会燃烧,安全性高。
6)适用范围广:由于核心材料是分子筛,其具有惰性高的特点,对于活性炭难处理的苯乙烯和环己酮等具有热聚合性的V0c,也可以使用疏水性分子筛进行高效处理。
表面上的路易斯中心极性很强,沸石中引力场很强,主要原因是其中的笼或通道的尺寸较小。
因此,沸石转轮吸附质分子的吸附能力远超过其他类型的吸附剂,即使在其吸附质的分压(或浓度)很低的情况下,仍具有可观的吸附量。
活性炭纤维吸附去除甲苯综合性实验

活性炭纤维吸附去除甲苯综合性实验银玉容;施召才【摘要】选用市售的2种活性炭纤维样品作为吸附剂,在模拟甲苯废气环境中进行了甲苯吸附实验.结果表明:4.9988 g活性炭纤维1#在甲苯的进气质量浓度为6079 mg/m3时,吸附达到平衡的时间为40 min,甲苯吸附容量为41.85 mg/g;1.7035 g活性炭纤维2#在甲苯的进气质量浓度为2718 mg/m3时,吸附达到平衡的时间为20 min,甲苯吸附容量为30.90 mg/g.该实验涉及到实验装置的调校、气相色谱仪的使用和表面吸附理论,而且针对生活中的环境问题,能激发学生的实验兴趣,可作为环境类专业的综合实验,巩固学生的理论知识,培养学生的实践能力和创新能力.%Two kinds of activated carbon fiber bought from market were used as adsorptive.The toluene adsorption experiments were carried out in the environment of simulating toluene.The result showed that equilibrium adsorption was established within 40 min,the adsorption capacity reached 41.85mg/g when the initial toluene concentration was 6079mg/m3 and the weight of activated carbon fiber 1# was 4.9988g.For activated carbon fiber 2#,equilibrium adsorption time was 20min,and the adsorption capacity was 30.90mg/g, when the initial toluene concentration was 2718mg/m3 andthe weight of activated carbon fiber was 1.7035g. This experiment involves equipment adj usting,gas chromatograph using and theories of surface adsorption,and aiming at environmental problem in life,it can be used as a comprehensive experiment for students being in environment major,which is beneficial to strengthen students ’ theoretical knowledge and imp rove their practical and innovative ability.【期刊名称】《实验技术与管理》【年(卷),期】2016(033)006【总页数】4页(P28-30,37)【关键词】综合性实验;活性炭纤维;吸附甲苯【作者】银玉容;施召才【作者单位】华南理工大学环境与能源学院,广东广州 510006;华南理工大学环境与能源学院,广东广州 510006【正文语种】中文【中图分类】X511;G642.0实验教学是培养学生实践创新能力的重要途径。
沸石分子筛吸附

沸石分子筛吸附1. 引言沸石分子筛是一种具有微孔结构的天然或合成矿物,由于其独特的孔隙结构和化学性质,广泛应用于吸附分离、催化反应和离子交换等领域。
本文将详细介绍沸石分子筛吸附的原理、应用和优势。
2. 原理沸石分子筛是一种多孔材料,其结构由硅氧四面体和铝氧六面体组成的三维网络构成。
沸石分子筛的孔隙大小可以根据应用需求进行调控,通常在纳米尺度范围内。
这种孔隙结构使得沸石分子筛具有较大的比表面积和高度的孔隙容积,有利于吸附分子。
沸石分子筛的吸附原理是通过孔道中的静电作用、范德华力和电子云效应等相互作用力,将目标物质吸附在其表面。
静电作用是指沸石分子筛表面带有正负电荷,与目标物质之间的电荷相互作用。
范德华力是指沸石分子筛表面的分子与目标物质之间的非共价作用力。
电子云效应是指目标物质中的电子云与沸石分子筛孔道中的电子云之间的相互作用。
3. 应用3.1 吸附分离沸石分子筛在吸附分离领域有广泛应用。
由于其孔隙结构的可调控性,可以选择性地吸附分离不同大小、形状和极性的分子。
例如,沸石分子筛可以用于去除有机溶剂中的水分、去除废气中的有害物质、分离石油中的杂质等。
3.2 催化反应沸石分子筛也被广泛应用于催化反应中。
其孔隙结构可以提供大量的活性位点,促进反应物分子的吸附和反应发生。
沸石分子筛还可以调节反应物分子的扩散速率,提高反应的选择性和效率。
例如,沸石分子筛可以用于催化裂化、催化重整、催化氧化等反应。
3.3 离子交换由于沸石分子筛具有高度的孔隙容积和可调控的孔隙大小,可用于离子交换。
沸石分子筛表面带有正负电荷,可以吸附和释放离子。
通过调节沸石分子筛的孔隙结构和表面电荷,可以实现对特定离子的选择性吸附和分离。
离子交换广泛应用于水处理、废水处理、离子分离等领域。
4. 优势沸石分子筛具有以下优势:•高度的比表面积和孔隙容积,有利于吸附分子。
•可调控的孔隙大小和表面电荷,实现对特定分子的选择性吸附和分离。
•良好的热稳定性和机械强度,能够在高温和高压条件下使用。
甲苯在活性炭纤维上的吸附与脱附研究(精简版)

甲苯在活性炭纤维上的吸附与脱附研究甲苯在活性炭纤维上的吸附与脱附研究摘要:研究了新型高效吸附材料活性炭纤维(ACF)对甲苯废气的吸附及再生的效果。
利用GC-900气相色谱分析仪检测甲苯的浓度,通过实验研究甲苯在活性炭上的吸附与脱附。
实验结果表明,用该工艺处理的甲苯废气可以达标排放,实验对工业实际应用具有一定的指导意义。
关键词:活性炭纤维有机废气吸附再生废气治理是大气污染控制过程中的一个重要环节。
有机挥发性气体广泛存在于工业和家庭设施中,不仅给工农业生产造成影响,而且对人体的健康也有极大的危害。
空气中挥发性有机物平均孔径 /nm 单丝直径 /μm 苯吸附量 /% 厚度 /mm 粘胶基ACF 1 5~2 0 1000~1500 1 7~2 6 9~18 30 2 0~3 5 1 2 实验装置及流程采用氮气作为载气,通过鼓泡法产生甲苯气体,整套装置主要由甲苯发生器、吸脱附反应器、热水蒸气发生器/热空气发生器和回收装置四部分组成,装置流程如图1所示。
整个实验过程分为吸附和脱附两个阶段,在吸附过程中,通过鼓泡法产生的甲苯气体与干燥空气混合,从底部进入反应器,经过活性炭纤维吸附处理后排出,此时阀门12和17关闭;在脱附过程中,采用热的空气或者热的水蒸汽以逆向方式对饱和的活性炭纤维进行解吸,解吸过程所产生的甲苯和空气或者水蒸汽的混合气体经过冷凝回收,做进一步处理。
实验采用GC-900气相色谱分析仪测定反应器进出口甲苯的浓度,分析活性炭纤维的吸附和再生性能。
图1 活性炭纤维吸附甲苯废气的装置流程图 2 实验结果与讨论影响气体吸附的因素很多,主要有吸附剂的性质、吸附质的性质与浓度、吸附的操作条件及吸附器的大小和结构等。
其中吸附的操作条件有温度、操作压力、气体流速和气体进口浓度等。
本实验主要研究吸附的操作条件中对吸附的影响因素,由于实验温度为室温,操作压力为常压,所以实验中只考察气体流量、甲苯的进口浓度、ACF的填充高度的影响,以及对比了用水蒸气法和热空气法脱附两种再生方法。
VOC废气处理——活性炭与沸石转轮处理工艺对比分析

VOC废气处理——活性炭与沸石转轮处理工艺对比分析VOC(挥发性有机化合物)废气是工业生产过程中常见的一种废气,对环境和人体健康都具有很大的危害。
因此,VOC废气处理成为了工业生产中必不可少的环保工作。
目前,比较常用的VOC废气处理技术有活性炭吸附和沸石转轮吸附两种。
本文将对这两种技术进行比较分析。
活性炭吸附是一种常见的VOC废气处理技术,活性炭是一种具有很高的微孔比表面积的固体吸附剂,能够吸附废气中的VOC分子。
活性炭吸附技术具有操作简单、投资成本低、废气处理效率高等优点。
然而,活性炭吸附技术也存在一些缺点。
首先,活性炭的吸附容量有限,一旦达到饱和,就需要更换或再生,增加了管理和运维的成本。
其次,活性炭吸附过程中产生的低浓度VOC尾气问题也比较突出。
此外,活性炭废物的处理也带来一定的环境污染问题。
沸石转轮吸附是一种先进的VOC废气处理技术,其原理是通过沸石转轮吸附废气中的VOC分子,然后通过热脱附将吸附的VOC分子释放出来,再进行再生。
沸石转轮吸附技术具有吸附容量大、处理效率高、废气净化效果好等优点。
其次,沸石转轮吸附技术可以进行连续运行,无需停机更换吸附剂,减少了维护成本。
此外,沸石转轮吸附技术还可以利用废气中的热量,进行再生,实现能量的回收利用。
然而,沸石转轮吸附技术也存在一些问题。
首先,沸石转轮吸附设备的投资成本相对较高,需要较大的空间进行安装。
其次,沸石转轮吸附设备操作较为复杂,需要进行定期维护和保养。
此外,沸石转轮吸附技术对废气中的湿度较为敏感,废气中的过高湿度会影响吸附效果。
综合以上分析,活性炭吸附和沸石转轮吸附技术分别在吸附容量、运行稳定性以及投资成本等方面有各自的优缺点。
活性炭吸附技术成本较低,操作简单,适用于废气处理量较小的情况。
而沸石转轮吸附技术具有吸附容量大,处理效率高的特点,适用于废气处理量较大的情况。
因此,在选择合适的VOC废气处理技术时,需要综合考虑实际情况如处理量、投资成本和运行维护等因素,选择合适的技术,以实现废气处理的高效、经济和环保。
活性炭和沸石分子筛处理非稳定排放VOCs气体的性能比较(三)

活性炭和沸石分子筛处理非稳定排放VOCs气体的性能比较
(三)
2.3活性炭和沸石分子筛固定床的二甲苯吸附穿透曲线
图5所示为二甲苯气体通过相同高度的活性炭和沸石分子筛吸附柱时的吸附穿透曲线。
选取的吸附床截面风速分别约为0.3、0.4和0.5m˙s-1,活性炭动态吸附实验的进口浓度分别约288.2、315.8和301.0mg˙m-3;沸石分子筛实验动态吸附实验的进口浓度分别约为299.9、301.2和296.7mg˙m-3,吸附系统恒温30℃。
结果显示沸石分子筛和活性炭的各风速工况的穿透曲线均为典型的S型曲线。
以出口浓度为进口浓度的5%时作为穿透点,沸石分子筛在0.3、0.4和0.5m˙s-1工况下的穿透时间分别约为15.5、11.5和9.5h;活性炭在0.3、0.4和0.5m˙s-1工况下的穿透时间分别约为19、12.5和9h。
可见,沸石分子筛在断面风速较大时,吸附穿透时间已经超过活性炭,亦可维持较好的吸附速度。
从达到吸附平衡的时间来看,活性
炭的吸附饱和时间均大于沸石分子筛,故平衡吸附量也高于沸石分子筛,这与前述表征结果一致,活性炭是含有微孔和中孔的多孔结构,比表面积较大,吸附量更大。
在一定程度上,活性炭吸附二甲苯更有利。
在30℃、进气浓度为300mg˙m-3实验条件时,不同截面速度下的活性炭和沸石分子筛的单位传质区长度的平均传质量如表3所示,当截面速度为
0.3~0.5m˙s-1时,沸石分子筛单位传质区长度平均传质量是活性炭的约
1.42~1.66倍,说明沸石分子筛吸附速率更快。
随着风速的升高,吸附床紊流程度随之加大,平均传质量随之增加。
活性炭对不同有机物质的吸附能力比较研究

活性炭对不同有机物质的吸附能力比较研究1. 研究背景活性炭作为一种重要的吸附材料,广泛应用于环境治理、水处理、化学工业等领域。
其优异的吸附性能使其成为处理有机污染物的首选材料之一。
然而,不同有机物质的特性差异,可能导致它们在活性炭表面的吸附能力存在差异。
本研究旨在系统地比较活性炭对不同有机物质的吸附能力,以提供更好的活性炭选择和应用指导。
2. 研究目的本研究的目的是比较活性炭对不同有机物质的吸附能力,分析各种有机物质的吸附特性和机制,从而揭示活性炭吸附过程中的关键因素。
通过比较不同有机物质在活性炭上的吸附效果,可以为活性炭的选择和应用提供科学依据。
3. 研究方法本研究将采用以下步骤进行:3.1 试验样品准备选择一系列常见的有机物质,如苯、甲醇、乙醇和丙酮等作为试验样品。
制备一定浓度的这些有机物溶液,以便进行后续的吸附实验。
3.2 活性炭样品选择选择几种常见的活性炭样品作为研究对象。
确保这些样品具有不同的孔径分布、表面性质和化学组成。
3.3 吸附实验使用吸附实验仪器对各种有机物质在不同活性炭样品上的吸附性能进行测试。
根据实验结果,记录吸附量、吸附速率等关键参数。
3.4 数据处理和分析对吸附实验结果进行数据处理和分析,包括计算吸附等温线、动力学参数等。
通过比较不同有机物质在不同活性炭样品上的吸附性能,揭示活性炭对不同有机物质的吸附能力差异。
4. 预期结果和意义通过对不同有机物质在活性炭上的吸附能力比较研究,预计可以得出以下结论:- 不同有机物质在活性炭上的吸附能力存在差异,其大小与有机物质的特性有关。
- 活性炭的吸附能力与其表面性质和孔结构特征密切相关。
- 对于不同种类的有机物质,可能需要选择不同的活性炭样品以实现最佳的吸附效果。
本研究的结果将为活性炭选择和应用提供科学依据,有助于提高活性炭在环境治理和水处理领域的效能,同时也为相关研究和工程实践提供参考。
5. 研究计划本研究计划将于XX年X月开始,预计历时X个月。