不等式证明的常用基本方法(自己整理)
不等式的证明方法

不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
不等式证明的基本方法

不等式证明的基本方法不等式证明的基本方法包括:比较法;综合法;分析法;反证法;换元法等.下面,就不等式证明的常用方法作较为全面的归纳.【比较法】——是证明不等式的最基本、最重要的方法,它常用的证明方法有两种:1.作差比较法(1)应用范围:当欲证的不等式两端是多项式、分式或对数式时,常用此法.(2)步骤:“作差----变形----判断符号”.(3)变形——判断符号的主要途径和方法:①配方,将差式变形为若干个非负(或非正)数(式子)和的形式后判断差式的符号.②因式分解,将差式变形为若干个因式积的形式,再根据所有因式积的符号判断差式的符号.③分成几项,然后说明各项均为正(或负),判断差的符号.例1.已知a,b,c∈R+,求证:a3+b3+c3≥3abc.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)[(a−b)2+(b−c)2+(a−c)2](a+b+c),=(a+b+c)[a2+b2+c2-ab-bc-ca]=12∵ a,b,c∈R+,∴ a+b+c>0.又∵(a−b)2+(b−c)2+(a−c)2≥0,a+b+c>0,[(a−b)2+(b−c)2+(a−c)2](a+b+c) ≥0,即a3+b3+c3-3abc≥0,∴12∴a3+b3+c3≥3abc.(当且仅当a=b=c时取等号).例2.已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).证明:∵左边-右边=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n) =(b n-a n)(a-b),①当a>b>0时,b n-a n<0,a-b>0,∴①<0;当b>a>0时,b n-a n>0,a-b<0,∴①<0;当a=b>0时,b n-a n=0,a-b=0,∴①=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.(当且仅当a=b>0时取等号).即(a+b)(a n+b n)≤2(a n+1+b n+1),当且仅当a=b 是去等号.2.作商比较法(1)应用范围:当要证的式子两端是乘积或幂、指数形式时,常用此法.(2)方法:要证A>B ,常分以下三种情况:若B>0,只需证明 AB >1;若B=0,只需证明A>0;若B<0,只需证明 AB <1.(3)步骤:作商-----变形-----判断商数与1的大小. 例3.已知a ,b ∈R +,求证a a b b ≥a b b a .证明:∵ a ,b ∈R +,∴ a b b a >0,又∵ a a b ba b b a =(ab )a (ba )b =(ab )a−b . 当a>b>0时,ab>1,且a -b>0,故a ab b a b b a >1; 当b > a >0时,0<a b<1,且a -b<0,故a ab b a b b a>1;当a=b>0时,ab1,且a -b=0,故a ab b a b b a=1;综上所述,当a ,b >0是,都有a a b b ≥a b b a .例4 .已知a ,b 均为正实数,且a ≠b.求证:a 3+b 3>a 2b+ab 2. 证明:∵ a ,b 均为正实数,且a ≠b , ∵ a 3+b 3ab 2+a 2b =(a+b )(a 2−ab+b 2)ab(a+b)>2ab−ab ab=1,由于a 2b+ab 2>0,∵ a 3+b 3>a 2b+ab 2.说明:此题的常规证明方式为求差法.请读者自证.想一想①:证明下列不等式. 1.a 2+b 2≥2(a -b -1).2.已知a>2,b>2,求证:a+b<ab.【综合法】用综合法证明不等式,就是利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的演绎推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”推“可知”,逐步推出“结论”. 综合法属演绎推理范畴.例5.(1)若a 、b 、c 是不全相等的正数,求证:lg a+b 2+lg b+c 2+lg a+c2>lga +lgb +lgc .(2)已知a>2,求证log a (a -1)·log a (a+1)<1.证明:(1)∵ a ,b ,c ∈R +,∴a+b 2≥√ab >0,b+c 2≥√bc >0,a+c 2≥√ac >0,又a ,b ,c 为不全相等的正数,故有,a+b 2∙b+c 2∙a+c 2>abc ,∴ lga+b 2∙b+c 2∙a+c 2> lg abc.即lga+b 2+lg b+c 2+lga+c 2>lga +lgb +lgc .(2) ∵ a >2,∴log a (a -1)> 0,log a (a+1)> 0.又∵ log a (a -1)≠log a (a+1),∴ √log a (a −1)∙log a (a +1)<log a (a−1)+log a (a+1)2=12log a (a 2−1)<12log a a 2=1,∴ log a (a -1)·log a (a+1)< 1.例6.已知a ,b ,c∈R +,求证:(1)(ab+a+b+1)(ab+ac+bc+c 2)≥16abc . (2).3≥-++-++-+ccb a b bc a a a c b 证明:(1) ∵ ab+a+b+1=(a+1)(b+1),ab+ac+bc+c 2=(a+c)(b+c).又∵a ,b ,c∈R +, ∴ ,021>≥+a a ,021>≥+b b ,02>≥+ac c a ,02>≥+bc c b于是有,,04)1)(1(>≥++ab b a ,04))((2>≥++abc c b c a ∴ (a+1)(b+1)(a+c)(b+c)≥16abc . (当且仅当a=b=c=1时取等号). (2)法1.(利用二元均值不等式a+b ab 2≥).∵ .332223)()()(=-++≥-+++++=-++-++-+c b b c c a a c b a a b c c b a b b c a a a c b∴ .3≥-++-++-+cc b a bb c a aa cb (当且仅当a=b=c 时取等号).法2. (利用三元均值不等式a+b+c 33abc ≥).∵ .33333)()(=-+≥-+++++=-++-++-+ba cb ac ca bc ab cc b a bb c a aa c b∴ .3≥-++-++-+c c b a b b c a a a c b (当且仅当a=b=c 时取等号). 法3. (利用六元均值不等式a+b+c+d+e+f 66abcdef ≥).∵ .3363)(=-≥-+++++=-++-++-+cb ca bc ba ac ab cc b a bb c a aa c b∴ .3≥-++-++-+cc b a bb c a aa cb (当且仅当a=b=c 时取等号).例7.已知a 、b 、c ∈R +,求证:.23≥+++++a c b c b a b a c 有人给出了如下的证明:∵ a 、b 、c ∈R +,∴ .232223))()((333≥≥+++≥+++++ac bc ab abc a c c b b a abc a c b c b a b a c ∴.23≥+++++a c b c b a b a c (当且仅当a=b=c 时取等号). 你认为正确吗? 剖析:在上述的证明过程中,第二个“≥”,应为“≤”. 在不等式的基本性质中,只有同向的不等式才有传递性,此题的推证在第二个“≥”处,是传递不了的.正确的证明如下..233293))()((13))()((3213)]111)](()()[(213)111)(()1()1()1(33=-=-+++⋅+++⋅≥-++++++++++=-+++++++=-++++-++++-+++=+++++a c c b b a c a c b b a c a c b b a c a c b b a c a c b b a c b a ca cb ac b c b a b a c b a a c b c b a b a c∴.23≥+++++a c b c b a b a c (当且仅当a=b=c 时取等号). 说明:(1)用均值定理证明不等式时,要为运用定理对式子作适当变形,可把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘. (2)在用不等式的基本性质“传递性”时,要注意只有“不等号同向”时,才能进行传递.在用同向不等式相乘时,一定要强调各个不等式均为正,否则会出错. 例8.已知a ,b ∈R +,且a+b=1,求证:ax 2+by 2≥(ax+by)2. 证明:法1.(求差法).∵ a ,b ∈R +,且a+b=1,∴ ax 2+by 2-(ax+by)2=a(1-a)x 2+b(1-b)y 2-2abxy=ab(x 2+y 2-2xy)=ab(x -y)2≥0, 即ax 2+by 2≥(ax+by)2. (当且仅当x=y 时取等号). 法2.(利用二元均值不等式).∵ a ,b ∈R +,且a+b=1,∴ ax 2+by 2=(a+b)( ax 2+by 2)=(ax)2+(by)2+ab(x 2+y 2) ≥(ax)2+(by)2+2abxy=(ax+by)2. 即ax 2+by 2≥(ax+by)2. 法3.(利用柯西不等式).∵ [22)()(b a +][22)()(y b x a +]≥(ax+by)2. 又∵a ,b ∈R +,且a+b=1,∴ ax 2+by 2≥(ax+by)2.想一想②:证明下列不等式1.求证:a 2+b 2+c 2+3≥2(a+b+c).2.设a ,b ,c 是不全等的正实数,求证:cab b ac a bc ++>a+b+c.3.已知0<x <1,求证:xb x a -+122≥2)(b a +.【分析法】分析法是指从需证的不等式出发,寻求使这个不等式成立的充分条件.其特点和思路是“执果索因”,即从“未知”求“需知”,逐步靠拢“已知”.分析法一般用于综合法难以证明的不等式.通常表现为不等式的形式复杂,难以直接由一端过渡到另一端的问题. 例9.若0<a<c ,b<c. 求证:<<--a ab c c 2ab c c -+2.证明:要证<<--a ab c c 2ab c c -+2,只要证,<-<--c a ab c 2ab c -2, 即只要证 |a -c|<ab c -2,只要证 (a -c)2<c 2-ab ,即a 2-2ac<-ab ,∵ a>0,∴ 只要证a+b<2c. 由题设条件,显然有a+b<2c 成立.将每一步倒推回去, ∴ 原不等式成立.说明:分析法的书写方式是比较繁琐的.因此我们在实际做题时,往往用分析法“探路”,用综合法来书写表述.在探路时,也可以用“⇐”来表述. 例10.设 x>0,y>0,x≠y ,求证:21223133)()(y x y x +<+证明:∵ x>0,y>0,x≠y ,,)()(.)()(32233212231332y x y x y x y x +<+⇐+<+.0)()(2),(32222222233>-++⇐+<⇐y x y x y x y x y x ∴ 原不等式成立.想一想③:设0>>b a ,求证:.8)(28)(22bb a ab b a a b a -<-+<-【反证法】即要证明不等式A>B ,先假设A ≤B ,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.反证法的逻辑原理是命题“P ”与它的否定“非P ”的真假相反,所以要证一个命题为真,只要证它的否定为假即可.推出矛盾的四种途径:①推理的结果与基本定义、公理、定理等相矛盾——与基本结论相矛盾. ②推理的结果与已知条件相矛盾——与已知相矛盾. ③推出两个相互矛盾的结论——自相矛盾. ④推理的结果与假设相矛盾——与假设相矛盾.例11.对实数a ,b ,c ,A ,B ,C ,有20aC bB cA -+=,且20ac b ->.求证:20AC B -≤. 证明:假设AC -B 2>0, 则20AC B >≥,由已知有 20ac b >≥,相乘得 22aAcC b B >,∵ 2aC cA bB +=,∴ 222()44aC cA b B aAcC +=<, 整理得 2()0aC cA -< , 这与“任何实数的平方非负”相矛盾(与基本结论相矛盾). ∴ 假设不成立,故20AC B -≤.例12.已知a>0,b>0,且a+b>2. 求证:1+b a与1+ab中,至少有一个小于2.证明:假设1+b a与1+a b都不小于2,则1+b a≥2且1+a b≥2,∵ a>0,b>0,∴ 1+b≥2a ,1+a≥2b , 两式相加可得1+b+1+a≥2(a+b),即a+b≤2,这与已知a+b>2矛盾( 与已知相矛盾). 故假设不成立, ∴1+b a与1+a b中,至少有一个小于2.例13.设0 < a , b , c < 1,求证:(1 - a )b ,(1 - b )c ,(1 - c )a 不可能同时大于14. 证明:假设(1 - a )b >14>0, (1 - b )c >14>0, (1 - c )a >14>0, 则三式相乘:(1 - a )b •(1 - b )c •(1 - c )a >164. ①又∵0 < a , b , c < 1 , ∴ 0<(1-a)a ≤[(1−a )+a 2]2=14, 同理:(1-b)b ≤14,(1-c)c ≤14 . 以上三式相乘: (1 - a )a •(1 - b )b •(1 - c )c ≤164. 与①矛盾(自相矛盾).∴ 原命题成立例14.已知数列{a n }是首项为2,公比为12的等比数列,S n 是它的前n 项和.(1)用S n -1表示S n ;(2)是否存在自然数c 和k ,使得 12k k S c S c+->-成立.解:(1)由求和公式可得242nn S -=-,从而可得S n =.2211+-n S (2)假设存在符合条件的自然数c 和k ,则11242242kk k k S c c S c c-+----=>---,从而114320422kkc c ----⨯<--⨯. ① 令 4t c =-, 则由①式得 (t -3×21-k )(t -2×21-k )<0,即112232k kt --⨯<<⨯,∴ 1223k t -<⨯<,② ∵ c ,k 为自然数,知t 为整数,这样一来 ②式不成立. 故这样的自然数c 和k 不存在. 想一想④:已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a ,b , c > 0.【换元法】在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,使其结构和关系变得更清晰、明朗,从而使证明过程变得简洁、明快.常用的换元有如下几种形式.(1)三角代换:多用于条件不等式的证明. 当所给条件中变量t 的取值在[-a ,a]时,可令t=acos θ,θ∈[0,π]或t=asin θ,θ∈[−π2,π2];当变量t 为任意实数时,可令t=atan θ, θ∈[−π2,π2].例15.若x 2+y 2≤1,求证:|x 2+2xy -y 2|≤√2.证明:由x 2+y 2≤1,设x=rsin α,y=rcos α,|r|≤1,则|x 2+2xy -y 2|=|r 2cos 2α+2r 2cosαsinα−r 2sin 2α|=r 2|cos2α+sin2α|=√2r 2|sin(α+π4)| ≤√2r 2≤√2.(2)代数代换:若条件中有a >0,b >0,且a +b =1时,可令a=12+t ,b =12−t ,t ∈(−12,12); 或a>0,b>0,c>0.且a+b+c=1时,可令a=13+t 1,b =13+t 2,c =13+3,t 1+t 2+t 3=0. 也可将其中的一部分作代换.例16.已知a >0,b >0,且a +b =1 求证:(a +1a )(b +1b )≥254.证法1:(代数代换) 设a =12+t ,b =12-t .∵ a +b =1,a>0,b>0,∴ |t |<12.∵ (a +1a )(b +1b )=2222222241)45(211)21(211)21(11t t t t t t t bb a a --+==-+-⋅+++=+⋅+ =42541162541231625242=≥-++t tt .(当且仅当t=0,即a=b=12时取等号). 即(a +1a )(b +1b )≥254.证法2. (三角换元法)∵ a>0,b>0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,). ∴ αααααααααα2244442222cos sin 1cos sin cos sin )cos 1)(cos sin 1(sin )1)(1(+++=++=++b b a aαααααααααα2sin 416)2sin 4(2sin 4322sin 82sin 2sin 4)2cos sin 2cos (sin 1622222422244+-=+-=+-=. 又∵ 12sin 2≤α,∴ 2516)2sin 4(,3142sin 4222≥+-⇒=-≥-αα①.且 .412sin 412≥α②. 由①②可得,.4252sin 416)2sin 4(222≥+-αα 即 (a +1a)(b +1b)≥254..例17.证明:若a > 0,则√a 2+1a 2 -√2≥a +1a -2.证明:设x= a +1a ,y=√a 2+1a 2,a > 0,x ≥2,y ≥√2.则只需证明y −√2≥x −2,2π∵ x 2-y 2=( a +1a )2-(√a 2+1a 2)2=2,x+y=( a +1a )+ √a 2+1a 2≥2+√2, (当a = 1时取“=” ).∴ x -y=x 2−y 2x+y≤2+√2=2−√2. 即 y −√2≥x −2,∴ 原不等式成立.习题3.11.求证:a 2+b 2+1≥a+b -ab .2.已知a>b>0,求证:a a b b>(ab)a+b 2.3.已知0 < x < 1, 0 < a < 1,试比较|log a (1-x)|与|log a (1+x)|的大小.4.已知a>b>c ,求证1140a b b c c a++≥---.5.已知224x y +=,求证:|4y +≤.6.已知a ,b ,c 为正实数,且a 2+b 2=c 2.求证:a n +b n <c n (n 为大于2的整数).7.设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3.8.已知a>1,b>1,c>1. 求证:22212111a b c b c a ++≥---.参考答案想一想①:1.提示:求差后配方.2. 提示:求差或求商.1212111=+<+=+a b ab b a . 想一想②:提示:1.求差法,也可以用二元均值不等式. 2.用二元均值不等式. 3.仿例8.只有x+(1-x)=1.想一想③:要证原不等式成立,只需证:.8)(2)(8)(222bb a b a a b a -<-<-∵b a ≠只需证.4)(14)(22bb a a b a +<<+只需证bb a a b a 212+<<+,只需证b a a b <<1∵0>>b a 上式成立 ∴原不等式在0>>b a 时成立.想一想④:假设a < 0,∵ abc > 0, ∴ bc < 0. 又由a + b + c > 0,则b + c = -a > 0,∴ ab + bc + ca = a (b + c ) + bc < 0, 与题设矛盾. 又若a = 0,则与abc > 0矛盾, ∴ 必有a > 0. 同理可证:b > 0, c > 0.习题3.11.求差配方.2.求商分类讨论.3.作商或作差比较大小均可4.1140a b b c c a++≥---,.4)11)](()[(,411≥-+--+-⇐-≥-+-⇐c b b a c b b a c a c b b a5.三角代换.6.构造以a 、b 、c 为三边,且以c 为斜边的直角三角形. 令)900(sin cos 00<<==θθθc b c a ,.)2(cos cos 0sin sin 01cos 01sin 022><<<<<<<<n n n θθθθθθ,∴,,∵,nnnnnnnc c c b a =+<+=+)cos (sin )cos (sin 22θθθθ∴. 7.由不等式的对称性,不妨设a ≥b ≥c ,则a c b -+≤b a c -+≤c b a -+, 且b a c --2≤0, c b a --2≥0.∴1113--++--++--+=--++-++-+c b a cb ac b a c b a c b a c b a c b a c b ac b a b a c b a c c a b a c b c b a -+--+-+--+-+--=222≥0222=-+--+-+--+-+--ba cb ac b a c a c b b a c c b a , ∴cb a cb ac b a c b a -++-++-+≥3.8.由1,1,1a b c >>>,可设1,1,1,0,0,0a x b y c z x y z >>>-=-=-=.于是xz z y y x x z z y y x a c c b b a 222222222)2()2()2()1()1()1(111++≥+++++=-+-+- =1234)(43=⋅⋅⋅≥++xzz y y x x z z y y x .。
不等式证明方法大全

不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。
常用的推导法有数学归纳法、递推法、代入法等。
其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。
(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。
(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。
通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。
2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。
常用的数学运算包括加法、减法、乘法、除法等。
在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。
3.几何法:几何法是指通过将不等式转化为几何问题进行证明。
几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。
通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。
4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。
这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。
5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。
通过逐个讨论每种情况,可以得出要证明的不等式的证明。
6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。
反证法常用于证明不等式的唯一性和存在性。
7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。
通过不断进行递推,可以逐步证明不等式的成立。
以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。
在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。
不等式的证明(一)

若x为锐角,则
sin x<x<tanx
sin x<tanx sin x>tanx
线性规划简述
1.含义:简言之,图象法解二元不等式 2.步骤:一面二线三找点 来先去后为最值
解析几何的基础
形
数
点
坐标
线
方程
面
不等式
二元不等式与平面域
1.直线对坐标平面的划分 (二元一次不等式表示平面域)
直线 Ax By C 0 ,将坐标平面划分成两个半平面 Ax By C 0和 Ax By C 0 ,位于同一半平面内的点 其坐标必适合同一个不等式 (同侧同号,异侧异号)
b
不妨设a b 0,则 a 1, a b 0 b
故
a
ab
1,当且仅当a
b时, 等号成立
b
所以,原不等式成立
作业:
1.课本P: 75 B组 Ex1①② 2.(2010年湖北)设 a>0,b>0,称a2abb 为a,b的调和平均数
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法1:如图,易得
y=x y = tanx
y = sinx
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法2:如图单位圆O中,角x的终边为OT,易得
S⊿APO<S扇形APO<S⊿ATO
而 S⊿APO= AO • PM sin x
注1.若2个不等式需进行减(除)运算,一般是转换成加(乘)
注2.若变量间具有约束关系时,等号没有可加(乘)性
3.重要的(经典)不等式
⑩ □2+○2≥±2□○ 当且仅当○=□时等号成立
11 均值不等式: 若□,○∈R+,则
浅谈不等式的几种常用证明方法

浅谈不等式的几种常用证明方法
不等式的证明方法有很多种,下面介绍几种常用的证明方法:
1、分类讨论法:将问题分成几类,每类分别分析,最后综合得出结论。
2、数学归纳法:从一般情况出发,逐步推理,最后得出结论。
3、证明反证法:从结论出发,推理出充分条件,如果充分条件不能满足,则得出结论为假,否则得出结论为真。
4、极限法:通过极限的思想,求出不等式的解集。
5、图形法:通过绘制不等式的图形,判断不等式的解集。
6、数学归纳法:从一般情况出发,逐步推理,最后得出结论。
考研不等式的证明方法

考研不等式的证明方法考研数学中,不等式是一个重要的内容,常常需要我们掌握不同不等式的证明方法。
下面我将介绍一些常用的不等式证明方法,帮助你更好地应对考试中的不等式问题。
1.直接法:根据不等式的定义,使用已知条件或基本的数学性质进行证明。
例如,证明对任意实数x,都有,x,≥0。
2.反证法:假设不等式不成立,然后通过证明导致矛盾,进而推出不等式成立。
例如,证明对任意实数x,都有x^2≥0。
3.数学归纳法:适用于一些具有递归结构的不等式。
首先证明当n=1时不等式成立,然后假设n=k时不等式成立,再证明n=k+1时不等式也成立。
例如,证明对任意正整数n,都有1+2+3+...+n≥(1+n)/21.AM-GM不等式证明方法:(1) 直接法:根据AM-GM不等式的定义进行证明。
例如,证明对任意正实数a和b,有(a+b)/2≥√(ab)。
(2) 反证法:假设不等式不成立,然后推导出矛盾。
例如,证明对任意正实数a和b,有(a+b)/2≥√(ab)。
(3)数学归纳法:适用于多个变量的情况。
首先证明n=2时不等式成立,然后假设n=k时不等式成立,再证明n=k+1时不等式也成立。
(4) Jensen不等式:根据Jensen不等式的定义进行证明。
例如,证明对任意凸函数f(x),有f((x1+x2+...+xn)/n)≤(f(x1)+f(x2)+...+f(xn))/n。
2. Cauchy-Schwarz不等式证明方法:(1) 直接法:根据Cauchy-Schwarz不等式的定义进行证明。
例如,证明对任意实数a1,a2,...,an和b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2≤(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)。
(2) 三角不等式法:利用三角不等式和实数平方函数的性质进行证明。
例如,证明对任意实数a和b,有,ab,≤(a^2+b^2)/23.柯西不等式证明方法:(1) 直接法:根据柯西不等式的定义进行证明。
证明不等式的基本方法

证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备 欢迎下载 证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式.
[自主梳理] 1.三个正数的算术—几何平均不等式:如果a,b,c>0,那么_________________________,当且仅当a=b=c时等号成立. 2.基本不等式(基本不等式的推广):对于n个正数a1,a2,…,an,它们的算术平均不小于
它们的几何平均,即a1+a2+…+ann≥na1·a2·…·an,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键.
题型一 用比差法与比商法证明不等式 1.设t=a+2b,s=a+b2+1,则s与t的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s【解析】∵s-t=b2-2b+1=(b-1)2≥0,∴s≥t.【答案】A 2.设a=(m2+1)(n2+4),b=(mn+2)2,则( D ) A.a>b B.a<b C.a≤b D.a≥b 解析:∵a-b=(m2+1)(n2+4)-(mn+2)2=4m2+n2-4mn=(2m-n)2≥0,∴a≥b.答案:D
3.设a,b∈R,给出下列不等式:①lg(1+a2)>0;②a2+b2≥2(a-b-1);③a2+3ab>2b2;④,其中所有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②. 学习必备 欢迎下载 题型二 用综合法与分析法证明不等式 4.(1)已知x,y均为正数,且x>y,求证:2x+1x2-2xy+y2≥2y+3; (2)设a,b,c>0且ab+bc+ca=1,求证:a+b+c≥3. 证明 (1)因为x>0,y>0,x-y>0,
2x+1x2-2xy+y2-2y=2(x-y)+1x-y2=(x-y)+(x-y)+1x-y2
≥33x-y21x-y2=3,所以2x+1x2-2xy+y2≥2y+3. (2)因为a,b,c>0,所以要证a+b+c≥3,只需证明(a+b+c)2≥3. 即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1, 故需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca). 即证:a2+b2+c2≥ab+bc+ca.
而ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)成立. 所以原不等式成立. 5.已知a、b都是正实数,且ab=2.求证:(1+2a)(1+b)≥9. 证明:法一 因为a、b都是正实数,且ab=2,所以2a+b≥22ab=4. 所以(1+2a)(1+b)=1+2a+b+2ab≥9.
法二 因为ab=2,所以(1+2a)(1+b)=(1+2a)1+2a=5+2a+1a.
因为a为正实数,所以a+1a≥2 a·1a=2.所以(1+2a)(1+b)≥9. 法三 因为a、b都是正实数,所以(1+2a)(1+b)=(1+a+a)·
1+b2+b
2
≥3·3a2·3·3b24=9·3a2b24.又ab=2,所以(1+2a)(1+b)≥9. 思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 题型三 放缩法证明不等式
6.已知0A. M>N B. M解析:∵00,1+b>0,1-ab>0,
∴M-N=1-a1+a+1-b1+b=2-2ab1+a1+b>0.答案:A 7.若a,b∈R,求证:|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|. 证明 当|a+b|=0时,不等式显然成立.当|a+b|≠0时, 由0<|a+b|≤|a|+|b|⇒1|a+b|≥1|a|+|b|,
所以|a+b|1+|a+b|=11|a+b|+1≤11+1|a|+|b|=|a|+|b|1+|a|+|b| 学习必备 欢迎下载 =|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|. 思维升华 (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: ①变换分式的分子和分母,如1k2<1kk-1,1k2>1kk+1,1k<2k+k-1,1k>2k+k+1.上面不等式中k∈N*,k>1; ②利用函数的单调性;
③真分数性质“若00,则ab(2)在用放缩法证明不等式时,“放”和“缩”均需把握一个度. 8.设n是正整数,求证:12≤1n+1+1n+2+…+12n<1. 证明 由2n≥n+k>n(k=1,2,…,n),得 12n≤1n+k<1n.
当k=1时,12n≤1n+1<1n;当k=2时,12n≤1n+2<1n;…,当k=n时,12n≤1n+n<1n, ∴12=n2n≤1n+1+1n+2+…+12n题型四 用反证法证明不等式 9.设a>0,b>0,且a+b=.证明:
(1)a+b≥2; (2)a2+a<2与b2+b<2不可能同时成立. 【解析】由a+b=,a>0,b>0,得ab=1.
(1)由基本不等式及ab=1,有a+b≥2=2,即a+b≥2. (2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0得0这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.
10.若a>0,b>0,且1a+1b=ab. (1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由. 【解】(1)由ab=1a+1b≥2ab,得ab≥2.当且仅当a=b=2时等号成立. 故a3+b3≥2a3b3≥42,且当a=b=2时等号成立.所以a3+b3的最小值为42. (2)由(1)知,2a+3b≥26ab≥43.由于43>6,从而不存在a,b,使得2a+3b=6.
1.证明不等式的常用方法有五种,即比较法、分析法、综合法、反证法、放缩法. 2.应用反证法证明数学命题,一般有下面几个步骤:(1)分清命题的条件和结论;(2)作出与命题结论相矛盾的假设;(3)由条件和假设出发,应用正确的推理方法,推出矛盾结果;(4)断定产生矛盾结果的原因在于开始所作的假设不真,于是原结论成立,从而间接地证明了命题为真. 3.放缩法证明不等式时,常见的放缩法依据或技巧主要有:(1)不等式的传递性;(2)等量加学习必备 欢迎下载 不等量为不等量;(3)同分子(母)异分母(子)的两个分式大小的比较.缩小分母、扩大分子,分式值增大;缩小分子、扩大分母,分式值减小;全量不少于部分;每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩有时需便于求和.
4.放缩法的常用措施:(1)舍去或加上一些项,如a+122+34>a+122;(2)将分子或分母放大(缩
小),如1k2<1kk-1,1k2>1kk+1,1k<2k+k-1,1k>2k+k+1 (k∈N*且k>1)等.
1.设a、b是正实数,给出以下不等式:①ab>2aba+b;②a>|a-b|-b;③a2+b2>4ab-3b2;④ab+2ab>2,其中恒成立的序号为( D ) A.①③ B.①④ C.②③ D.②④ [答案]D[解析]∵a、b∈R+时,a+b≥2ab,∴2aba+b≤1,∴2aba+b≤ab,∴①不恒成立,
排除A、B;∵ab+2ab≥22>2恒成立,故选D. 2.设M=1210+1210+1+1210+2+…+1211-1,则( B ) A.M=1 B.M<1 C.M>1 D.M与1大小关系不定 【解析】∵210+1>210,210+2>210,…,211-1>210,
∴M=1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210210个=1.【答案】B
3.若不等式tt2+9≤a≤t+2t2在t∈(0,2]上恒成立,则a的取值范围是( B ) A.16,1 B.213,1 C.16,413 D.16,22
【解析】由已知a≥1t+9t,a≤1t+21t2,对任意t∈(0,2]恒成立,于是只要当t∈(0,2]时,
a≥1t+9tmax,
a≤1t+21t2min,记f(t)=t+9t,g(t)=1t+21t2,可知两者都在(0,2]上单调递减,
f(t)min=f(2)=132,g(t)min=g(2)=1,所以a∈213,1. 【答案】B 4.已知a,b为实数,且a>0,b>0.则a+b+1aa2+1b+1a2的最小值为( C ) A.7 B.8 C.9 D.10
【解析】因为a>0,b>0,所以a+b+1a≥33a×b×1a=33b>0,①