三维有限元计算实例

合集下载

有限元实例分析

有限元实例分析

作业一:有限元分析实例实例:请对一个盘轴配合机构进行接触分析。

轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。

盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。

问题分析说明(1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。

由于为过盈配合,属于大变形,故应考虑几何非线性的影响。

(2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计算时间。

分析过程由两个载荷步组成, 第一个载荷步为过盈分析, 求解过盈安装时的情况。

第二个载荷步为将轴从盘心拔出时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的接触应力。

它们都属于大变形问题, 属于非线性问题。

在分析时需要定义一些非线性选项来帮助问题的收敛。

(3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。

模型建立的分析说明(1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。

盘轴接触问题属于面面接触, 目标面和接触面都是柔性的,将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接触面。

分别创建名为为part1、part2的部件。

(2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入0 . 3,并将定义的材料属性赋予给part1和part2。

如下图所示。

(3)进入装配模块,创建两者间的装配关系。

(4)进入分析步模块定义名为step1和step2的两个分析步。

(5)进入相互作用模块,创建相互作用属性,设置摩擦系数;然后定义接触关系。

如下图所示。

(6)进入载荷模块,创建边界条件,依次定义名为BC -2(类型为:完全固定)、BC -3(类型为:位移/转角,约束U1、UR3),分析步均为Initial 。

有限元分析及应用课件

有限元分析及应用课件
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。

三维有限元分析

三维有限元分析

三维有限元模拟-坏死损伤大小和旋转角度对股骨头坏死经大粗隆切口入路的截骨术的压力减少的影响摘要背景预测截骨术对股骨头坏死的有效程度,要依赖于由特定的截骨术引起的压力的变化。

因此,三维有限元应运而生,它是用于计算不同范围的股骨头坏死前路或后路股骨头截骨术引起的股骨头压力的变化。

研究方法标准复合股骨的计算机断层扫描图像,被用来创建三维有限元完好无损的股骨模型。

基于完整的模型,三种不同水平坏死区的27种模型和9种不同的旋转的截骨术被创建。

不同模型的?冯?米塞斯应力分布,被用来分析,并和单腿站立负重情况进行对比。

发现(1)不同的坏死范围,前部旋转截骨术比后旋转截骨术的压力减少值更大。

(2)?冯?米塞斯应力随着转动角度的增大而减小。

当坏死范围小的时候,减少的比率会比较的。

(3)因为局部坏死区的高压力,有大范围股骨头坏死的股骨头很可能发展为塌陷;然而,相对于塌陷,由于在坏死区域和健康骨质的交界处的高压力,小坏死区很可能发展为更大的坏死灶。

解释经大粗隆切口的旋转截骨术技术要求很高,而且,它伴随着复杂的风险,临床上进行手术之前,应该进行细致的规划,包括进行有限元分析。

简介股骨头坏死是一个很重要的问题,因为它的病理变化经常会导致影响到髋关节的功能。

经大粗隆切口的旋转股骨头截骨术被用于年轻患者和活动多的患者的手术,它能减轻股骨头的压力,并且能增加每日活动的生物机械应力的承载力。

这种手术有两个类型,一个是前部旋转截骨术,它由Sugioka提出(1978);另一个是后旋转截骨术,由Kempf et al提出(1984)。

截骨术的成功取决于在改变负重传输。

在修复过程中,必须减少坏死骨区的压力水平。

伴随着可靠地预测特定股骨头坏死的压力变化,手术成功可能会增多。

大量的研究显示,股骨头坏死的演变与坏死区的大小和范围有关。

虽然,大家对那种方法更好没达成共识,但那种能评价骨坏死区大小和分布的方法,能更好的预测股骨头远期变化。

为了减少缺血性股骨头治疗的不确定性,一些学者在平片的基础上,发明了股骨头坏死区的分期系统。

有限元分析及工程应用-2016第五章

有限元分析及工程应用-2016第五章

5.1 轴对称问题有限单元法
机械学院
(1)三角形截面环形单元 1)位移模式
qe ui wi u j wj uk wk T
与平面三角形单元相似,仍选取线 性位移模式,即:
u w

a1 a4

a2r a5r

aa36zz
u Niui N ju j Nkuk
,
A2

1 2 2(1 )
单元中除了剪应力外其 它应力分量也不是常量
在轴对称情况下,由虚功原理可推导出单元刚度矩阵
K e VBT DBddrdz 2 BT DBrdrdz
5.1 轴对称问题有限单元法
机械学院
(1)三角形截面环形单元
2)单元刚度矩阵
K e VBT DBddrdz
Loads>Apply>Structural>Displacement>Symmetry B.C.>On Lines,用鼠标在图形窗口上拾取编号为“1”和“3”的线段 ,单击[OK],就会在这两条线上显示一个“S”的标记,即 为对称约束条件。
(7)施加面力:Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Lines,用鼠标在图形 窗口上拾取编号为“4”,单击[OK] 在“VALUE Load PRES value”后面的输入框中输入“10”,然后单击[OK]即可
5.1 轴对称问题有限单元法
机械学院
(3)应用实例 (3)建立几何模型:
MainMenu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimension,在出现的对话框中分别输入:X1=5,X2=10,Y1=0, Y2=20,单击[OK]。

梁模型有限元计算_ANSYS Workbench有限元分析实例详解(静力学)_[共7页]

梁模型有限元计算_ANSYS Workbench有限元分析实例详解(静力学)_[共7页]

4.2 梁单元静力学分析当结构长度对横截面的比率超过10:1,沿长度方向的应力为主要分析对象,且横截面始终保持不变时,即应用梁单元。

梁单元可用于分析主要受侧向或横向载荷的结构,如建筑桁架、桥梁、螺栓等。

在WB中默认为铁摩辛柯(Timoshenko)梁单元,即Beam188和Beam189,可计算弯曲、轴向、扭转和横向剪切变形。

其中Beam188采用线性多项式作为形函数,Beam189采用二次多项式作为形函数,当WB的Mesh设置中Mesh-Element Midside Nodes为Dropped 时,即为Beam188;Mesh-Element Midside Nodes为Kept时,即为Beam189。

有限元对单元特性的描述包括单元形状、节点数目、自由度和形函数。

表4-2-1为Beam 单元的对比。

在WB中默认设置为二次单元。

一般来说,线性单元需要更多的网格数才能达到二次单元的精度。

选用二次单元可提高计算精度,这是因为二次单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且二次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。

但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,计算内存消耗也多,因此,在使用时应权衡考虑计算精度和时间。

表4-2-1 Beam单元对比4.2.1 梁模型有限元计算用ProE建立一桁架模型,导入WB进行分析计算。

(1)ProE建模。

在草绘界面绘制一边长为30mm、40mm、50mm的三角形,然后选择投影命令将草绘图形投影到基准面上,另存为x_t文件(其他3D软件操作方法类似)。

(2)导入模型。

如图4-2-1所示,在Import设置中,Operation设为Add Frozen,Line Bodies 设为Yes。

– 65 –– 66 – 图4-2-1 Import ProE模型文件设置(3)梁截面赋值,并定义截面方向,最后用Form New Part将三根梁合并为一个部件,如图4-2-2所示。

轮毂轴承接触受力的整体三维有限元分析

轮毂轴承接触受力的整体三维有限元分析

轴承的承载能力 、 寿命和刚度等特性与轮毂轴承 内部滚动体的接 无法直接适用于对轮毂轴承的分析 。 计算机处理 能力的提 高和数值分 析技术 的进 步使得有 限 础, 对轮毂轴承 内部接触问题的分析便成为轮毂轴承力学分析的 元越来越广泛低应用于轴承接触分析 中。 王大力等日 介绍了A ss ny 重要 内容 。 在轴承接触 分析 中的应用 ; 浩等『 徐 q 研究 了使用有限元法基于单 触负荷分布有关 ,因此接触力学 构成 对轴承进行力学分析的基
(C D C ne, u zo gU ies yO c n e T c n l y Wu a 3 0 4 C ia A e trH ah n nvri f i c & eh o g , h n4 0 7 , hn ) t Se o
( L o a gb a n e e rh isi t , u y n 7 0 4, hn ) u y n e t grsac t ue L o a g4 1 3 C i a i n t
一9一 Βιβλιοθήκη 综 合国内外关于轴 承接触 的有限元分 析可 以看 出 : 接触进行 , 很少见针对轴承整体进行的接触分析 , 更少 见关于轮 毅轴承接触受力 的i维有 限元仿真分析 ;
不 大于母线 长度 的12 ; /0 垂直母线方 向 , 单元尺寸不大 于接触 区 () 5对于滚子必需额外施加所有滚子沿周向均匀分布的约束 。 这是 因为虽 然我们 忽略保持架和滚子 之间的相互作用力 ,
中图分类 号 :H1 3 文 献标识 码 : T 2 A
1 概述
轮毂轴承是汽车的关键零部件之一。轮毂轴承按照与汽车
了径 向力作用下轴承内部载荷分布 ,并给 出了至今仍在采用 的
计算最大滚子负荷的公 式 : 一= F, 。 p 5r Z

有限元分析凸轮轴ansys分析文本

有限元分析凸轮轴ansys分析文本

ANSYS软件及应用姓名:李丽锋班级:Y120103学号:s1*******专业:动力机械及工程基于proe和ansys的三维凸轮轴有限元分析利用Proe三维软件对凸轮轴的建模,并用ansys软件对所做实体进行求解,利用ansys精确的求解能力对实体进行求解,能够很精确的求解。

建立如下图所示的三维凸轮轴已知弹性模量:106GPa 材料密度:7.15e+3kg/m3 泊松比:0.3 长度单位为:mm 求出其前10阶自由模态辅助软件:proe三维制图具体操作步骤:1:通过proe三维制图软件绘制出凸轮,并保存为副本*.igs格式,存储作业文件夹中!2:指定工作目录:打开指定工作目录,打开ANSYS。

3:定义单元类型Solid大类的10nodes92类型的4:定义材料属性 Main Menu~Preprocessor~MaterialProps~Material Models,弹出如上右图所示在图示框中令“EX=106e3,PRXY=0.3”单击【OK】按钮关闭对话框,同时在上一级目录选择Density,弹出对话框,令DENS=7.15e+3,最后关闭对话框,完成材料属性设置。

5:Ansys菜单 file~improt~iges选中之前保存的副本tulun*.igs文件,导入ansys中,如上右图!6:完善凸轮轴菜单路径 Main Menu~Preprocessor~Modeling~Create~Volumes~Cylinder~By Dimensions打开对话框,令RAD1=0,RAD2=0.8,Z1=1,Z2=3,THETA1=0,THETA2=360,单击【OK】按钮关闭对话框完成设置。

7:改变当前坐标系为直角坐标系。

执行Utility Menu ~WorkPlane ~Change Active CS to ~ Global Cartesian命令。

8:复制实体到指定位置菜单路径 Main Menu~Preprocessor~Modeling~Copy~Volumes弹出对话框,用鼠标左键选定被复制实体,单击【OK】,弹出如下左图对话框,令DX=0,DY=0,DZ=3,单击【OK】完成实体的复制!9:改变当前坐标系为直角坐标系。

有限元分析及应用第7、9讲

有限元分析及应用第7、9讲

三、ANSYS有限元分析基础
建立实体模型
ANSYS中的坐标系
在ANSYS的前处理中(建模、加载),都将涉及到坐标系的问题。 ANSYS软件中系统预定了三个坐标系。它们位于模型的总体的坐标原 点。三种类型为: CS,0: 总体笛卡尔坐标系 CS,1: 总体柱坐标系 CS,2: 总体球坐标系 数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐 标系中创建的。
热分析 电磁场分析 流体动力学分析 声场分析 压电分析 各种场的耦合分析(如热结构、热电、流体结构等)
三、ANSYS有限元分析基础
4、ANSYS分析的一般流程
(1)建立有限元模型
建立和修改工作文件名或标题
(3)结果后处理
通用后处理 时间历程后处理
定义单元类型
定义材料属性数据 建立几何模型 划分网格
三、ANSYS有限元分析基础
5、示例分析——分析过程现场操作
(a)有限元模型
(b)应力云图
1、模型使用映射网格,在画网格之前需要将L2和L3合并(concatente); 2、element type选择Quad 8node 82,即8节点等参单元; 2、圆弧等分为20份,其余边等分为10份;
三、ANSYS有限元分析基础
三、ANSYS有限元分析基础
1、ANSYS软件的安装
2、ANSYS工作界面
3、ANSYS的主要功能
4、ANSYS分析的一般流程
5、示例分析
三、ANSYS有限元分析基础
1、ANSYS软件的安装
(1)、ANSYS软件的硬件要求 操作系统:Windows XP 64; windows XP 32 ;
Windows 2000以上
图1-1 离散的铁路控制塔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档