反重力铸造技术

合集下载

基于数值模拟的K418B_高温合金精密铸件组织与性能研究

基于数值模拟的K418B_高温合金精密铸件组织与性能研究

第15卷第8期精密成形工程组织与性能研究刘明亮1,李九霄1,张静雯1,杜大帆2a,隋大山2a,董安平2a,2b,孙宝德2a,2b,何林2a,王迪1,齐飞3,易出山3(1.上海工程技术大学材料科学与工程学院,上海 201620;2.上海交通大学 a.上海市先进高温材料及其精密成形重点实验室 b.金属基复合材料国家重点实验室,上海 200240;3.中国航空发动机集团南方工业有限公司,湖南株洲 412000)摘要:目的探究高温合金调压铸造的充型凝固过程,研究调压铸造工艺对铸件组织缺陷和力学性能的影响规律,并验证数值模拟对实际生产指导的可靠性。

方法以某精密构件为研究对象,借助ProCAST数值模拟软件模拟了铸件的调压铸造充型凝固过程并对组织缺陷的形成进行了预测。

对成形铸件的特征关键部位进行了取样,通过金相显微镜和扫描电子显微镜对铸态试样的微观组织进行了观察,借助准静态万能拉伸试验机测试了特征试样的室温和高温(750 ℃)拉伸性能,并对断口形貌进行了观察和分析。

结果数值模拟结果表明,金属液充型平稳,凝固过程基本符合自上而下的顺序凝固,铸件缺陷较少,缩孔体积分数仅为0.22%。

实验结果表明,铸件的铸态组织为典型的树枝晶组织,晶粒尺寸细小均匀;二次枝晶间距较小,组织致密,缩松缩孔缺陷较少,这与数值模拟的结果吻合较好;铸件的平均抗拉强度超过900 MPa,最大伸长率为15%,该铸件具备较好的综合力学性能。

结论通过数值模拟方法指导铸造生产具有一定的可靠性,同时,通过调压铸造工艺可以生产出具有较好组织和力学性能的高温合金薄壁铸件。

关键词:数值模拟;精密铸件;调压铸造;二次枝晶间距;晶粒尺寸;拉伸性能DOI:10.3969/j.issn.1674-6457.2023.08.016中图分类号:TG249.5 文献标识码:A 文章编号:1674-6457(2023)08-0129-10Microstructure and Properties of Precision Castings of K418BSuperalloy Based on Numerical Simulation收稿日期:2023-04-13Received:2023-04-13基金项目:国家科技重大专项(J2019-Ⅵ-0004-0117);航发产学研项目(HFZL2020CXY023)Fund:National Science and Technology Major Special Funding Project (J2019-Ⅵ-0004-0117); HangFa Industry-University- Research Cooperation Project(HFZL2020CXY023)作者简介:刘明亮(1996—),男,硕士生,主要研究方向为镍基高温合金反重力控压精铸成形。

铸造行业“十三五”技术发展规划纲要

铸造行业“十三五”技术发展规划纲要

编者按:2014年6月21日,经中国机械工程学会铸造分会(以下简称“全国铸造学会”)第九届理事会第三次理事长工作会议讨论研究,决定编制《铸造行业“十三五”技术发展规划纲要》(以下简称“《纲要》”)。

全国铸造学会秘书处确定了《纲要》的“编制路线”和编制时间进度,并成立了“专家咨询委员会”和“编制工作委员会”。

《纲要》编制工作会议于2014年9月27日在西安召开,确定了《纲要》编制的涵盖专业领域分类和工作分工、内容及编写规范、工作进度安排。

《纲要》审查会于2015年5月17日在沈阳召开,对《纲要》每个专业领域进行了认真、严格的审查,提出了有针对性的修改和补充意见。

《纲要》审定会于2015年10月25日在长沙召开,审议通过了修改后的《纲要》。

《纲要》的有关内容作为上报材料的重要组成部分已先后提交至中国工程院和工信部。

《纲要》作为科学技术发展专题规划,纳入由中国铸造协会组织编制的《铸造行业“十三五”发展规划建议》。

《纲要》由18个部分组成:铸钢、铸铁、铸造有色合金、铸造金属基复合材料、铸造耐磨材料、快速铸造、熔模铸造、压铸、反重力铸造、挤压铸造、消失模铸造、数值模拟、网络制造、造型材料、铸造装备与检测技术、环保与安全、汽车铸件、铸造标准。

在《中国制造2025》十大重点领域中,有8个领域与铸造密切相关,甚至有些领域铸造技术作为发展瓶颈,大部分领域都对铸造技术有强烈的需求,或者需要铸造技术和铸造产品进行支撑。

《纲要》作为铸造行业技术发展指导性的文件,在政策层面,向政府提出了建设性的建议;在技术发展层面,对各个专业技术领域提出了重点发展的项目及关键技术。

《纲要》具有全局性、战略性和前瞻性。

为了充分发挥《纲要》的指导作用,扩大《纲要》在铸造行业技术发展方面的影响,在全国铸造学会第九届理事会第四次理事长工作会议上决定将《纲要》在《铸造》杂志上全文刊登。

本刊在本期刊登《纲要》全文,以馈广大读者。

铸造行业“十三五”技术发展规划纲要(中国机械工程学会铸造分会编制)引言“十二五”期间,我国在铸造技术创新、行业进步等方面取得了显著成果。

轻合金薄壁件铸造成形技术

轻合金薄壁件铸造成形技术

轻合金薄壁件铸造成形技术作者:罗艳归邹采栋来源:《科技资讯》 2015年第13期罗艳归1 邹采栋2(1.国家知识产权局专利局专利审查协作广东中心广东广州 510530;2华南理工大学金属材料近净成型实验室广东广州 510640)摘要:概述了轻合金薄壁件的性能特点;介绍了轻合金薄壁件精确铸造成形技术,主要介绍了石膏型、熔模铸造、压力铸造及反重力铸造技术,以及这些铸造在技术轻合金薄壁件精确成形方面的优缺点和发展情况。

关键词:轻合金薄壁件铸造技术精确成形中图分类号:TG376文献标识码:A文章编号:1672-3791(2015)05(a)-0101-01国内外航空航天、汽车船舶等行业为了追求轻量化目的,已经采用高性能轻合金材料,如铝、镁、钛等合金[l-3],同时在结构设计上采用轻量化结构,例如薄壁结构、整体和带筋结构等。

这类轻合金工件采用精密铸造技术制造是非常高效的。

这类轻合金铸件一般具有如下特点:(1)结构复杂:轮廓结构复杂,内部多腔,用其他制造或机械加工方法难以完成;(2)薄壁:铸件最小壁厚较小,局部甚至薄至2mm以下;(3)尺寸精度高:铸件的内腔和外形一次成形,铸件接近零部件的最终形状,可以少加工或不加工。

(4)铸件质量性能高:其质量性能达到I类铸件要求。

1 石膏模铸造石膏模铸造的铸件具有尺寸精度高、表面光洁及残留应力低的优点,同时具有复制模样精确,热导率低,易完整成形薄壁部位的特点,可铸出壁厚为0.5mm的铸件。

然而,石膏型铸造也有以下缺点:石膏型传热能力差,当铸造壁厚较大的铸件时,厚大处容易出现缩松、缩孔等缺陷;透气性极差,铸件易形成气孔、呛火等缺陷[4]。

在20世纪80年代初,国内兵器工业第七零研究所采用石膏模成功地生产出了压气机叶轮铝合金铸件产品,且成品率达到85%以上[5]。

美国泰克(TEC)公司采用熔模石膏型铸造生产出了薄壁复杂的优质铝合金整体铸件,其尺寸精度一般可达±0.254mm,最高可达±0.076mm,最小壁厚可以达到0.8mm[6]。

铸造高强耐热Mg-Y-Nd(-Gd)-Zr和Mg-Gd-Y-Zr系镁合金组织性能和铸造缺陷对比

铸造高强耐热Mg-Y-Nd(-Gd)-Zr和Mg-Gd-Y-Zr系镁合金组织性能和铸造缺陷对比

2021年第1期/第70卷镁合金专题iW\B15铸造局强耐热M g-丫-N d(_G d)-Z r和M g- G d-丫—Z r系镁合金组织性能和铸造缺陷对比陈荣石1,周波1’2,李吉林1’3,单智伟4(1.中国科学院金属研究所,辽宁沈阳110016; 2.中国科学技术大学材料科学与工程学院,辽宁沈阳110016; 3.北方 民族大学材料科学与工程学院,宁夏银川750021; 4.西安交通大学金属材料强度国家重点实验室,陕西西安710049)摘要:以Mg-Y-Nd(-Gd>-Zr和Mg-Gd-Y-Zr系高强耐热镁合金为分析对象,从铸造成形方法和铸造缺陷两个方面进行了比较。

结果表明,这些合金可以采用砂型铸造、金属型铸造、熔模铸造、低压熔模铸造和半固态触变成形等方法铸造;铸造缺陷(如热裂和疏松等)形成机理及其对力学性能的影响与其他合金相比没有明显区別;建立了疏松缺陷与力学性能的关系。

关键词:高强耐热;镁合金;铸造工艺;铸造缺陷作者简介:陈荣石(1968-),男,博 士,研究员,研究方向为镁合金材料及其应用。

电 话:138****0711,E-mail: rschen@im 中图分类号:TG292文献标识码:A文章编号:|〇〇1-4977(2021 ) 01-0015-06收稿曰期:2020-09-11。

相比于铝合金,镁合金的绝对强度低、耐热性能差,这极大地限制了镁合金的应用范围111。

添加稀土元素能有效地改善镁合金的强度与耐高温性能;另外,稀土元素在铸造镁合金中还可以有效地减少气体、氧化物和有害元素的影响,起净化、除 气和除渣的作用121。

这些稀土高强耐热镁合金一般采用金属型或砂型重力铸造工艺。

低压反重力铸造过程中的熔体充型平稳,并且外加压力能增加补缩效果,可以改善夹杂和疏松缺陷,但关于低压铸造高强耐热镁合金的研究报道相对较少,目前还处于研发的起步阶段。

高强耐热镁合金还可以采用熔模铸造和半固态触变成形方法,但这两种成形方法在高强耐热撲合金中还不成熟。

Altair Inspire Cast 2019低压铸造学习笔记

Altair Inspire Cast 2019低压铸造学习笔记

A ltair Inspire Cast 2019低压铸造学习笔记By 蝰蛇设计6 Low-Pressure Die-Casting (LPDC)Low pressure die casting is a variant of the casting process also known as counter gravity filling (low velocity of injection) where you have better control of the fluid during filling. The ingate position should be at the bottom of the part, and the material must fill from the bottom to the top.•Low pressure die casting is a metal casting process generally used in situations that require high-quality manufacturing.•In low-pressure casting, molten aluminum is slowly drawn into a metal mold or die through a riser tube while kept under constant and controlled pressure.•This process helps avoid oxidation, cold currents, and air inclusions,generally producing the excellent surface finish and highly accurate dimensions.•It is much slower and therefore more costly than high pressure die casting.Low pressure die casting steps 低压压铸是铸造工艺的一种变体,也称为反重力填充(低注射速度),您可以在填充过程中更好地控制流体。

TiAl合金精密成形技术发展现状及展望

TiAl合金精密成形技术发展现状及展望

精 密 成 形 工 程第14卷 第1期 44 JOURNAL OF NETSHAPE FORMING ENGINEERING2022年1月收稿日期:2021-08-16基金项目:国家重点研发计划(2020YFB2008300)作者简介:谢华生(1966—),男,博士,研究员,主要研究方向为先进钛合金精密成形技术。

TiAl 合金精密成形技术发展现状及展望谢华生,刘时兵,赵军,张志勇,包春玲(沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室,沈阳 110022) 摘要:TiAl 合金是一种优异的轻质耐高温结构材料,在航空、航天、汽车、兵器等热端部件制造领域具有广阔的应用和发展前景,但其较低的室温塑性、韧性和较差的冷/热加工性能,限制了其工程化的进程。

为挖掘TiAl 合金的应用潜力,国内外研究机构和企业从材料设计、组织性能调控到成形工艺等方面开展了卓有成效的研究。

总结了近年来国内外在TiAl 合金精密成形领域的研究进展,包括精密铸造、铸锭冶金、粉末冶金和增材制造技术,目前,TiAl 合金精密铸造叶片和热加工叶片已成功应用到航空发动机上,粉末冶金成形和增材制造技术在复杂构件成形和板材成形上体现出独特优势,但仍需在低成本化和工艺稳定性上进一步提升。

关键词:TiAl 合金;精密成形;精密铸造;铸锭冶金;粉末冶金;增材制造 DOI :10.3969/j.issn.1674-6457.2022.01.006中图分类号:TG146.2 文献标识码:A 文章编号:1674-6457(2022)01-0044-11Development Status and Prospect of Precision Forming Technology for TiAl Alloy XIE Hua-sheng , LIU Shi-bing , ZHAO Jun , ZHANG Zhi-yong , BAO Chun-ling(State Key Laboratory of Light Alloy Casting Technology for High-end Equipment, ShenyangResearch Institute of Foundry, Co., Ltd., Shenyang 110022, China)ABSTRACT: As an excellent lightweight and high temperature resistant structural material, TiAl alloy has wide application and development prospect in hot end components for aviation, aerospace, automobile, weapons, etc. However, due to its poor cold and hot workability, low room temperature plasticity and fracture toughness, there are still great obstacles in further engineering. To tap the application potential of TiAl alloy, research institutions and enterprises all over the world have carried out fruitful re-search from material design, microstructure and property regulation to forming process. The work summarized the research pro-gress in precision forming of TiAl alloy in recent years, including investment casting, ingot metallurgy, powder metallurgy and additive manufacturing technology. At present, TiAl alloy investment casting blades and hot working blades have been success-fully applied to aeroengines. Powder metallurgy forming and additive manufacturing technology show unique advantages in complex component forming and sheet metal forming. However, they still need to be further improved in terms of low cost and process stability.KEY WORDS: TiAl alloy; precision forming; investment casting; ingot metallurgy; powder metallurgy; additive manufacturingTiAl 合金是一种新型的耐高温结构材料,具有低密度(3.8~4.2 g/cm 3)、高比强、高比刚、优异的高温抗蠕变和抗氧化等性能,在600~1000 ℃温度下应用极具竞争力。

材料成型工艺考试复习题目及答案

材料成型工艺考试复习题目及答案

1 充型能力的影响因素金属的流动性浇注条件铸型填充能力2 浇口杯的作用承接金属液防止和溢出减轻液流对型腔的冲击分离溶渣和气泡防止进入型腔增加充型压力头3 横浇道的作用(1)横浇道的稳流作用:收缩式浇注系统扩张式浇注系统(2)横浇道的流量分配作用:远离直浇道的流量大流量不均匀性克服不均匀性的措施:对称设置内浇道;横浇道断面沿液流方向逐渐缩小;设置浇口窝;采用不同断面内浇道。

(3)横浇道的排渣作用浇注系统主要排渣单元4冒口补缩的条件和要求1)冒口的凝固时间应大于或等于铸件(被补缩部分)的凝固时间。

2)冒口应有足够大的体积,以保证有足够的金属液补充铸件的液态收缩和凝固收缩3)在铸件整个凝固的过程中,冒口与被补缩部位之间的补缩通道应该畅通。

即使扩张角始终向着冒口。

5 浇注位置选择的原则①铸件的重要加工面应朝下或位于侧面:②铸件宽大平面应朝下:③面积较大的薄壁部分应置于铸型下部或垂直:④易形成缩孔的铸件,较厚部分置于上部或侧面:⑤应尽量减少型蕊的数量:⑥要便于安放型蕊、固定和排气:6 湿型砂的组成及性能要求原砂(或旧砂)100 粘土(膨润土)1-5% 煤粉少于8% 水分少于6% 以及其它附加物1) 紧实率和含水量湿型砂不可太干,因为干的型砂虽然流动性极好,但是型砂中膨润土未被充分润湿,性能较为干脆,起模困难,砂型易碎,表面的耐磨强度低,铸件容易生成砂孔和冲蚀缺陷。

型砂也不可太湿,否则型砂太粘,造型时型砂容易在砂斗中搭桥和降低造型流动性,还易使铸件产生针孔、气孔、呛火、水爆炸、夹砂、粘砂等缺陷。

一是紧实率,代表型砂的手感干湿程度;另一是含水量,代表型砂的实际水分含量。

2_) 透气率砂型的排气能力除了靠冒口和排气孔来提高以外,更要靠型砂的透气率。

因此砂型的透气率不可过低,以免浇注过程中发生呛火和铸件产生气孔缺陷。

3) 常温湿态强度湿型砂必须具备一定强度以承受各种外力的作用。

4)湿压强度一般而言,欧洲铸造行业对铸铁用高密度造型型砂的的湿压强度值要求较高。

第2章 砂型铸造讲解

第2章  砂型铸造讲解

第六—第二章砂型铸造铸型:铸造生产中使液态金属成为固态铸件的容器。

容器的内部称型腔,其轮廓相当于所制铸件的外形。

根据铸型特点分:一次型——砂型、熔模、石膏型、实型铸造(消失模铸造);半永久型——泥型、陶瓷型、石墨型铸造;永久型——金属型、压力、挤压、离心铸造;根据浇注时金属所承受的压力状态分:重力作用下的铸造和外力作用下的铸造金属液在常压下完成浇注,称为自由浇注或常压浇注。

金属液在外力作用下实现充填和补缩,如压力铸造、挤压铸造、离心铸造和反重力铸造。

砂型铸造:是利用型(芯)砂制造铸型的铸造方法。

整模造型分模造型一、概述1 缺点、优点:砂型铸造是铸造生产中最广泛的一种方法,世界各国用砂型铸造生产的铸件占总产量的80-90%。

型砂:将原砂或再生砂+粘结剂+其它附加物所混制成的混合物。

砂型(芯):型(芯)砂在外力作用下成形并达到一定的紧实度或密度成为砂型(芯)。

2 砂型的种类湿型:由原砂、粘土、附加物及水按一定比例混碾而成湿型砂;用湿型砂春实,浇注前不烘干的砂型。

干型:经过烘干表面干型:表面仅有一层很薄(15-20mm)的型砂被干燥,其余部分仍然是湿的。

化学自硬砂型:砂型靠型砂自身的化学反应而硬化。

造型:制造砂型的工艺过程。

造芯:制造砂芯的工艺过程。

选择合适的造型(芯)方法和正确的造型(芯)工艺操作,对提高铸件质量、降低成本、提高生产率有极重要的意义。

1 按型(芯)砂粘(固)结机理分类机械粘结造型(芯)、化学粘结造型(芯)、物理固结造型(芯)2 按造型(芯)的机械化程度分类(1)手工造型(芯)手工造型(芯)是最基本的方法,这种方法适应范围广,不需要复杂设备,而且造型质量一般能够满足工艺要求,所以到目前为止,在单件、小批量生产的铸造车间中,手工造型(芯)仍占很大比重,在航空、航天、航海领域应用广泛。

缺点:劳动强度大、生产率低、铸件质量不易稳定。

模样造型、刮板造型、地坑造型,各种造型方法有不同的特点和应用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档