污泥热解技术

合集下载

工艺方法——热解技术处理固体废物

工艺方法——热解技术处理固体废物

工艺方法——热解技术处理固体废物工艺简介固体废弃物热解是指在无氧或缺氧条件下,使可燃性固体废物在高温下分解,最终成为可燃气体、油、固形碳的化学分解过程,是将含有有机可燃质的固体废弃物置于完全无氧的环境中加热,使固体废弃物中有机物的化合键断裂,产生小分子物质(气态和液态)以及固态残渣的过程。

固体废物热解利用了有机物的热不稳定性,在无氧或缺氧条件下使得固体废物受热分解。

热解法与焚烧法相比是完全不同的两个过程,焚烧是放热的,热解是吸热的;焚烧的产物主要是二氧化碳和水,而热解的产物主要是可燃的低分子化合物:气态的有氢、甲烷、一氧化碳,液态的有甲醇、丙酮、醋酸、乙醛等有机物及焦油、溶剂油等,固态的主要是焦炭或碳黑。

焚烧产生的热能量大的可用于发电,量小的只可供加热水或产生蒸汽,就近利用。

而热解产物是燃料油及燃料气,便于贮藏及远距离输送。

热解原理应用于工业生产已有很长的历史,木材和煤的干馏、重油裂解生产各种燃料油等早已为人们所知。

但将热解原理应用到固体废物制造燃料,还是近几十年的事。

国外利用热解法处理固体废物已达到工业规模,虽然还存在一些问题,但实践表明这是一种有前途的固体废物处理方法。

热分解过程由于供热方式、产品状态、热解炉结构等方面的不同,热解方式各异:1、按供热方式可分成内部加热和外部加热。

外部加热是从外部供给热解所需要的能量。

内部加热是供给适量空气使可燃物部分燃烧,提供热解所需要的热能。

外部供热效率低,不及内部加热好,故采用内部加热的方式较多。

2、按热分解与燃烧反应是否在同一设备中进行,热分解过程可分成单塔式和双塔式。

3、按热解过程是否生成炉渣可分成造渣型和非造渣型。

4、按热解产物的状态可分成气化方式、液化方式和碳化方式。

5、按热解炉的结构将热解分成固定层式、移动层式或回转式。

由于选择方式的不同,构成了诸多不同的热解流程及热解产物。

综合而言,热解方法适用于城市固体废弃物、污泥、工业废物如塑料、橡胶等。

污泥处置各种方法的优缺点对比及可行性分析

污泥处置各种方法的优缺点对比及可行性分析

污泥处置各种方法的优缺点对比及可行性分析摘要:污泥是城市污水处理过程中产生的一种副产品,其处置是环境保护和可持续发展的重要课题。

本文将以污泥处置的各种方法为研究对象,分析其优缺点,并进行可行性分析,旨在为污泥处理技术的选择提供参考。

关键词:污泥处置;优缺点对比;可行性分析1. 引言污泥是城市污水处理厂产生的固体废弃物,包含有机物、无机物、微生物和其他污染物,具有较高的湿度和生物稳定性,对环境和人类健康造成潜在风险。

因此,合理有效地处理污泥是城市污水处理的重要任务。

2. 污泥处置方法2.1 厌氧消化厌氧消化是将污泥投放到密闭的厌氧消化池中,在无氧环境下进行发酵和分解的一种方法。

优点是能有效降解有机物并转化为沼气,具有能源回收的功能;缺点是需要占用较大面积,且处理过程中产生的沼渣需要进一步处理。

2.2 氧化消化氧化消化是将污泥投放到通氧环境中进行生物氧化和降解的过程。

优点是处理过程稳定可控,并能有效去除有机物和部分无机物,但需要提供充足的氧气,且产生的废水需要进一步处理。

2.3 热解技术热解技术是利用高温将污泥进行分解和气化的过程,产生的气体可用于能源回收。

优点是能有效降解有机物,减少体积,并实现能源回收;缺点是需要高温设备和大量能源供给,成本较高。

2.4 焚烧技术焚烧技术是将污泥在高温下进行燃烧和灭菌的过程,能有效降低污泥的体积和减少有机物的负荷。

优点是能够彻底处理有机物并达到无害化要求,但产生的烟气需要进行二次处理,且会产生二氧化碳等温室气体。

2.5 堆肥技术堆肥技术是将污泥与其他有机废物混合进行分解和发酵的过程,在适宜的条件下转化为有机肥料。

优点是能够实现有机物的转化和资源的回收利用,但处理过程需要一定的时间和空间。

3. 优缺点对比对以上污泥处置方法进行比较,可以得出如下结论:- 厌氧消化和氧化消化具有较好的处理效果,能够稳定降解有机物,并能实现能源回收;- 热解技术和焚烧技术能够对污泥进行有效处理和体积减少,但成本较高;- 堆肥技术实现有机物的资源化利用,但处理周期较长。

污泥处理处置方法

污泥处理处置方法

污泥处理处置方法
污泥是由污水处理过程中产生的固体废物,其中含有有机物、固体颗粒、重金属等污染物。

污泥处理的目标是有效去除有害物质,减少对环境的影响,并寻找合适的处置方式。

以下是常见的污泥处理处置方法:
1. 厌氧消化:将污泥与特定的微生物一起置于密封的容器中,通过微生物的作用将有机物降解成沼气和有机肥。

这种方法可以减少污泥的体积,同时产生可再利用的能源。

2. 热解处理:通过加热污泥,将有机物分解为油、气和固体残渣。

这种方法可以有效减少污泥的体积和重金属含量,并利用产生的油和气作为能源。

3. 堆肥处理:将污泥与有机废物混合,经过适当的处理和通风,利用微生物的作用将污泥转化为有机肥料。

这种方法可以减少污泥的体积,同时产生有机肥料用于土壤改良。

4. 焚烧处理:将污泥在高温条件下燃烧,将有机物热解为气体和灰渣。

焚烧可以有效减少污泥体积,同时具有杀菌作用,但需要注意处理过程中产生的废气和灰渣的处理。

5. 填埋处理:将污泥置于特定的填埋场中,隔离于环境之外。

这种方法可以有效减少污泥的体积,但需要注意填埋场的选择和管理,避免对周边环境造成污染。

除了上述方法外,还有一些新兴的污泥处理技术正在研究和发展中,如生物炭化、微波辅助处理等。

这些方法在处理效果、经济性和环境友好性等方面具有潜力,但需要进一步验证和应用。

污泥的热解动力学实验研究

污泥的热解动力学实验研究
污泥 的热解 动力学 实验研 究
刘龙 茂
污泥的热解动力学实验研究
Ex ermen alSt d n Py ol ss K et s o u e p i t u y o r y i i i fSldg n c
刘龙茂
陈建林
李 娣
齐 凯
( 染控 制 与资 源化研 究 国家重点 实验 室 南京 大学环境 学院 南京 20 9 ) 污 103
fr x o et lnerl h aa tr f q ec co a dat ai nryE) f yoyikn t s f ld ed r g e e p nni tga。teprmeesIr u nyf tr n ci t neeg o rlt iei u g u i n ai e a A v o p c co s n
环 境保 护科学
第3 4卷
第5 期
20 0 8年 1 O月
污泥 的热 解 实 验 采用 热 重 分 析 仪 ( 日本 岛津 TGA 2 0 进 行研 究 , 验 中通 人 流动 的氮气 气 5 H) 实
2 污 泥 热解 动 力学参 数 求解
t e3 s a e r ac l t d t b an t e e u t n o y o y i i e is o l d  ̄ h t g s we e c lu a e o o t i h q a i fp r l tck n t fsu g o c
干馏 和热 分解 的作用 下 , 污泥转 化 为油 、 、 使 水 不凝 性气 体 ( G) 炭 4种 物 质 。所 以 , 解 法 不 但 NC 和 热 可 以得到 宝贵 的气 体 、 体 燃 料 , 时可 以得 到性 液 同
进 了工 l metrE ,

热解气化

热解气化

3.2 热解气化处理技术废水污泥在热解气化过程中将经历一系列的物理和化学变化,在缺氧性、有蒸汽参与的还原性气氛条件下污泥将发生一系列化学反应(如表4所示)。

表4: 污泥在热解气化过程中的主要化学反应化学反应式处理过程中的热行为C(燃料中的碳)+ O2 →CO2 + 热量放热C + H2O(蒸汽)→CO + H2吸热C + CO2 →2CO吸热C + 2H2 →CH4放热CO + H2O →CO2 + H2放热CO + 3H2 →CH4 + H2O放热污泥的热解过程可分为三个阶段:一,干燥期;二,热解期;三,需热(气化反应)期。

在干燥阶段,污泥中的水分以蒸汽形态脱离污泥相,根据所采用的热解气化装置类型的不同,在干燥阶段干污泥的产率从85%到93%(占绝干污泥的比率)不等(资料来源:Furness and Hoggett, 2000),干燥阶段的操作温度约为150℃(302℉);污泥干燥完成后,其温度即被提高到400℃(752℉),进入到热解反应阶段;在最后一个阶段,热解产生的可冷凝气相产物和不凝性气相产物以及热解焦产物发生气化反应(需热阶段),热解产物被氧化、然后再被还原,并被转化为焦渣块、蒸汽、焦油及气体产物。

污泥的氧化反应剂为二次送入炉中的、经过化学式量计算并计量过的氧气。

在气化阶段,炉膛的操作温度范围在800到1400℃(1472至2552℉)之间,为了维持气化反应所需的温度,需补充加入煤炭或石油焦做为辅助燃料。

需热期之后,从炉中引出的高温合成原料气体可采用水、泥浆和/或冷的循环合成气进行急冷降温处理,在进行除尘处理之前也许还需要对合成原料气再进行一次冷却处理,此时可采用热交换器(安装于合成气冷却装置系统内)。

当采用水喷淋法除尘方式时,颗粒物被水捕集,然后对含尘水进行过滤处理;也可以采用干式滤尘器或热气体过滤器来除去合成气中的颗粒物。

合成气在被冷却的过程中,若温度降到水的露点以下时,合成气中的水分即会发生凝结;洗涤器和合成气冷却装置中排出的水中肯定含有一定量的可溶性气体成分(如氨、氰氢酸、氯化氢、硫化氢等)。

污泥热解气化处理介绍

污泥热解气化处理介绍

现在的污泥处理还未形成行业,污泥的处理技术也五花八门,现有正在使用的处理技术整体水平较低,这与国家的政策导向密不可分,过去的10年里,国家集中完成了全国城镇污水处理基础建设的升级换代,但从顶层设计上就轻视或者忽略了污泥处置的必要性,这直接导致了近几年污泥所造成的环境公害事件层出不穷,好消息是,随着污水处理行业的逐步成熟,污泥处置这项课题也慢慢被提上日程,这直接刺激了污泥处理技术的研究,形成目前污泥处置技术百花齐放,政府对污泥处理减量化的追逐使得目前污泥减量化处置成为热点,但国内许多专家学者对高耗能的污泥干化都持消极态度,污泥的减量化是污泥处置的目标之一,但绝不是终点,污泥的处置要做到减量化、无害化、资源化“三化”合一才是污泥处置的终极目标。

目前全国污泥处理的主流技术仍旧是以减量化为目的,填埋仍旧是主要解决办法,在现在垃圾围城各城市垃圾填埋场都爆棚的现状下,污泥填埋更显尴尬。

笔者认为现在已经到了环境问题倒逼技术升级的地步,在未来的一段时间里,污泥处置技术只有能同时实现“三化”的技术,才能迈进污泥处置行业的门槛,才有可能在即将袭来的污泥处置风暴中占有一席之地,才有可能得到大规模推广应用,比如污泥热解气化技术。

污泥热解气化技术是将污泥热解气化作为污泥处置的核心技术,以烘干、造粒、尾气处置、废渣利用为依托的系统工程。

主要目的就是在无臭、无污染的前提下使污泥实现大规模的减量化、无害化、资源化成为现实。

比目前传统技术的优点在于在减量化的前提下,以较低的成本实现污泥的无害化、资源化,污泥热解气化技术在工艺设计上就规避了污染物二恶英类物质的产生条件,系统的高温是臭味和病菌的克星,可以将硫化氢,氨类物质彻底分解,将有害病菌全部杀死,特别是对重金属的稳定化,热解气化技术具有天然优势,系统的高温将污泥中的重金属牢牢地锁在流化的硅酸盐晶体结构中,该晶体异常稳定,在酸碱环境下试验均不会溢出。

热解气化技术对污泥中有机物的利用率高达70%,在高温贫氧下,有机物被热解为一氧化碳、氢气、烷类等可燃气体,可以更方便、清洁的被利用。

高温热水解预处理污泥工艺探析

高温热水解预处理污泥工艺探析

高温热水解预处理污泥工艺探析国外将“高温热水解——厌氧消化”称之为“高级厌氧消化”,其中“高温热水解”作为一项污泥预处理技术可分解不可降解或者难降解的物质,如胞外聚合物(EPS),有效改善厌氧消化反应条件。

该污泥处理技术是由挪威CAMBI公司发明。

目前全球范围已有20多个项目使用了这项技术,据了解,该项技术每年可处理420000t污泥(以干重计),按照含水率80%计,相当于每天5800m3。

一、我国传统污泥厌氧消化处理工艺存在的主要问题:1)消化效率低,5%进泥含固率,消化池体积庞大,时间长,污泥有机质含量低;2)沼气产物中H2S含量高,除硫不容易,沼气利用难;3)设计和运行考虑不周,污泥中高含砂量,磨损、沉积,高浮渣含量;4)消化后的污泥产物无出路,处理后国内基本上还是填埋。

这是由于上述问题使这一在国外为主流的污泥处理技术,在国内并不受青睐。

然而采用高温热水解预处理技术,可有效解决以上工艺系统问题。

该预处理技术是利用高温和高压迫使污泥分子结构发生变化(俗称:破壁),以加快整个消化过程和脱水性能,并优化污泥转化为沼气的有机物质比例。

二、热水解处理流程热水解预处理系统由一个浆化罐、四个到六个反应罐和一个卸压闪蒸罐组成。

一般采用序批式方法工作,整个批次4~5小时,具体流程如下:1、脱水污泥(含水率15~20%)进入混合预热罐(也称浆化罐),与从高温热水解污泥换热和闪蒸罐回收蒸汽混和,将污泥预加热至约100 ℃;2、预热后的污泥进入高温热水解罐进行热水解反应,在0.6~0.7MPa和150~170℃情况下,反应30min,然后通过罐体准备、进料、反应、出料的四步轮换,实现连续运行;3、热水解后的污泥会被急速送到闪蒸罐,由于压力的释放,在压力差的作用下,污泥细胞得到破坏;4、经热水解和闪蒸罐释放压力后的污泥温度100~110℃,经热交换器进行冷却,换热后污泥温度在40~50℃,以满足后续厌氧消化的要求。

污泥处理处置及资源化主流方法

污泥处理处置及资源化主流方法

污泥处理处置及资源化主流方法污泥是城市污水处理过程中产生的一种固体废弃物,它含有大量有机物质、无机盐、有害物质和微生物,具有不稳定性、高含水率和难以处理的特点。

为了有效处理污泥并实现资源化利用,目前主要采用以下几种主流方法。

1.原污泥进一步处理:原污泥经过浓缩、稳定化处理,减少含水率和体积,提高处理效率和节约运输成本。

常用的方法有压滤、离心、压滤等。

此外,通过添加固化剂、消毒剂和添加剂等进行稳定化处理,有效消除污泥中的有害物质和臭味,减少环境污染。

2.热解技术:采用高温热解技术可以将污泥分解为油、气和固体残渣等可再利用的物质。

常见的热解技术有干燥热解、流化床热解和微波热解等。

热解过程中,可以收集燃料气体和油脂,用于能源生产和工业原料,同时产生的固体残渣可作为肥料或建筑材料。

3.生物处理技术:运用生物菌群,如厌氧菌、好氧菌和微生物等,对污泥进行分解和转化,将有机物质转变为可稳定利用的产物。

常见的生物处理技术有厌氧消化和好氧堆肥等。

厌氧消化将污泥在无氧环境下进行分解,产生甲烷气体用于能源生产,同时也可得到稳定的有机肥。

好氧堆肥则是在有氧环境下,通过控制温度、湿度和通气等条件,促进污泥中有机物质的分解和转化,生产稳定的有机肥。

4.燃烧技术:将污泥进一步干燥后,以高温(800-1000℃)进行燃烧,产生热能和灰渣。

燃烧过程中,可收集烟气中的有害物质,如重金属和二恶英等。

燃烧生成的热能可用于能源回收,灰渣则用作建筑材料或填埋场覆盖物。

5.肥料化利用:将污泥进行物理处理和消毒后,再添加适量的配方肥料进行混合,制成特殊肥料。

通过调控污泥中的氮、磷、钾等养分,使其成为一种营养丰富的肥料,用于农业生产,同时还可以减少化肥的使用。

综上所述,污泥处理处置及资源化的主流方法包括物理处理、热解技术、生物处理技术、燃烧技术和肥料化利用等。

这些方法可以有效地解决污泥处理的难题,并将污泥转化为可再利用的产物,实现资源化利用,达到减少环境污染和提高资源利用效率的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污泥热解技术 2 污泥热解技术 蔡炳良 辛玲玲 (浙江利保环境工程有限公司,浙江 杭州 310012)

摘要:介绍了污泥热解技术的特点和基本原理,对其工艺流程进行了概括性描述。重点分析了污泥热解技术无二噁英、固化重金属、高能量利用率和低能量损失的特点,从正面证明污泥热解技术是污泥减量化、稳定化、无害化、资源化的有效途径,是当之无愧的节能环保技术。 关键词:污泥;热解;二噁英; Sludge Pyrolysis Technology Bingliang Cai; Lingling Xin (Zhejiang Libo Environmental Engineering Co., Ltd., Hangzhou, Zhejiang; 310012) Abstract: This paper describes the

characteristics of sludge pyrolysis technology, basic principles, and its general processes. Analyzes the features of the sludge pyrolysis technology that without releasing of dioxins, solidification of heavy metals, high energy efficiency and low energy loss, and rightly proves the pyrolysis technology is an effective way for sludge reduction, stabilization, decontamination, and a well-deserved environmental protection technology. Keywords: Sludge; Pyrolysis; Dioxin; 3

1. 前言 热解是一种有着悠久历史的技术,木材、泥炭以及页岩的气化都是热解。根据所用化工工艺的不同,热解被称为干馏、焦化、气化以及热分解等。近年来,热解被做为焚烧的替代技术越来越受到各方的关注。 热解技术的显著特点如下: (1)、是一项绿色、没有二次污染的热处置技术。 (2)、能源利用率高、减容率高、运行费用低。 (3)、从根本上解决污泥中重金属问题。 (4)、无二噁英和呋喃产生,不会因为环境问题扰民。 (5)、燃烧后,需要处理的废气量小。 (6)、回收可再生能源,有CO2减排意义,有CDM收益。 (7)、热解技术处理对象也比较广泛包括:污泥、工业垃圾、生物质、塑料、电子垃圾、废轮胎等。

2. 热解技术基本原理 污泥热解是利用污泥中有机物的热不稳定性,在无氧条件下对其加热,使有机物产生热裂解,有机物根据其碳氢比例被裂解,形成利用价值较高的气相(热解气)、和固相(固体残渣),这些产品具有易储存、易运输及使用方便等特点,给污泥的减量化、稳定化、无害化、资源化提供了有效途径。 根据热解过程操作温度的高低可分为低温、中温和高温热解,在500℃以内的为低温热解,500℃-800℃为中温热解,800℃以上的为高温热解。 影响热解过程及产物产率及组成的因素有热解温度、压力、升温速率、气固相停留时间及物料的尺寸等,其中热解温度是最主要影响因素。 表1 不同温度的热解过程 温度 工艺过程 100℃-120℃ 干燥,吸收水分分离,尚无可观察的物质分解 250℃以内 减氧脱硫发生,可观察物质分解,结构水和CO2分离 250℃以上 聚合物裂解,硫化氢开始分裂 4

340℃ 脂族化合物开始分裂,甲烷和其它碳氢化合物分离出来 380℃ 渗碳 400℃ 含碳氧氮化合物开始分解 400℃-420℃ 沥青类物质转化为热解油和热解焦油 600℃以内 沥青类物质裂解成耐热物质(气相,短链碳水化合物,石墨) 600℃以上 烯烃芳香族形成

3. 污泥热解工艺描述 一个完整的污泥热解工艺包括储存和输送系统、干燥系统、热解系统、燃烧系统、能量回收系统和尾气净化系统。污泥的存储和输送是整个工艺流程的开始,起到对污泥的储存和将污泥输送进入干燥装置的作用。污水厂脱水污泥的含水率一般在80%左右不能直接热解,通过干燥系统去除污泥中的水分,将污泥含水率降低至20%-25%。热解就是在无氧环境下将固态污泥裂解,生成气态和固态的产物。

图2 热解工艺流程图 气态产物为热解气,是一种可燃气体。从热解设备(热解鼓)中生成的热解气含有一定的有害物质,可以进行燃烧处理,这样可以利用能量,同时将有害物质转化为完全氧化的烟气。热解气也可以用处理烟气的方法将其中的有害 5

物质去除,干净的热解气供应给发动机或者燃气轮机。系统的无氧环境减少或阻止了多环芳香烃的生成。 固态的产物是污泥热解后的残渣,其结构极易湿润,所以出渣装置需设置防堵塞措施。另外,热解残渣的化学性能稳定,可耐强酸腐蚀,污泥中的重金属被固化在其中很难再次析出。 热解产生的热解气经过旋风除尘器后和污泥储存仓的废气一同进入燃烧室燃烧,这样可以防止异味外泄。燃烧室产生的烟气优先用于热解鼓的加热,热解鼓出口烟气温度为600℃,这部分烟气再进入余热锅炉进行余热利用。当系统自身能量不能维持自身平衡时,燃烧室需外加燃料(天然气或油)作为补充,以达到维持系统能量平衡的目的。 给热解加热后的烟气进入余热锅炉,产生的蒸汽用于干燥污泥。对于不同的工艺条件,可以选择不同的能量回收方案。 固废的热解在常压下进行,但实际上为了避免异味泄漏,一般在热解鼓内维持一定的负压。

4. 为什么污泥热解是当之无愧的节能环保技术 污泥热解技术具有不产生二噁英、固化重金属、高能量利用率和低能量损失等特点,是当之无愧的节能环保技术。

4.1 无二噁英 焚烧过程中产生二噁英的途径主要有四种:直接释放、高温气相生成、前驱物固体催化合成、从头合成。直接释放是指固废中本身所含有二噁英并且在焚烧过程经过不完全的分解破坏后继续存在,与其他途径产生的二噁英相比较,这部分的量是相当小的。高温气相生成是由不同的二噁英前驱物(如氯酚、多氯联苯)在高温和氧气的条件下反应生成二噁英。前驱物固体催化是二噁英前驱物在低温燃烧区在受到催化剂(金属或其氧化物)作用反应生成。从头合成是通过形成二噁英的基本元素(碳、氧、氯、氢)在催化剂作用下发生氧化和缩合反应生成二噁英。 从以上四个形成二噁英的过程中,可以得出产生二噁英的条件为:有形成 6

二噁英的基本元素(碳、氧、氯、氢)或前驱物,一定的温度范围、金属催化剂、氧化所需的氧气。 热解过程由于是在还原气氛下进行,能有效的抑制二噁英的合成。其次,经过净化处理后的热解气不存在具有催化作用的物质(金属或其氧化物),其高温燃烧过程是一个彻底而洁净的氧化过程。 另外,热解过程不但能有效的防止二噁英的产生,在特定的条件下物料中含有的二噁英能被有效的分解。Hagenmaier等人(1987)最早发现在300℃下贫氧气氛中处理2h,不同种类飞灰所含二噁英均能够显著降解,故此后将这种飞灰在贫氧条件下的低温热处理方式称之为“Hagenlnaier工艺”。 Ishida等人(1998)研究了日本一家垃圾焚烧厂采用Hagenmaier工艺处理飞灰二噁英的运行结果,在350℃,处理时间lh,氮气氛条件下,飞灰中二噁英的去除率超过了99%。

4.2 固化重金属 由于污泥中均含有一定量的重金属元素,通过热解处理后大部分浓缩于固体残渣中。大量分析数据表明:污泥经历热解后,重金属都富集在固体残留物中,且重金属形态发生了显著改变,可交换态含量降低,残渣态含量升高,浸出浓度都低于监测标准。 由于热解对重金属的固化能力,在国外热解还被用于处理受到重金属六价铬及汞污染的土壤。土壤中的高毒性六价铬还原为三价铬,同时,在还原条件下能抑制底泥中含有的三价铬被氧化为六价铬,实现污染土壤的再生。 表2 德国热解残渣分析报告 分析数据,限定数据 参数 代码/缩写 单位 测量值 一级填埋场限定值 废渣成份分析 有机物含量 % 0.60% 3

可萃取有机卤化物 EOX mg/kg <1

可萃取亲脂物 mg/kg 74 4000

总碳水化合物 mg/kg 1-6

芳香族碳水化合物 BTEX mg/kg

苯 C6H6 mg/kg <0.1

甲苯 mg/kg <0.1

间-对-二甲苯 mg/kg <0.1

邻二甲苯 mg/kg <0.1 7

乙基苯 mg/kg <0.1

易挥发碳水化合物 VHC mg/kg

二氯甲烷 mg/kg <100

1.1.1-三氯乙烷 C2H3Cl3 μg/kg <10

三氯乙烯 C2HCl3 μg/kg <10

四氯乙烯 C2Cl4 μg/kg <10

四氯甲烷 CCl4 μg/kg <10

1,2-cis-二氯乙烯 μg/kg <200

多环芳香碳水化合物 PAK mg/kg 0.07

萘 mg/kg 0.07

其它多环芳香碳水化合物 mg/kg <0.01

聚氯联苯 PCB mg/kg <0.005

总有机碳 TOC % 0.14

重金属 砷 As mg/kg 5.85-11.4

铅 Pb mg/kg 42.5-57.5

镉 Cd mg/kg 0.25-1

总铬 Cr mg/kg 72.5-198

铜 Cu mg/kg 350-1330

镍 Ni mg/kg 32.5-80

汞 Hg mg/kg 0.013-0.03

铊 Th mg/kg 0.50-0.75

锌 Zn mg/kg 695-1180

氰化物 CN- mg/kg 0.09-0.4

二恶英/呋喃 Teq ng/kg 0.05

浸出实验值 pH - 9.2-11.6 5.5-13 电导率 μS/cm 1150-1170 50000

氯化物 Cl- mg/L 12.3-16.2

硫酸盐 SO4- mg/L 105-650

氰化物 CN- μg/L 5-21 100

酚 μg/L 11-110 200

砷 As μg/L 4-8 200

铅 Pb μg/L <3 200

镉 Cd μg/L <0.1 50

总铬 Cr μg/L 1-21 50

铜 Cu μg/L 1-15 1000

镍 Ni μg/L <3 200

汞 Hg μg/L 0.1-0.7 5

铊 Th μg/L <5

锌 Zn μg/L 40 <2000

相关文档
最新文档