污泥热解的主要工艺及特点
污泥热解工艺

污泥热解工艺1.热解技术基本原理污泥热解是利用污泥中有机物的热不稳定性,在无氧条件下对其加热,使有机物产生热裂解,有机物根据其碳氢比例被裂解,形成利用价值较高的气相(热解气)、和固相(固体残渣),这些产品具有易储存、易运输及使用方便等特点,给污泥的减量化、稳定化、无害化、资源化提供了有效途径。
根据热解过程操作温度的高低可分为低温、中温和高温热解,在500℃以内的为低温热解,500℃-800℃为中温热解,800℃以上的为高温热解。
影响热解过程及产物产率及组成的因素有热解温度、压力、升温速率、气固相停留时间及物料的尺寸等,其中热解温度是最主要影响因素。
表1 不同温度的热解过程温度工艺过程100℃-120℃干燥,吸收水分分离,尚无可观察的物质分解250℃以内减氧脱硫发生,可观察物质分解,结构水和CO2分离250℃以上聚合物裂解,硫化氢开始分裂340℃脂族化合物开始分裂,甲烷和其它碳氢化合物分离出来380℃渗碳400℃含碳氧氮化合物开始分解400℃-420℃沥青类物质转化为热解油和热解焦油600℃以内沥青类物质裂解成耐热物质(气相,短链碳水化合物,石墨)600℃以上烯烃芳香族形成2.污泥热解工艺描述一个完整的污泥热解工艺包括储存和输送系统、干燥系统、热解系统、燃烧系统、能量回收系统和尾气净化系统。
污泥的存储和输送是整个工艺流程的开始,起到对污泥的储存和将污泥输送进入干燥装置的作用。
污水厂脱水污泥的含水率一般在80%左右不能直接热解,通过干燥系统去除污泥中的水分,将污泥含水率降低至20%-25%。
热解就是在无氧环境下将固态污泥裂解,生成气态和固态的产物。
气态产物为热解气,是一种可燃气体。
从热解设备(热解鼓)中生成的热解气含有一定的有害物质,可以进行燃烧处理,这样可以利用能量,同时将有害物质转化为完全氧化的烟气。
热解气也可以用处理烟气的方法将其中的有害物质去除,干净的热解气供应给发动机或者燃气轮机。
系统的无氧环境减少或阻止了多环芳香烃的生成。
污水处理厂脱水污泥热解处理工艺解析

污水处理厂脱水污泥热解处理工艺解析目前,中国污泥处置的现状是70%以上弃置,20%填埋,不到10%的污泥是通过堆肥等技术处理后回用于土地,因此,污泥的二次污染已经成为亟待解决的环境问题,污泥问题是目前困扰城市健康快速发展的一个严重而紧迫的问题。
污泥热分解是一种新兴的污泥热处置工艺。
热解是利用有机物的热不稳定性,在无氧或缺氧条件下受热分解,形成气体、液体和固体残留物的过程。
近年来污泥热解炭化得到了越来越多的关注,污泥热解炭化为污泥的减量化、无害化和资源化提供了新的有效途径。
污泥热解技术的发展从70年代开始,热解技术作为从城市垃圾和工业固体废物等可燃性固体废物回收能量的技术得到了广泛的开发。
但是,对于具有负热值的污泥,该技术的应用不能以回收能量为主要目的,其重点主要放在解决焚烧存在的问题,即实现污泥的节能型低污染处理。
污泥热解炉型通常采用竖式多段炉,为了提高热解炉的热效率,在能够控制的二次污染物质(Cr6+、NOx)产生的范围内,尽量采用较高的燃烧率(空气比0.6~0.8)。
此外,热解产生的可燃气体及NH3(氨)、HCN(氢化氰)等有害气体组分必须经过二燃室以实现其无害化,通常情况下,HCN的热解温度在800~900℃,还应对二燃室排放的高温气体进行余热回收。
污泥热解技术现状国际上对热解技术的开发过程,一是以美国为代表,以回收贮存性能源(燃料气、燃料油和炭黑)为目的;另一个是以日本为代表,以无公害型处理系统的开发为目的,将污泥焚烧炉改进为热解炉。
西欧、北美正在研制带加热夹套的卧式搅拌反应器。
污泥低温热解处理的效果好,总成本在理论上低于直接焚烧法,而且热解过程可以将废物转化为有能量的物质和有用的化学物,符合污泥资源化利用的要求,且能量回收率较高。
以低温热解(200-500℃)为主要反应机理的污泥低温热化学转化制油技术作为焚烧的替代技术已逐步发展为生产性技术,并显现出了能量经济性与二次污染可控性的显著优势。
污泥热解气化处理介绍

现在的污泥处理还未形成行业,污泥的处理技术也五花八门,现有正在使用的处理技术整体水平较低,这与国家的政策导向密不可分,过去的10年里,国家集中完成了全国城镇污水处理基础建设的升级换代,但从顶层设计上就轻视或者忽略了污泥处置的必要性,这直接导致了近几年污泥所造成的环境公害事件层出不穷,好消息是,随着污水处理行业的逐步成熟,污泥处置这项课题也慢慢被提上日程,这直接刺激了污泥处理技术的研究,形成目前污泥处置技术百花齐放,政府对污泥处理减量化的追逐使得目前污泥减量化处置成为热点,但国内许多专家学者对高耗能的污泥干化都持消极态度,污泥的减量化是污泥处置的目标之一,但绝不是终点,污泥的处置要做到减量化、无害化、资源化“三化”合一才是污泥处置的终极目标。
目前全国污泥处理的主流技术仍旧是以减量化为目的,填埋仍旧是主要解决办法,在现在垃圾围城各城市垃圾填埋场都爆棚的现状下,污泥填埋更显尴尬。
笔者认为现在已经到了环境问题倒逼技术升级的地步,在未来的一段时间里,污泥处置技术只有能同时实现“三化”的技术,才能迈进污泥处置行业的门槛,才有可能在即将袭来的污泥处置风暴中占有一席之地,才有可能得到大规模推广应用,比如污泥热解气化技术。
污泥热解气化技术是将污泥热解气化作为污泥处置的核心技术,以烘干、造粒、尾气处置、废渣利用为依托的系统工程。
主要目的就是在无臭、无污染的前提下使污泥实现大规模的减量化、无害化、资源化成为现实。
比目前传统技术的优点在于在减量化的前提下,以较低的成本实现污泥的无害化、资源化,污泥热解气化技术在工艺设计上就规避了污染物二恶英类物质的产生条件,系统的高温是臭味和病菌的克星,可以将硫化氢,氨类物质彻底分解,将有害病菌全部杀死,特别是对重金属的稳定化,热解气化技术具有天然优势,系统的高温将污泥中的重金属牢牢地锁在流化的硅酸盐晶体结构中,该晶体异常稳定,在酸碱环境下试验均不会溢出。
热解气化技术对污泥中有机物的利用率高达70%,在高温贫氧下,有机物被热解为一氧化碳、氢气、烷类等可燃气体,可以更方便、清洁的被利用。
污水污泥的热解处理

污水污泥的热解处理污水污泥是城市生活中产生的一种废弃物。
它包含大量的有机物和无机物,如果不妥善处理会给环境和人们的健康带来极大的危害。
当前,人们广泛使用热解处理污水污泥的方法,该方法可以将污泥中的有机物完全转化为炭质物,大大减少了废弃物的体积和处理成本,同时还对能源资源产生了一定的利用价值。
下面就来详细介绍一下污水污泥的热解处理。
一、热解处理的基本原理热解是通过升高物质温度,使有机物在缺氧条件下脱出,发生裂解反应,最终分解为固体和气体的一种处理方法。
在这个过程中,有机质首先在高温条件下被分解成菌体、脂肪酸、糖类、蛋白质等物质,然后这些物质在更高的温度下继续分解,最终形成可燃性气体、油状物质和炭质物。
通过热解处理,污泥中的有机物可以被彻底转化,化学需氧量(COD)可降至极低,大大减少了废弃物的污染程度。
二、热解处理的主要方法目前,热解处理污泥的常用方法主要包括:(1)微波热解法微波热解是利用微波加热方式将污泥中的有机物分解。
这种方法具有加热快、反应温度低、反应时间短、产物利用价值高和对环境污染小等特点。
缺点是投资成本相对较高,需要大量的能源供应。
(2)气固两相热解法气固两相热解是将污泥与高温气体反应,将污泥中的有机物转化为可燃性气体和炭质物。
这种方法操作简单、反应温度高、产物利用价值高,但对热源要求较高,而且产生的固体残留物需要进一步处理。
(3)氢气热解法氢气热解是将污泥中的有机物在微小氢气气囊的作用下发生离解反应,最终产生可燃性气体和炭质物。
该方法反应温度和时间短,产物分布均匀,但氢气的使用成本比较高。
三、优点和应用前景热解处理污水污泥具有一系列的优点,包括:(1)将有机物转化为炭质物,减少了污泥体积,降低了污泥处理成本。
(2)热解产生的炭质物可以用于生产电力和炼油,具有一定的经济价值。
(3)热解处理可以有效地提高处理效率,缩短处理时间。
(4)热解处理不需要添加任何化学药品,对环境污染小。
(5)热解处理以氢气热解法和微波热解法为主的两种方法的出现,使得该技术具有更大的应用潜力。
污泥热解技术的介绍

常用技术的优缺点
优点:能使有机物全部碳化,
有效杀死病原体,最大限度地减 少污泥体积(可达到 90%左右); 而且占地面积小,自动化水平高, 不受外界条件影响。 缺点:在焚烧前必须脱水,另 外焚烧处理一般要求其热值在 1000kJ/kg 以上,焚烧时产生二氧 化硫、二恶英等有害气体,污泥 中的重金属也会随着烟尘的扩散 而污染空气;焚烧成本是其他处 理工艺的 2~4 倍。
污泥热解工艺图
污泥热解技术具有不产生二噁英、固化重金 属、高能量利用率和低能量损失等特点,是当之 无愧的节能环保技术。
无二噁英 热解在还原气氛下进行,能有效的抑制二噁 英的合成。其次,经过净化处理后的热解气不存 在具有催化作用的物质(金属或其氧化物),其 高温燃烧过程是一个彻底而洁净的氧化过程。特 定条件下,还能分解二噁英。
积极探索污泥热解主要能源产物──生物油或热解气的有 效利用途径;
充分合理的处理好热解固体剩余物──焦炭,因为焦炭不 仅可以作为燃料,而且可以通过催化活化制取吸附性能较好 的活性炭,不过焦炭也富集了大量的重金属污染物质,在后 续利用中要控制二次污染的形成;
研究污泥热解过程中污染物(H2S、NH3和重金属等)的形成 、转化规律;热解机理和反应动力学对热解过程的控制具有 关键作用,这方面的研究急需加强;
污泥热解不如焚烧法对固体体积减少的多,热解产生的液体 生物油在燃烧时也可能产生少量的有害物质,而且热解技术没 有焚烧法发展的完善; 污泥热解的反应模型、操作参数和经济可行性等方面的研究 不够系统、深入; 污泥热解过程中污染物(主要是重金属)的迁移、转化规律研 究较少; 热解产物的性质研究不甚全面,污泥的热解机理还没有完全 建立,而且对污泥热解的工艺路线和设备开发的较少。
污泥资源化利用的新途径
污泥热解技术优势

污泥热解技术具有不产生二噁英、固化重金属、高能量利用率和低能量损失等特点,是当之无愧的节能环保技术。
无二噁英焚烧过程中产生二噁英的途径主要有四种:直接释放、高温气相生成、前驱物固体催化合成、从头合成。
直接释放是指固废中本身所含有二噁英并且在焚烧过程经过不完全的分解破坏后继续存在,与其他途径产生的二噁英相比较,这部分的量是相当小的。
高温气相生成是由不同的二噁英前驱物(如氯酚、多氯联苯)在高温和氧气的条件下反应生成二噁英。
前驱物固体催化是二噁英前驱物在低温燃烧区在受到催化剂(金属或其氧化物)作用反应生成。
从头合成是通过形成二噁英的基本元素(碳、氧、氯、氢)在催化剂作用下发生氧化和缩合反应生成二噁英。
从以上四个形成二噁英的过程中,可以得出产生二噁英的条件为:有形成二噁英的基本元素(碳、氧、氯、氢)或前驱物,一定的温度范围、金属催化剂、氧化所需的氧气。
热解过程由于是在还原气氛下进行,能有效的抑制二噁英的合成。
其次,经过净化处理后的热解气不存在具有催化作用的物质(金属或其氧化物),其高温燃烧过程是一个彻底而洁净的氧化过程。
另外,热解过程不但能有效的防止二噁英的产生,在特定的条件下物料中含有的二噁英能被有效的分解。
Hagenmaier等人(1987)最早发现在300℃下贫氧气氛中处理2h,不同种类飞灰所含二噁英均能够显著降解,故此后将这种飞灰在贫氧条件下的低温热处理方式称之为“Hagenlnaier工艺”。
Ishida等人(1998)研究了日本一家垃圾焚烧厂采用Hagenmaier工艺处理飞灰二噁英的运行结果,在350℃,处理时间lh,氮气氛条件下,飞灰中二噁英的去除率超过了99%。
固化重金属由于污泥中均含有一定量的重金属元素,通过热解处理后大部分浓缩于固体残渣中。
大量分析数据表明:污泥经历热解后,重金属都富集在固体残留物中,且重金属形态发生了显著改变,可交换态含量降低,残渣态含量升高,浸出浓度都低于监测标准。
微波热解处理污泥技术简介

微波热解处理污泥技术简介近年来,污泥处理一直是固废处理的难点和重点,微波因其特性受到国内外研究的普遍重视,研究者们对污泥的微波热解进行了大量而系统的研究,分析了热解过程及气、液、固三相产物的特性并与常规热解进行了比较。
研究结果表明:在无微波吸收剂的情况下,污泥的温度不会超过200℃,仅能实现污泥的干燥,不能实现进一步的热解。
使用热解本身生成的含碳残留物(焦炭)作为微波吸收剂可以实现污泥快速有效的热解,热解温度可以到达900℃以上,吸收剂的合适含量为5wt%,也可以使用石墨作为微波吸收剂。
与常规热解相比,温度上升至相同值,微波热解耗时要少的多。
在热解产物中,以质量分数计,水分含量最高,这是由于污泥中的含水量很高(大于70%),其次为气体成分,再次为固体焦炭,含量最少的为油份。
与常规电炉加热相比,微波热解油产率高,气体产率低。
这是由于微波加热时,试样被直接加热,可以在短时间内达到高温而反应器内壁温度低于试验温度,这样挥发分在高温区的滞留时间相对较短,不利于挥发分的二次裂解;而电加热时,反应器壁温高于试样,挥发分在高温区滞留时间长,有利于二次裂解反应,使得不凝气体含量增加。
微波热解油中含有100余种成分,其中主要可以分为八大类:单环芳香族类,脂肪族类(烷、烃),有机酸,酯类,酰胺类,腈类,类固醇类和多环芳香烃(PAHs)。
在相同的热解温度下,微波热解油中多环芳香烃含量远少与常规热解,而且油中没有污染严重大分子的PAHs存在,PAHs是一种致癌物质。
使用石墨作吸收剂较之焦炭更易于脂肪族类长链的裂解,使得单环芳香族类增加。
微波热解油的热值与常规热解相当,大约为33000~37000 kJ/kg。
微波热解气体的主要成分有:H2、02、N2、CO、C02、CxHv。
与常规热解相比,微波热解产生的气体中,合成气(CO+H2)含量高,而CxHy的含量低,使得其热解气热值低于常规热解气,大约为6600~8600 kJ/m3。
污水处理中的污泥热解技术

污水处理中的污泥热解技术在污水处理的过程中,会产生大量的污泥。
这些污泥如果处理不当,不仅会对环境造成严重的污染,还会浪费其中潜在的资源。
而污泥热解技术作为一种新兴的处理方法,正逐渐受到广泛的关注和应用。
污泥热解技术的原理其实并不复杂。
简单来说,就是在无氧或缺氧的条件下,将污泥加热到一定的温度,使其发生热分解反应。
在这个过程中,污泥中的有机物会分解为气体、液体和固体三种产物。
气体产物主要包括氢气、甲烷、一氧化碳等;液体产物则是一些有机酸、醇类、酚类等;而固体产物就是我们常说的生物炭。
这种技术具有诸多优点。
首先,它能够实现污泥的减量化。
经过热解处理后,污泥的体积和重量都会大幅减少,从而降低了后续处理和运输的成本。
其次,污泥热解可以实现资源的回收利用。
热解产生的气体可以作为能源使用,液体产物可以进一步加工为化工原料,而生物炭则具有良好的吸附性能,可以用于土壤改良等领域。
此外,污泥热解还能够有效地杀灭病原体和寄生虫卵,减少污泥中的有害物质,降低对环境的潜在危害。
然而,污泥热解技术在实际应用中也面临着一些挑战。
技术方面,热解过程的控制是一个关键问题。
温度、加热速率、停留时间等参数的选择都会对热解产物的性质和产量产生影响。
如果控制不当,可能会导致热解效率低下,产物质量不佳。
而且,热解设备的设计和运行也需要较高的技术水平和资金投入。
经济方面,虽然污泥热解能够带来一定的资源回收效益,但前期的设备投资和运行成本较高。
这对于一些小型污水处理厂来说,可能是一个较大的负担。
因此,如何降低成本,提高技术的经济性,是推广污泥热解技术的一个重要课题。
环境方面,尽管污泥热解能够减少对环境的污染,但在热解过程中仍然会产生一些废气和废渣。
如果处理不当,这些废弃物仍然可能对环境造成一定的影响。
因此,需要配套完善的废气和废渣处理设施,以确保整个过程的环境友好性。
为了更好地推广和应用污泥热解技术,我们需要在以下几个方面做出努力。
加强技术研发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们的生活在不断发展的过程中总会对环境造成一定的污染,其中污泥就是一种常见的污染物,目前主要采用一种新的处理工艺就是热解。
就这种技术的优点和原理给您介绍如下。
这种技术在污泥处理行业中得到普遍认可,其技术的原理和工艺流程如下:利用污泥中有机物的热不稳定性,在无氧条件下对其加热,使有机物产生热裂解,根据其碳氢比例被裂解,形成利用价值较高的气相和固相,使得具有易储存、易运输。
热解工艺包括储存和输送系统、干燥系统、热解系统、燃烧系统、能量回收系统和尾气净化系统。
污泥的储存和将污泥输送进入干燥装置的作用。
污水厂脱水污泥的含水率一般在80%左右不能直接热解,通过干燥系统将污泥含水率降低至20%-25%。
从而使得污泥在无氧环境下将固态污泥裂解。
对于污泥热解技术的优势给你总结如下:
1)可将固体废物中的有机物转化为燃料气、燃料油和炭黑为主的储存性能
2)由于是无氧或缺氧分解,排气量少,因此,采用热解工艺有利于减轻对大气
环境的二次污染。
3)废物中的硫、重金属等有害成分大部分被固定在炭黑中。
4)由于保持还原条件,Cr3+不会转化为Cr6+。
5)NOx的产生量少。
6)能源利用率高、减容率高、运行费用低。
7)无二噁英和呋喃产生,不会因为环境问题扰民。
8)燃烧后,需要处理的废气量小。
9)回收可再生能源,有CO2减排意义,有CDM收益。
目前的无您处理主要采用热解技术,该技术具备很多的优点,在污泥、工业垃圾、塑料、电子垃圾等行业广泛应用。