巨磁电阻及其原理
巨磁电阻效应

巨磁电阻效应是一种材料的电学和磁学性质相互作用的现象。
当一些特定材料在存在磁场时,将呈现出电阻率的变化,这种变化与加在该材料上的磁场强度和方向有关,该现象被称为。
的历史可以追溯到上世纪六十年代初,在实验中发现了铁磁材料的电阻率会随磁场强度或方向的改变而呈现明显的变化。
然而当时的科学家尚不能很好地解释这个现象的成因。
直到1988年,法国布鲁斯库尔化学实验室的斯普罗所做的一项实验,这个现象才被人们正式地命名为“”。
与其他电学和磁学的相互作用不同,的材料只需要在外加磁场的作用下就可以呈现出这种性质。
在材料物理领域,已经成为了一个非常重要的研究对象,因为这种现象不仅具有重要的物理机制,而且还具有更广阔的应用前景。
尤其是在现代信息技术领域,被广泛应用于存储器、传感器、探测器等硬件设备中。
我们都知道,计算机的运作是基于二进制代码的,而二进制代码就是由0和1来表示的。
在硬盘上,这些0和1是通过硬盘磁头感受到的磁场来识别的。
磁头的读写效率直接决定了硬盘的速度和性能。
在为了提高硬盘的读写速度和稳定性,研制出了磁性随机存储器(MRAM)。
何为磁性随机存储器(MRAM)呢?它是一种新型的存储器。
其内部存储单元是由一个磁随机存储单元和一对磁电性元件组成,可以实现非易失性存储,能够在断电的情况下保留内部存储的信息。
因此,即使断电,内部存储的数据也不会丢失。
MRAM是一种具有很高潜力的诺基亚手机的未来手机技术,因为它具有速度快、数据存取精确、随机读写、支持容量迅速增加等优点,是一种非常有发展潜力的存储技术。
另外,在磁性传感器方面,也被广泛地应用。
领域和特殊应用如航空航天、重型机械和精密仪器等。
不仅如此,在医疗设备方面,磁性材料的应用也有很多。
目前正在繁衍以大型磁共振仪为代表的医疗设备,这些设备工作原理都与有关。
利用大型磁共振仪产生的磁场进行人体成像,这就是基于的背景。
同时,在医疗器械的生产领域,通过采用巨磁电阻材料的图像传感器,能够检测到身体组织中的细小变化,实现对患者病情的更加精确的判断和治疗的效果跟踪。
巨磁电阻文档

巨磁电阻什么是巨磁电阻?巨磁电阻(Giant Magnetoresistance,简称GMR)是一种基于磁场对导电性质的影响而产生的电阻效应。
巨磁电阻的发现在科学和工程领域引起了广泛的关注,特别是在磁存储和传感器技术中有着重要的应用。
与常规的电阻不同,巨磁电阻是通过在导电薄膜中引入磁性材料层来实现的。
当磁场施加到这些导电薄膜中时,电阻的值会发生变化。
这种变化可以通过测量电阻的大小来检测和量化外加磁场的作用。
巨磁电阻的原理巨磁电阻现象的存在是由于磁性材料的电子构型。
磁性材料中的电子在未受到外加磁场时有着不同的自旋方向。
当一个外加磁场施加到这些材料上时,电子的自旋方向会重新排列,导致电子的运动受到限制。
这种限制会导致材料的电阻值发生变化。
更具体地说,巨磁电阻是由于磁性层与非磁性层之间的自旋控制相互耦合而产生的。
在常规情况下,自旋方向不同的电子会发生散射,导致电阻增加。
然而,在巨磁电阻结构中,磁性层的自旋可以干预非磁性层电子的自旋取向,从而减少了自旋散射。
这种减少导致了巨磁电阻的降低。
巨磁电阻的应用巨磁电阻的研究不仅对电子学领域有重要意义,而且在实际应用中也有着广泛的用途。
磁存储器:巨磁电阻的发现推动了硬盘驱动器的发展。
传统的硬盘驱动器使用了机械式的磁读写头来存取数据,而基于巨磁电阻效应的磁存储器使用了读头中的巨磁电阻元件。
这种元件可以响应磁场的变化,从而实现数据的读取和写入。
相比传统的硬盘驱动器,基于巨磁电阻的磁存储器具有更高的速度、更大的容量和更低的功耗。
传感器技术:巨磁电阻也在传感器技术中发挥着重要的作用。
基于巨磁电阻的传感器可以感知周围的磁场,并将其转化为电阻值的变化。
这种变化可以通过测量电阻来检测和量化磁场的强度和方向。
因此,巨磁电阻传感器广泛应用于地理导航、汽车行驶方向检测等领域。
生物医学应用:巨磁电阻也在生物医学应用中找到了应用。
例如,巨磁电阻效应可用于测量生物体内的磁场,如心脏的磁场和脑部电活动。
巨磁电阻的应用

参考文献
[1] 钟喜春,曾德长,魏兴钊,顾正飞. 巨磁电阻材料的研究 与应用[J]. 金属功能材料. 2002(03) [2] 赵燕平,由臣,宁保群. 巨磁电阻材料及应用[J]. 天津理 工学院学报. 2003(03) [3] 于广华,朱逢吾,赖武彦. 巨磁电阻材料及其在汽车传感 技术中的应用[J]. 新材料产业. 2003(08)
三巨磁电阻材料的应用现状1巨磁电阻传感器2巨磁阻磁记录读出磁头3巨磁电阻随机存储器mram1巨磁电阻传感器巨磁电阻传感器采用惠斯登电桥和磁屏蔽技术传感器基片上镀了一层很厚的磁性材料这层材料对其下方的巨磁电阻形成屏蔽不让任何外加磁场进入屏蔽的电阻器
一、巨磁电阻效应的定义
所谓巨磁电阻效应,是指材料的电阻率将受磁化状态 的变化而呈现显著改变的现象。一般定义为 GMR=[(P0-PH)/P0]×100% 其中,PH为在磁场H作用下材料的电阻率,P0指无外磁场作 用下材料的电阻率.
三、巨磁电阻材料的应用现状
1、巨磁电阻传感器 2、巨磁阻磁记录读出磁头 3、巨磁电阻随机存储器(MRAM)
1、巨磁电阻传感器
巨磁电阻传感器采用惠斯登 电桥和 磁屏蔽技术,传感器基 片上镀了一层很厚的磁性材料, 这层材料对其下方的巨磁电阻形 成屏蔽,不让任何外加磁场进入 屏蔽的电阻器。惠斯材料上方,受外加磁 场影响是电阻减少,而R2和R4 在磁性材料下方,被屏蔽阻值不 变。
巨磁电阻传感器由于具有巨大的GMR值和较大的磁场 灵敏度,表现出更强的竞争能力。 它大大提高传感器的分辨率,灵敏度、精确性等指标, 特别是在微弱磁场的传感方面,如可用于伪钞识别器等方 面,则显出更大的优势。更广泛的应用是各类运动传感器, 如对位置、速度、加速度、角度、转速等的传感,在机电 自动控制、汽车工业和航天工业等方面有广泛的应用。
巨磁电阻传感器原理

巨磁电阻传感器原理今天咱们来唠唠巨磁电阻传感器这个超酷的东西。
你可别一听“传感器”就觉得它是那种干巴巴、特别难懂的玩意儿,其实它背后的原理就像一场微观世界里的小冒险呢。
咱们先从电阻说起吧。
你知道电阻就像是电流在电路里跑步的时候遇到的小阻碍。
平常的电阻呢,就是按照它自己的规律,根据材料啊、长度啊、横截面积这些因素来决定自己有多大的阻力。
但是巨磁电阻可就不一样啦,它呀,就像是一个对磁场特别敏感的小机灵鬼。
想象一下,在巨磁电阻的微观世界里,有好多好多的电子在跑来跑去。
当没有磁场的时候呢,这些电子就按照自己的节奏在材料里穿梭,就像一群小蚂蚁在平地上乱逛。
可是一旦有磁场出现,哇塞,就像是一阵神奇的风刮过来了。
这个磁场会让电子的运动轨迹发生变化呢。
那些原本自由自在的电子,就像是被一只无形的大手给指挥着,开始朝着特定的方向偏移。
这时候,你就会发现一个超级有趣的现象。
由于电子的运动被磁场这么一搅和,电流通过这个材料的时候就变得更容易或者更难了,这就导致了电阻的变化。
如果把这个材料做成传感器,就可以通过测量电阻的变化来知道磁场的情况啦。
你看啊,在巨磁电阻传感器里,这种对磁场的敏感程度可是非常厉害的。
就好像它有一双超级敏锐的小眼睛,能够察觉到磁场非常微小的变化。
比如说,在我们的硬盘里,就用到了巨磁电阻传感器。
硬盘里面有很多小磁区,每个磁区的磁场方向就代表着0或者1这样的数据。
巨磁电阻传感器就像一个小小的侦探,它能够准确地感知到这些磁区的磁场变化,然后把这个信息转化成电信号,这样电脑就能知道硬盘里存储的是什么数据啦。
而且哦,巨磁电阻传感器在汽车上也有大用场呢。
汽车的速度传感器有时候就会用到它。
汽车轮子一转,就会产生磁场的变化,巨磁电阻传感器就能捕捉到这个变化,然后告诉汽车的电脑,车子现在跑得多快呀。
再说说它的材料吧。
通常是一些特殊的多层结构材料。
就像是给电子们建造了一个特别的小房子,不同的楼层有不同的作用。
当磁场来敲门的时候,这些电子在不同的楼层之间的互动就会发生改变,从而影响电阻。
巨磁阻效应原理

巨磁阻效应原理
巨磁阻效应是指在外加磁场作用下,磁电阻材料的电阻发生显
著变化的现象。
巨磁阻效应的发现,不仅在基础物理研究中具有重
要意义,而且在传感器、存储器、磁场测量等领域有着广泛的应用。
本文将着重介绍巨磁阻效应的原理及其在实际应用中的意义。
首先,我们来了解一下巨磁阻效应的基本原理。
巨磁阻效应是
由磁电阻材料的磁性微结构引起的。
在磁电阻材料中,存在着由磁
性和非磁性层交替排列形成的磁性微结构。
当外加磁场作用于这些
磁性微结构时,磁性层的磁矩会发生重新排列,从而导致了材料整
体电阻的变化。
这种磁矩重排所导致的电阻变化就是巨磁阻效应。
接下来,我们将讨论巨磁阻效应在实际应用中的意义。
由于巨
磁阻效应具有灵敏度高、响应速度快、能耗低等优点,因此在传感
器领域有着广泛的应用。
例如,利用巨磁阻效应制成的磁场传感器
可以用于测量地磁场、电流、位移等物理量,具有精度高、抗干扰
能力强的特点。
此外,巨磁阻效应还被应用于磁存储器领域。
利用
巨磁阻效应制成的磁阻随机存储器具有存储密度高、读写速度快的
特点,可以用于制造高性能的磁存储器。
除此之外,巨磁阻效应还
在磁场测量、磁导航等领域有着重要的应用价值。
总结一下,巨磁阻效应是一种重要的磁性现象,其原理是由磁
性微结构的磁矩重排所导致的电阻变化。
巨磁阻效应具有灵敏度高、响应速度快、能耗低等优点,在传感器、存储器、磁场测量等领域
有着广泛的应用前景。
相信随着科学技术的不断发展,巨磁阻效应
将会在更多领域展现出其重要的作用。
【大学物理实验(含 数据+思考题)】巨磁电阻效应及其应用

实验4.21 巨磁电阻效应及其应用一、实验目的(1)了解GMR效应的现象和原理(2)测量GMR的磁阻特性曲线(3)用GMR传感器测量电流(4)了解磁记录与读出的原理和方法二、实验仪器ZKY-JCZ巨磁电阻效应及应用实验仪ZKY-JCZ基本特性组件三、实验原理物质在磁场中电阻发生变化的现象,称为磁阻效应。
磁性金属和合金材料一般都有这种现象。
一般情况下,物质的电阻在磁场中仅发生微小的变化。
在某种条件下,电阻值变动的幅度相当大,比通常情况下高十余倍,称为巨磁阻(Giant magneto resistance,简称GMR)效应。
巨磁阻效应是一种量子力学效应,它产生于层状的磁性薄膜结构。
这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。
当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻;当铁磁层的磁矩相互反平行时,与自旋有关的散射最强,材料的电阻最大。
根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子发生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规则散射运动的叠加。
电子在两次散射之间走过的平均路程称为电子的平均自由程。
电子散射概率小,则平均自由程长,电阻率低。
一般把电阻定律R=ρl/S中的电阻率ρ视为与材料的几何尺度无关的常数,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约为34nm),可以忽略边界效应。
当材料的几儿何只度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边上的散射概率大大增加,可以明显观察到厚度减小电阻率增加的现象。
电子除携带电荷外,还具有自旋特性。
自旋磁矩有平行和反平行于外磁场两种取向。
英国物理学家诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射概率远小于自旋磁矩与材料的磁场方向反平行的电子。
巨磁电阻表明在不同的磁场方向中电阻随之改变的一类效应

巨磁电阻表明在不同的磁场方向中电阻随之改变的一类效应巨磁电阻(giant magnetoresistance,简称GMR)效应是一种发现于1988年的物理现象,它揭示了磁场对材料电阻的巨大影响。
GMR效应在许多领域具有重要应用,尤其在信息存储技术方面,为硬盘驱动器和磁存储器的发展做出了巨大贡献。
本文将介绍巨磁电阻效应的原理、应用以及未来的发展趋势。
一、巨磁电阻效应原理巨磁电阻效应的基本原理是由两个或多个磁性层夹着一个非磁性层构成的多层薄膜结构。
这些磁性层可以是铁、镍、钴等材料,而非磁性层通常是铜或铬。
当这个多层薄膜结构处于一个磁场中时,磁性层的磁矩会在外力的作用下重新排列。
这个过程会导致电子在磁性层之间发生散射,从而影响到整个结构的电阻。
当磁场与多层薄膜结构的磁矩平行排列时,电子在磁性层之间的散射最小,电阻值较小。
而当磁场与磁矩反平行排列时,电子在磁性层之间的散射最大,电阻值较大。
通过测量不同磁场下的电阻值,可以得到巨磁电阻效应。
这一效应的特点是,当磁场方向发生变化时,电阻随之改变。
二、巨磁电阻效应的应用1. 磁存储器巨磁电阻效应在磁存储器领域有着广泛的应用。
传统的硬盘驱动器中,磁头通过感应磁性材料的磁场变化来读取和写入数据。
而巨磁电阻效应可以提供更高的读取灵敏度和更大的磁场响应范围,从而提高了数据的读取速度和存储密度。
2. 磁传感器巨磁电阻效应还可以用于制造高灵敏度的磁传感器。
这种传感器可广泛应用于磁场测量、位置检测、磁导航等领域。
相比传统的磁传感器,基于巨磁电阻效应的磁传感器具有更高的灵敏度和更快的响应速度。
3. 磁阻随机存储器磁阻随机存储器(magnetic random-access memory,简称MRAM)是一种新兴的存储器技术。
它基于巨磁电阻效应来存储数据,具有非易失性、快速读写、高密度等优点。
相比传统存储器技术,MRAM能够提供更高的数据存储密度和更低的功耗。
三、巨磁电阻效应的发展趋势巨磁电阻效应的研究仍在不断深入,未来有以下几个发展趋势:1. 新的材料和结构:研究人员正在寻求新的材料和结构,以增强巨磁电阻效应。
巨磁电阻实验

巨磁电阻实验巨磁电阻效应及其应⽤巨磁电阻( Giant magneto resistance, 简称GMR)效应表⽰在⼀个巨磁电阻系统中, ⾮常弱⼩的磁性变化就能导致巨⼤的电阻变化的特殊效应. 法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔( Peter Grunberg )因分别独⽴发现巨磁阻效应⽽共同荣膺2007年诺贝尔物理学奖.G MR是⼀种量⼦⼒学和凝聚态物理学现象, 是磁阻效应的⼀种, 可以在磁性材料和⾮磁性材料相间的薄膜层(⼏个纳⽶厚)结构中观察到. 在量⼦⼒学出现后,德国科学家海森伯(W. Heisenberg, 1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原⼦磁矩之间的量⼦⼒学交换作⽤, 这个交换作⽤是短程的, 称为直接交换作⽤. 随后, 科学家们⼜发现很多的过渡⾦属和稀⼟⾦属的化合物也具有反铁磁有序状态, 即在有序排列的磁材料中, 相邻原⼦因受负的交换作⽤, ⾃旋为反平⾏排列, 如图1所⽰. 此时磁矩虽处于有序状态, 但总的净磁矩在不受外场作⽤时仍为零. 这种磁有序状态称为反铁磁性. 反铁磁性通过化合物中的氧离⼦(或其他⾮⾦属离⼦)将最近的磁性原⼦的磁矩耦合起来, 属于间接交换作⽤. 此外, 在稀⼟⾦属中也出现了磁有序, 其中原⼦的固有磁矩来⾃4f电⼦壳层. 相邻稀⼟原⼦的距离远⼤于4f电⼦壳层直径,所以稀⼟⾦属中的传导电⼦担当了中介, 将相邻的稀⼟原⼦磁矩耦合起来, 这就是RKKY型间接交换作⽤.直接交换作⽤的特征长度为0.1—0.3nm, 间接交换作⽤可以长达1nm以上. 据此美国IBM实验室的江崎和朱兆祥提出了超晶格的概念.所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度极⼩的薄层材料交替⽣长在⼀起⽽得到的⼀种多周期结构材料, 其特点是这种复合材料的周期长度⽐各薄膜单晶的晶格常数⼤⼏倍或更长. 上世纪⼋⼗年代, 制作⾼质量的纳⽶尺度样品技术的出现使得⾦属超晶格成为研究前沿. 因此凝聚态物理⼯作者对这类⼈⼯材料的磁有序, 层间耦合, 电⼦输运等进⾏了⼴泛的基础⽅⾯的研究. 其中相关的代表性研究⼯作简介如下.其⼀是德国尤利希科研中⼼的物理学家彼得·格伦贝格尔. 他⼀直致⼒于研究铁磁性⾦属薄膜表⾯和界⾯上的磁有序状态, 其研究对象是⼀个三明治结构的薄膜, 两层厚度约10nm的铁层之间夹有厚度为1nm的铬层. 之所以选择选择这⼀材料系统, ⾸先是因为⾦属铁和铬是周期表上相近的元素, 具有类似的电⼦壳层, 容易实现两者的电⼦状态匹配. 其次, ⾦属铁和铬的晶格对称性和晶格常数相同, 它们之间晶格结构相匹配. 这两类匹配⾮常有利于对基本物理过程进⾏探索. 尽管如此, 长期以来该课题组所获得的三明治薄膜仅为多晶体. 随着制备薄膜技术的发展, 分⼦束外延(MBE)⽅法的应⽤才使得结构完整的单晶样品得以问世, 其成分依然是铁-铬-铁三层膜. 此后, 为了进⼀步获得铁磁矩的有关信息, 科研⼯作者将光散射应⽤于对⾦属三层膜进⾏相关研究. 在实验过程中, 薄膜上的外磁场被逐步减⼩直⾄消失. 结果发现, 在铬层厚度为0.8nm的铁-铬-铁三明治中, 两边的两个铁磁层磁矩从彼此平⾏(较强磁场下)转变为反平⾏(弱磁场下). 亦即, 对于⾮铁磁层铬的某个特定厚度, 在⽆外磁场时, 两边铁磁层磁矩处于反平⾏状态, 这⼀现象成为巨磁电阻效应出现的前奏. 在对这⼀现象的进⼀步研究过程中, 格伦贝格尔等发现当两个磁矩反平⾏时,铁-铬-铁三明治呈现⾼电阻状态. ⽽当两个磁矩平⾏时, 则对应与其低电阻状态, 且两种不同状态下的阻值差⾼达10%. 之后, 格伦贝格尔将此结果写成论⽂,并申请了将这种效应和材料应⽤于硬盘磁头的专利.另⼀位科研⼯作者是巴黎⼗⼀⼤学固体物理实验室物理学家阿尔贝·费尔, 其课题组将铁、铬薄膜交替制成⼏⼗个周期的铁-铬超晶格, 亦称周期性多层膜. 通过对此类物质的研究, 他们发现了当改变磁场强度时, 超晶格薄膜的电阻下降近⼀半, 即磁电阻⽐率达到50%. 据此该现象被命名为巨磁电阻现象, 并⽤两电流模型予以合理解释. 显然, 该周期性多层膜可视为若⼲个格伦贝格尔三明治的重叠, 因此德国和法国的这两个独⽴发现实属同⼀个物理现象.除了上述两位诺贝尔奖获得者的开创性⼯作, IBM公司的斯图尔特·帕⾦( S. P. Parkin )将GMR的制作材料做了进⼀步推⼴, 为其⼯业化应⽤奠定了基础. 他于1990年⾸次报道了铁-铬超晶格系列之外的钴-钌和钴-铬超晶格体系亦有巨磁电阻效应, 并且随着⾮磁层厚度增加, 其磁电阻值振荡下降. 此后, 科学家在过渡⾦属超晶格和⾦属多层膜中⼜发现了20种左右不同的体系均存在巨磁电阻振荡现象. 帕⾦的⼯作⾸先为寻找更多的GMR材料开辟了⼴阔空间, 为寻找适合硬盘的GMR材料提供了可能, 1997年制成了GMR磁头即是其成功之⼀. 其次, 在薄膜制备⽅法上帕⾦采⽤较普通的磁控溅射技术⽤以替代精密的MBE⽅法, 并使之成为⼯业⽣产多层膜的标准. 磁控溅射技术克服了物理发现与产业化之间的障碍, 使巨磁电阻成为基础研究快速转换为商业应⽤的国际典范. 同时, 巨磁电阻效应也被认为是纳⽶技术的⾸次真正应⽤.巨磁电阻效应发现的另⼀重⼤意义在于打开了⼀扇通向新技术世界的⼤门—⾃旋电⼦学. GMR作为⾃旋电⼦学的开端具有深远的科学意义. 传统的电⼦学是以电⼦的电荷移动为基础的, 电⼦⾃旋往往被忽略了. 巨磁电阻效应表明电⼦⾃旋对于电流的影响⾮常强烈, 电⼦的电荷与⾃旋两者都可能载运信息. ⾃旋电⼦学的研究和发展引发了电⼦技术与信息技术的⼀场新的⾰命. ⽬前电脑, ⾳乐播放器等各类数码电⼦产品中所装备的硬盘磁头, 基本上都应⽤了巨磁电阻效应. 利⽤巨磁电阻效应制成的多种传感器, 已⼴泛应⽤于各种测控领域. 除利⽤铁磁膜-⾦属膜-铁磁膜的GMR效应外, 由两层铁磁膜夹⼀极薄的绝缘膜或半导体膜构成的隧穿磁阻(TMR)效应, 已显⽰出⽐GMR效应更⾼的灵敏度. 此外, 在单晶和多晶等多种形态的钙钛矿结构的稀⼟锰酸盐, 以及⼀些磁性半导体中, 都发现了巨磁电阻效应.实验⽬的1了解GMR效应的原理.2 测量GMR模拟传感器的磁电转换特性曲线.3 测量GMR的磁阻特性曲线.4 测量GMR开关(数字)传感器的磁电转换特性曲线.5 ⽤GMR传感器测量电流.6 ⽤GMR梯度传感器测量齿轮的⾓位移, 了解GMR转速传感器的原理.7 通过实验了解磁记录与读出的原理.实验原理根据导电的微观机理, 电⼦在导电时并⾮沿电场直线前进, ⽽是不断和晶格中的原⼦产⽣碰撞(⼜称散射), 每次散射后电⼦都会改变运动⽅向, 总的运动是电场对电⼦的定向加速与这种⽆规散射运动的叠加. 电⼦在两次散射之间⾛过的平均路程称为平均⾃由程, 电⼦散射⼏率⼩, 则平均⾃由程长, 电阻率低. 在电阻定律 R=ρl/S中, 电阻率ρ可视为常数, 与材料的⼏何尺度⽆关. 这是因为通常材料的⼏何尺度远⼤于电⼦的平均⾃由程(例如铜中电⼦的平均⾃由程约34nm), 可以忽略边界效应. 然⽽, 当材料的⼏何尺度⼩到纳⽶量级且只有⼏个原⼦的厚度时(例如, 铜原⼦的直径约为0.3nm), 电⼦在边界上的散射⼏率⼤⼤增加, 此时可以明显观察到厚度减⼩, 电阻率增加的现象.电⼦除本⾝携带电荷外, 还具有⾃旋特性. ⾃旋磁矩⼜分为平⾏或反平⾏于外磁场⽅向的两种不同取向. 在⾃旋磁矩与材料的磁场⽅向平⾏的情况下, 电⼦散射的⼏率远⼩于⼆者反平⾏条件下的散射⼏率. 与此相应, 材料的电阻在⾃旋磁矩与外磁场⽅向平⾏时将远⼩于⼆者反平⾏时的阻值. 事实上, 材料的总电阻可视为两类⾃旋电流的并联电阻, 因此总电流则为两类⾃旋电流之和,此即两电流模型.如图2所⽰, ⽆外磁场时, 多层膜结构中的上下两层磁性材料反平⾏(反铁磁)耦合. 当施加⾜够强的外磁场后, 两层铁磁膜的⽅向都与外磁场⽅向⼀致, 外磁场使两层铁磁膜从反平⾏耦合变成了平⾏耦合. 电流的⽅向在多数应⽤中与膜⾯⽅向平⾏.⽆外磁场时顶层磁场⽅向⽆外磁场时底层磁场⽅向图 2 多层膜GMR结构图事实上, 有两类与⾃旋相关的散射对巨磁电阻效应有贡献:其⼀, 界⾯上的散射. 在⽆外磁场条件下, 上下两层铁磁膜的磁场⽅向相反, ⽆论电⼦的初始⾃旋状态如何, 从⼀层铁磁膜进⼊另⼀层铁磁膜时都⾯临状态改变(平⾏-反平⾏, 或反平⾏-平⾏), 电⼦在界⾯上的散射⼏率很⼤, 对应于⾼电阻状态; 在有外磁场存在时, 上下两层铁磁膜的磁场⽅向⼀致, 电⼦在界⾯上的散射⼏率很⼩, 对应于低电阻状态.其⼆, 铁磁膜内的散射. 即使电流⽅向平⾏于膜⾯, 由于⽆规散射, 电⼦也有⼀定的⼏率在上下两层铁磁膜之间穿⾏. 在⽆外磁场时, 上下两层铁磁膜的磁场⽅向相反, ⽆论电⼦的初始⾃旋状态如何, 在穿⾏过程中都会经历散射⼏率⼩(平⾏)和散射⼏率⼤(反平⾏)两种过程, 两类⾃旋电流的并联电阻相似两个中等阻值的电阻的并联, 对应于⾼电阻状态. 在有外磁场时, 上下两层铁磁膜的磁场⽅向⼀致, ⾃旋平⾏的电⼦散射⼏率⼩, ⾃旋反平⾏的电⼦散射⼏率⼤, 两类⾃旋电流的并联电阻相似⼀个⼩电阻与⼀个⼤电阻的并联, 对应于低电阻状态.多层膜GMR结构简单, ⼯作可靠, 磁阻随外磁场线性变化的范围⼤, 在制作模拟传感器⽅⾯得到⼴泛应⽤. 在数字记录与读出领域, 为进⼀步提⾼灵敏度, 发展了⾃旋阀结构的GMR. 如图3所⽰.⾃旋阀结构的SV-GMR(Spin valve GMR)由钉扎层, 被钉扎层, 中间导电层和⾃由层构成. 其中, 钉扎层使⽤反铁磁材料, 被钉扎层使⽤硬铁磁材料, 铁磁和反铁磁材料在交互耦合作⽤下形成⼀个偏转场, 此偏转场将被钉扎层的磁化⽅向固定, 不随外磁场改变. ⾃由层使⽤软铁磁材料, 它的磁化⽅向易于随外磁场转动. 这样, 很弱的外磁场就会改变⾃由层与被钉扎层磁场的相对取向,对应于很⾼的灵敏度. 制造时, 使⾃由层的初始磁化⽅向与被钉扎层垂直, 磁记录材料的磁化⽅向与被钉扎层的⽅向相同或相反(对应于0或1), 当感应到磁记录材料的磁场时, ⾃由层的磁化⽅向就向与被钉扎层磁化⽅向相同(低电阻)或相反(⾼电阻)的⽅向偏转, 检测出电阻的变化, 就可确定记录材料所记录的信息, 硬盘所⽤的GMR磁头就采⽤这种结构.⾃由层中间导电层被钉扎层钉扎层图3⾃旋阀SV-GMR结构图实验仪器⼀. 主体名称:ZKY-巨磁电阻效应及应⽤实验仪构成及功能:电流表部分:做为⼀个独⽴的电流表使⽤.两个档位:2mA 档和200mA 档, 可通过电流量程切换开关选择合适的电流档位测量电流.电压表部分:做为⼀个独⽴的电压表使⽤.两个档位:2V 档和200mV 档, 可通过电压量程切换开关选择合适的电压档位. 恒流源部分:可变恒流源.实验仪还提供GMR 传感器⼯作所需的4V 电源和运算放⼤器⼯作所需的±8V 电源. ⼆.各种组件 1. 基本组件:基本特性组件由GMR 模拟传感器, 螺线管线圈及⽐较电路, 输⼊输出插孔组成. ⽤以对GMR 的磁电转换特性, 磁阻特性进⾏测量.GMR 传感器置于螺线管的中央.螺线管⽤于在实验过程中产⽣⼤⼩可计算的磁场, 由理论分析可知, ⽆限长直螺线管内部轴线上任⼀点的磁感应强度为: B =µ0nI . 式中n 为线圈密度, I 为流经线圈的电流强度,m H /10470-?=πµ为真空中的磁导率. 采⽤国际单位制时, 由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000⾼斯).2. 电流测量组件:电流测量组件将导线置于GMR 模拟传感器近旁, ⽤GMR 传感器测量导线通过不同⼤⼩电流时导线周围的磁场变化, 就可确定电流⼤⼩. 与⼀般测量电流需将电流表接⼊电路相⽐, 这种⾮接触测量不⼲扰原电路的⼯作, 具有特殊的优点.3. ⾓位移测量组件: ⾓位移测量组件⽤巨磁阻梯度传感器作传感元件, 铁磁性齿轮转动时, 齿⽛⼲扰了梯度传感器上偏置磁场的分布, 使梯度传感器输出发⽣变化, 每转过⼀齿, 就输出类似正弦波⼀个周期的波形. 利⽤该原理可以测量⾓位移(转速, 速度).汽车上的转速与速度测量仪利⽤的就是这⼀原理.4. 磁读写组件:磁读写组件⽤于演⽰磁记录与读出的原理. 磁卡做记录介质, 磁卡通过写磁头时可写⼊数据, 通过读磁头时将写⼊的数据读出来.巨磁电阻效应及其应⽤实验报告⼀、实验时间:年⽉⽇⼆、样品:巨磁阻基本特性组件, 磁读写组件, 电流测量组件, ⾓位移测量组件, 巨磁阻试件, 磁卡以及巨磁电阻效应及应⽤实验仪(01-001).三、实验⽬的:1、了解巨磁电阻效应实验原理;2、了解巨磁阻的模拟传感器磁电转换特性;3、了解巨磁阻的磁阻特性;4、通过实验了解磁记录与磁读写的原理.四、实验内容:1、GMR模拟传感器的磁电转换特性测量:µ=4π×10-7H/m (1) n= 24000 T/m (2)(3)输出电压与磁感应强度B 之间的关系曲线:图(1)2、GMR 磁阻特性测量:由式(3)可得磁感应强度B, 巨磁阻两端电压为4V , 则由欧姆定律可得磁阻R.表2 磁阻特性测量磁阻两端电压4V输出电压磁感应强度B 与输出电压U 之间的关系曲线0 2575 100 125 150 175 200 225 250 275-40.0-30.0-20.0-10.00.010.020.030.0磁感应强度B50 U(V)0B nI µ=磁阻与磁感应强度关系曲线:图(2)3、GMR开关(数字)传感器的磁电转换特性曲线测量表3开关特性曲线4、⽤GMR模拟传感器测量电流表4待测电流与输出电压关系曲线:图(3)偏执电压越⼤U-I直线斜率越⼤, 灵敏度越⾼.5、GMR梯度传感器的特性应⽤:表5 齿轮⾓位移的测量齿轮⾓位移的测量:图(4)6、磁记录与读出:表6 ⼆进制数字的写⼊与读出图(1)注意事项:1、由于巨磁阻传感器具有磁滞现象, 因此在实验中, 恒流源只能单⽅向调节, 不可回调. 否则测得的实验数据将不准确.2、测试卡组件不能长期处于“写”状态.3、实验过程中,实验环境不得处于强磁场中.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学前沿——巨磁电阻及其原理
一、概述
磁电阻效应( M a g n e to r e s is ta n e e , M R )是指材料在外磁场下电阻发生改变的物理现象。
150年前T .T ho m so n首次发现,常规的铁磁材料,如铁,钻,镍,它们的电阻与磁场和电流的相对方向相关,被称为各向异性磁电阻效应( A n is o tr o Pi c Ma g n e to r e s i st a n e e , A M R )。
现在,已经知道A M R效应源于电子的自旋一轨道祸合作用,通常铁磁材料的磁电阻效应很小,只有百分之几。
磁电阻效应在技术应用中非常重要, 特别是在硬盘中作为读出头, 探测硬盘每个磁存储单元产生的微弱磁场。
19 5 6年, IBM的科学家Reynold Johnson 发明了世界上第一个计算机硬盘当时采用电磁感应的方法读写信息 ,这种方法需要存储单元产生较强的磁场 ,因此存储单元很大,密度很小,最大只能达到20 M
b/in^2。
直到20世纪80年代末期,IBM 在技术上实现了突破, 成功地在硬盘读出头中使用磁电阻效应, 增强了读出头的磁场灵敏度, 使得硬盘的存储密度大幅度提高, 达到了5 G b/in^2。
在19 8 8年之前, 人们通常认为磁电阻效应很难再在T homson的基础上有大的提高, 磁场传感器的灵敏度不可能再有质的飞跃, 进
而大幅度的提高硬盘的存储密度, 这意味着磁盘技术将被光盘所淘汰。
因此, 当1988年AlbertFert 和Peter Grunberg分别领导的两个独立的研究小组在磁性多层膜中发现了巨磁电阻效应时, 立刻引起了科学家与企业界的关注。
所谓巨磁电阻效应,是指材料在一个微弱的磁场变化下产生很大电阻变化的物理现象。
2007年诺贝尔物理学奖授予了独立发现该效应的法国科学家AlbertFert和德国科学家Pe ter Grunberg 。
利用材料的巨磁电阻效应,研制出了新一类磁电阻传感器—GM R 传感器。
与传统的磁阻传感器相比, GMR传感器具有灵敏度高、可靠性好、测量范围宽、抗恶劣环境、体积小等优点, 有广泛的应用前景。
对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。
所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。
研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。
所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增
大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。
利用这一效应制成的传感器称为GMR传感器。
二、巨磁电阻材料的进展
1986年德国的Grunberg和C.F.Majkrgak等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe 多层膜中的层间偶合现象。
1988年法国的M.N.Baibich等人首次在纳米级的Fe/Cr 多层膜中发现其Δr/r在4.2K低温下可达50%以上,由此提出了GMR效应的概念,在学术界引起了很大的反响。
由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au…..等具有显著GMR
效应的层间偶合多层膜。
自1988年发现GMR效应后仅3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜。
1992年人们利用两种磁矫顽力差别大的材料(例如Co和Fe20Ni80)制成Co/Cu/Fe20Ni80/Cu多层膜,他们发现,当Cu层厚度大于5nm时,层间偶合较弱,此时利用磁场的强弱可改变磁矩的方向,以自旋取向的不同来控制膜电阻的大小,从而获得GMR效应,故称为自旋阀。
与此同时,1992年A.E.Berkowitz和Chien等人首次发现了Fe、Co与Cu、Ag分别形成二元合金颗粒膜中的磁电阻效应,在低温下其Δr/r可达(40~60%随后陆续出现了Fe-Ag、Fe-Cu、CoxAg1-x/Ag 等颗粒多层膜。
1993年人们在钙钛矿型稀土锰氧化物中发现了比GMR更大的磁电阻效应,即colossal magneto- resistance(CMR)庞磁电阻效应,开拓了GMR研究的新领域。
GMR效应的理论是复杂的,许多机理至今还不清楚;对于这些理论也分为层间交换偶合(IEC)、磁性多层膜的GMR、隧道磁电阻(TMR)等类型,详情可参阅有关文献。
三、巨磁电阻传感器的进展
在发现低磁场GMR效应之后,1994年C.Tsang等研制出全集成化的GMR
器件—自旋阀。
同年,美国的IBM公司研制出利用自旋阀原理的数据读出磁头,它将磁盘记录密度提高了17倍,达5Gbit/6.45cm2(in2),目前已达11Gbit/6.45cm2(in2)。
这种效应也开始用于制造角度、位置传感器;用于数控机床、汽车测速、非接触开关、旋转编码器等领域。
作为传感器它具有功耗小、可靠性高、体积小、价格便宜和更强的输出信号等优点。
最近已研制出利用CMR效应的位置传感器。
2000年7月在德国的德雷斯顿举行的第3届欧洲磁场传感器和驱动器学术会议上,关于GMR传感器的论文占论文总数的1/3以上,可见人们的关注程度。
巨磁电阻效应最重要的应用是在计算机硬盘中作为读出头, 它创造了上百亿美元的产值的产业, 这在上文中已经给予介绍。
巨磁电阻还可以用于磁场传感器、电压隔离器等, 其中巨磁电阻或隧道磁效应下一个最重要的应用是磁性随机存储器(M a g n e to r e sis ta n c e R a n -d o m A e e e ss Me m o r y, MR A M ) 。
M R A M 利用磁性材料的双稳态特性来存储信息, 用磁电阻效应来读出数据,所有的存储单元都集成到集成电路芯片中。
这种存储器最大的优点是断电后, 数据依然保存, 不会消失, 而且还具有速度快和功耗低等优良特性。
2 0 0 6 年美国飞思卡尔半导体公司最先推出MR A M 芯片, 现在已经生产的最大容量为4 兆。
中国科学院物理所韩秀峰研究员的课题组, 也成功的研制出基于隧道磁电阻效应的M R A M 的原型器件, 取得了重大的进展。
M R A M 的应用已经逐渐开始, 随着新的技术的引人, 它的容量和速度还在迅速提高, 有望从性能上超过半导体D R A M , 成为一个全新的产业方向。
硬盘读出头和M R A M 的应用主要是以金属或绝缘体材料为主。
近年来, 随着研究的发展, 人们对自旋的研究又转向了新的材料, 如有机材料、半导体等应用潜力更大的材料。
研究发现在这类新自旋材料中自旋扩散长度更长, 而且在无机半导体材料中可以通过电场产生、调控和探测自旋, 全半导体的隧道磁电阻效应已经在实验室实现, 这些进展无疑把自旋电子学的应用推向了更广阔的领域, 为将来新的器件和应用提供更多的可能性。
AlbertFert 和Peter Grunberg发现了巨磁电阻效应, 并迅速的推广和应用, 这使得电子的自旋第一次被得以应用, 吸引了无数科学家的目光。
巨磁电阻效应揭示了电子自旋属性的作用, 促进了电子学和磁学两个独立的学科的相互融合, 孕育了自旋电子学的诞生。
自旋电子学正处于快速的发展时期, 方兴未艾, 前程无量。
巨磁电阻效应是纳米技术的一个分支, 它的成功成为了纳米技术迅速发展的重要推动力。
在纳米材料领域, 许多令人振奋的科学发现和技术应用的挑战相互交织, 不断的吸引大批的科学家和工程师共同推动科学技术的发展和进步。