2019中考数学二次根式(最新整理)

合集下载

(中考数学)实数与二次根式(知识点梳理)(记诵版)

(中考数学)实数与二次根式(知识点梳理)(记诵版)

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。

2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。

3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。

二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。

2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。

3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。

一个正数a 的正的平方根就是它的算术平方根。

三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。

开平方运算是已知指数和幂求底数。

2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。

3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。

考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。

2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。

3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。

5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。

2019年中考数学《二次根式》复习教案

2019年中考数学《二次根式》复习教案

二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。

2.会根据公式2)(a =a (a ≥0)∣a ∣进行计算。

3.熟练进行二次根式的乘除法运算。

4.了解最简二次根式的定义,能运用相关性质化简二次根式。

复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。

复习难点:正确依据二次根式相关性质计算和化简。

复习过程:一.知识结构:三个概念:二次根式 最简二次根式 同类二次根式三个性质:二次根式的双重非负性 2)(a =a (a ≥∣a ∣ 四种运算:加.减.乘.除 二.复习过程1.二次根式的概念(1).二次根式的定义: 形如a (a ≥0)的式子叫做二次根式 2.二次根式的识别: (1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质 (1).双重非负性:a ≥0(a ≥0)(2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x-3有意义。

(2).求下列二次根式中字母的取值范围x315x --+说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除(1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2(例2.计算 721)1(⋅15253)2(⋅)521(154)3(-⋅-xy x 11010)4(-⋅ (2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。

备战中考数学(冀教版)巩固复习第十五章二次根式(含解析)-文档资料

备战中考数学(冀教版)巩固复习第十五章二次根式(含解析)-文档资料

2019备战中考数学(冀教版)巩固复习-第十五章二次根式(含解析)一、单选题1.下列计算:① ;② ;③ ;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个2.计算的结果是()A. 12B. 2C. 2D. 43.化简=()A. ﹣7B. 7C. ±7D. 494.下列计算正确的是()A. 2 +3 =5B. =2C. 5 5 =5D. =﹣65.设a>0,b>0,则下列运算错误的是()A. B. C.D.6.若x=2+,y=,则x与y关系是()A. x>yB. x=yC. x<yD. xy=17.已知x是实数,则的值是()A. B. C. D. 无法确定的8.化简结果正确的是()A. 3+2B. 3-C. 17+12D. 17﹣129.若是正整数,最小的整数n是()A. 6B. 3C. 48D. 210.下列计算正确的是()A. 2×3=6×25=150B. 2×3=6×5=30C. 2×3=6D. 2×3=511.化简a<0 得()A. B. - C. - D.二、填空题12.若二次根式有意义,则x的取值范围是________.13.已知x= +2,代数x2﹣4x+11的值为________.14.计算的结果是________15.相邻两边长分别是2+与2﹣的平行四边形的周长是________16.计算:________。

17.使等式成立的条件是________ 。

18.当x________时,式子有意义19.把﹣m根号外的因式移到根号内,则得________ .三、计算题20.计算(1)﹣+ .(2)(﹣)÷ .21.计算:× ﹣× .四、解答题22.23.如果最简二次根式与是同类二次根式,那么要使式有意义,x的取值范围是什么?五、综合题24.阅读下面问题:= = ﹣1;= = ﹣;= = ﹣2.(1)求的值;(2)计算:+ + +…+ + .25.如果最简二次根式与是同类二次根式.(1)求出的值;(2)若≤x≤ ,化简:.答案解析部分一、单选题1.【答案】D【考点】二次根式的性质与化简,二次根式的混合运算【解析】【解答】解:()2=2,所以①正确;=2,所以②正确;(﹣2 )2=12,所以③正确;()()=2﹣3=﹣1,所以④正确.故答案为:D.【分析】一个正数的算数根的平方等于它本身;一个负数的平方的算数根等于它的相反数;积的乘方等于把积中的每一个因式都乘方,再把所得的幂相乘;两个数的和与差的积,等于这两个数的平方差;根据性质一一计算即可。

2019-2020人教版八年级数学下册第十六章二次根式章末复习课件(共59张)

2019-2020人教版八年级数学下册第十六章二次根式章末复习课件(共59张)

相关题 4 当 t 取何值时,
35t-3-5 的值最小?最小值是多少?
3
3
解:∵ 5t-3≥0,∴当5t-3=0,即 t=5 时,
最小值是-5.
3 5t-3-5 的值最小,
第十六章 二次根式
专题三 二次根式的混合运算
【要点指导】 进行二次根式的混合运算时, (1)先将二次根式进行适当的化简;(2)二次
第十六章 二次根式
专题五 二次根式的化简
【要点指导】
灵活应用二次根式的性质和公式:( a)2=a(a≥0), a2 =|a|, a·b =
a· b (a≥0, b≥0),
ab=
a b
(a≥0, b>0), 可以将复杂的二次根式进
行化简, 从而帮助我们解决问题.
第十六章 二次根式
例 7 实数 a, b 在数轴上对应点的位置如图 16-Z-1 所示, 则
第十六章 二次根式
(2)比较 5+ 13与 7+ 11的大小
分析 先求出两个式子的平方, 再比较这两个式子的平方的大小.
解:( 5+ 13)2=18+2 65, ( 7+ 11)2=18+2 77. ∵65<77,∴ 65< 77,∴18+2 65<18+2 77, 即( 5+ 13)2<( 7+ 11)2. 又∵ 5+ 13>0, 7+ 11>0, ∴ 5+ 13< 7+ 11.
a ≥0( a≥0 )
a =a( a≥0 )
a2
=|a|=
a(a≥0), -a(a<0)
当a≥0时,( a)2= a2

初中二次根式的知识点归纳

初中二次根式的知识点归纳

初中二次根式的知识点归纳一、定义1、二次根式:又称二次多项式,指的是二次项不为零的多项式,即具有ax^2 + bx + c 的多项式,其中a≠o。

二、概念1、二次项:又称“平方项”,形式为 ax^2,指的是以被平方的变量为指数的多项式,一般用系数a来表示,a可以是实数或复数。

2、一般式:指具有ax^2 + bx + c 的二次多项式,其中 a、b、c可以是实数或复数,此式也叫二次根式。

3、系数:指二次根式 ax^2 + bx + c 中的 a、b、c,称为它的系数。

三、展开1、运用乘积平方公式,可把二次根式拆分展开:ax^2 + bx + c = a(x + b/2a)^2 - (b^2)/(4a) + c2、如果二次根式没有复数系数,可以使用完全平方公式,将二次根式展开为两项,形式为:ax^2 + bx + c = (x + a1)^2 + c1。

四、解决方式1、平方根法:指将平方根和立方根准确到小数点后两位加减法,称之为平方根法。

2、完全平方公式:将ax^2 + bx + c = (x + a1)^2 + c1 方法,此方法可将一般式Ax^2+bx+c转换为(x+a1)^2+c1的形式,采用此方法可以直接求出根式的解。

3、因式分解法:此方法适用的几何平均数,多次乘方求和,解析求根,其中包含了一些基本算术技巧,比如乘法交换律,变乘法公式等。

五、配套计算器的使用1、计算机的完成二次根式的算子运算,是根据一般式 ax^2 + bx + c = 0 这种二次根式,采用特定的算子运算,得到根式的解及解的类别。

2、计算机在进行算子运算时,根据具体情况采用不同的算子算法,从而得出不同的解,如采用二次公式,可以得出根式的解及解的类别。

3、计算机给出的结果即为根式的解,如配套的计算器能够得到,ax^2+bx+c=0的两个实数根,或有2个复根的情况。

六、实际应用1、二次根式的实际运用比较广泛,它可以用来准确表达物理现象,例如平抛运动中的受力,圆锥曲面等物理现象等。

2019中考数学专题练习-二次根式有意义的条件(含解析)

2019中考数学专题练习-二次根式有意义的条件(含解析)

2019中考数学专题练习-二次根式有意义的条件(含解析)一、单选题1.在函数y=中,自变量x的取值范围是( )A. x≤1B. x≥1C. x<1D. x>12.若在实数范围内有意义,则x的取值范围是( )A. ≥3B. x<3C. x≤3D. x>33.函数中,自变量x的取值范围是()A. B. C. D.4.二次根式中,字母a的取值范围是()A. a>-3B. a≥-3C. a>3D. a≥35.二次根式中,字母a的取值范围是()A. a<1B. a≤1C. a≥1D. a>16.二次根式有意义的条件是()A. x>2B. x<2C. x≥2D. x≤27.二次根式在实数范围内有意义,则x的取值范围是()A. x≥1B. x≤1C. x>1D. x<18.式子有意义,则x的取值范围是()A. x>1B. x<1C. x≥1D. x≤19.函数y= 中自变量x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠210.如果是二次根式,那么x应满足的条件是()A. B. C. D.11.使二次根式有意义的x的取值范围为()A. x≤2B. x≠-2C. x≥-2D. x<212.使二次根式有意义的a的取值范围是()A. a≥﹣2B. a≥2C. a≤2D. a≤﹣213.若二次根式有意义,则x的取值范围是()A. x≥﹣B. x≠1C. x>1D. x≥﹣且x≠114.若代数式在实数范围内有意义,则x的取值范围是()A. x≥﹣3B. x>3C. x≥3D. x≤315.若式子有意义,在实数范围内有意义,则x的取值范围是A.B.C.D.二、填空题16.根式中x的取值范围是________ .17.若y=2 + +2,则x=________,y=________.18.若在实数范围内有意义,则a的取值范围是________.19.在实数范围内有意义,那么的取值范围是________20.二次根式有意义,则x的取值范围是________.21.当a________ 时,有意义。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

初中数学二次根式基础知识点(共6篇)

初中数学二次根式基础知识点(共6篇)

初中数学二次根式根底知识点〔共6篇〕篇1:初中数学二次根式根底知识点 1.二次根式概念:式子a(a≥0)叫做二次根式。

2.最简二次根式:必须同时满足以下条件:3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。

4.二次根式的_质:a(a0)22(1)(a)=a(a≥0);(2)aa0(a=0);5.二次根式的运算:a(a0)(1)因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式单项式和多项式统称为整式。

1.单项式:1)数与字母的乘积这样的代数式叫做单项式。

单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。

3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式:1)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一局部,一起挪动初中数学一元二次方程常见考法1.考察一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵敏,所以一直很吸引命题者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式一、选择题1. (2018年江苏省宿迁)若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是(A. 12B. 10C. 8D. 6【答案】B【考点】等腰三角形的性质,非负数之和为0【解析】【解答】解:依题可得:,∴. 又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为 2,底为 4,此时不能构成三角形,舍去.②若腰为4,底为2,∴C△ABC=4+4+2=10.故答案为:B.【分析】根据绝对值和二次根式的非负性得 m、n 的值,再分情况讨论:①若腰为 2,底为 4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.2 (2018·天津·3的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题3. (2018·四川自贡·4分)下列计算正确的是()A(a﹣b)2=a2﹣b2 B.x+2y=3xy C.D(﹣a3)2=﹣a6【分析】根据相关的运算法则即可求出答案.【解答】解(A)原式=a2﹣2ab+b2,故A错误;(B)原式=x+2y,故B错误;(D)原式=a6,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.4. ×(﹣1)之值为何?()A.B.C.2 D.1【分析】根据乘法分配律可以解答本题.【解答】解:×(﹣1)=,故选:A.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.(2018•江苏扬州•3有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得 x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.6.(2018·湖北省孝感·3分)下列计算正确的是()A.a﹣2÷a5=B(a+b)2=a2+b2 C.2+ =2 D(a3)2=a5【分析】直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.【解答】解:A、a﹣2÷a5= ,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.7(2018·浙江临安·3分)下列各式计算正确的是()A.a12÷a6=a2 B(x+y)2=x2+y2C.D.【考点】二次根式乘法、积的算术平方根【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6 是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、==﹣,错误;D、正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>08. (2018四川省绵阳市)等式成立的x的取值范围在数轴上可表示为()A.B.C.D.【答案】B【考点】二次根式有意义的条件,在数轴上表示不等式(组)的解集【解析】【解答】解:依题可得:x-3≥0且x+1〉0,∴x≥3,故答案为:B.【分析】根据二次根式有意义的条件:根号里面的数应大于或等于 0,如果二次根式做分母,根号里面的数只要大于0即可,解这个不等式组,并将答案在数轴上表示即可得出答案.-12 -3二.填空题1(2018四川省泸州市3分)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于 0.2. (2018 · 广东广州· 3 分)如图,数轴上点 A 表示的数为 a ,化简:=【答案】2【考点】实数在数轴上的表示,二次根式的性质与化简【解析】【解答】解:由数轴可知:0<a<2,∴a-2<0,∴原式=a+=a+2-a,=2.故答案为:2.【分析】从数轴可知0<a<2,从而可得a-2<0,再根据二次根式的性质化简计算即可得出答案.3. (2018•河北•3分)计算:=.4. (2018·新疆生产建设兵团·5有意义,那么实数x的取值范围是x≥1.【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵代数式有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.1 5.(2018•湖北黄冈•3分)若a- =a 【考点】完全平方公式.21,则 a +值为.a2【分析】根据完全平方公式,对已知的算式和各选项分别整理,即可得出答案.1【解答】解:∵a-= 6 ,a∴(a- )2=6,a2+ -2=6,∴a2+ =8,故答案为:8.【点评】本题考查了完全平方公式。

熟记公式的几个变形公式对解题大有帮助。

6. (2018 年江苏省南京市•2×﹣的结果是.【分析】先利用二次根式的乘法运算,然后化简后合并即可.【解答】解:原式=﹣2=3 ﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7. (2018·天津·3分)的结果等于.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.)2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.6= 98(2018·湖北省武汉·3分)计算的结果是 【分析】根据二次根式的运算法则即可求出答案. 【解答】解:原式= + ﹣ 故答案为: 【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型. 9. (2018•山东滨州•5分)观察下列各式: =1+ , =1+ ,=1+ ,…… 请利用你所发现的规律,计算 + + +…+ ,其结果为.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+ + +…+=1++1++1++ (1)=9+(1﹣ +﹣+﹣+…+ ﹣)=9+=9. 故答案为:9 .【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.10.(2018·山东潍坊·3 ,把显示结果输入如图的程序中,则输出的结果是 34+9 .2 2 2 2【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.【解答】解:由题意知输入的值为32=9,则输出的结果为[(9+3)﹣]×(3+ ) =(12﹣ )×(3+ )=36+12 ﹣3 ﹣2=34+9 ,故答案为:34+9. 【点评】本题主要考查计算器﹣基础知识,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则.11. (2018•山西•3分) 计算 :(3【 答案】17【 考点】平方差公式+1)(3 -1)= .【 解 析 】 ∵ (a + b )(a - b ) = a 2 - b 2 ∴(3 +1)(3 -1) =(3 )2-1 =18-1=1712. (2018•山东枣庄•4 分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为 a ,b ,c ,则该三角形的面积为S= .现已知△ABC的三边长分别为,则△ABC的面积为 1 .【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2, 的面积,从而可以解答本题.2【解答】解:∵S=,∴△ABC 的三边长分别为,则△ABC的面积为:S= =1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.三.解答题1. (2018·湖南省常德·5分)计算(﹣π)0﹣|1﹣2 |+ ﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2 ﹣4,=1﹣2+1+2 ﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.2 (2018•四川凉州•7分)计算:|3.14﹣π )0﹣2cos45°+()﹣1+(﹣1)2009.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.【解答】解:原式=π +﹣1=π ++1﹣1=π .【点评】此题主要考查了实数运算,正确化简各数是解题关键.3. (2018•山西•5分)计算(1)(22)2--4 + 3-1⨯ 6 + 20【考点】实数的计算【解析】解:原式= 8 -4 +2 +1 =74 (2018•山东枣庄•8分)计算:| ﹣2|+sin60°﹣)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣﹣3 +=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.5(2018•山东淄博•5.【考点】4J:整式的混合运算—化简求值;76:分母有理化.【分析】先算平方与乘法,再合并同类项,最后代入计算即可.【解答】解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,时,原式=2(+1()﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.6. (2018•四川成都•5.【答案(1)原式=“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档