2019中考数学几何证明专题试卷精选汇编(有解析答案)

合集下载

2019年中考数学几何证明、计算题汇编及解析

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1) 求证:DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形状,并证明你的结论;(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.[解析] (1)过A 作DC 的垂线AM 交DC 于M,则AM=BC=2.又tan ∠ADC=2,所以212DM ==.即DC=BC. (2)等腰三角形.证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒ 即△ECF 是等腰直角三角形.(3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=︒,又45CEF ∠=︒,所以90BEF ∠=︒. 所以3BF k ==所以1sin 33k BFE k ∠==.2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.[解析] (1)∵四边形ABCD 是平行四边形,∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE =21AB ,CF =21CD . ∴AE =CF∴△ADE ≌△CBF .(2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形.EBFCDA∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD ,∴四边形 AGBD 是平行四边形. ∵四边形 BEDF 是菱形, ∴DE =BE . ∵AE =BE ,∴AE =BE =DE .∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB =90°. ∴四边形AGBD 是矩形3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.[解析](1)BM =FN .证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF . 又∵∠BOM =∠FON , ∴ △OBM ≌△OFN . ∴ BM =FN .(2) BM =FN 仍然成立.(3) 证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF . ∴∠MBO =∠NFO =135°.又∵∠MOB =∠NOF , ∴ △OBM ≌△OFN . ∴ BM =FN .图13-2图13-3图13-1 A ( E )4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。

2019年中考数学几何综合型试题分类汇编及答案

2019年中考数学几何综合型试题分类汇编及答案

2019年中考数学几何综合型试题分类汇编及答案各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢1.重庆,11,4分)据报道,重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为________ 【解析】科学记数法的正确写法是:a×。

【答案】×105【点评】通常易犯的错误是a的整数位数不对。

2.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为×105 ×106 ×105 ×107【解析】3120000是一个7位整数,所以3120000用科学记数法可表示为×1000000=×106,故选B.【答案】B【点评】科学记数法是将一个数写成a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值1时,n是正数;当原数的绝对值<1时,n是负数.学生在学习科学记数法时最不容易掌握的就是n的确定,查准是10的几次方。

还有的学生容易把“×10n”忘记而丢失,要明确记清.其方法是确定a,a是只有一位整数的数;确定n;当原数的绝对值≥10时,n 为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数.16. 2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.【解析】科学记数法形式:a×10n 中n的值是易错点,由于378 000有6位,所以可以确定n=6﹣1=5,所以378 000=×105【答案】×105【点评】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.表示时关键要正确确定a 的值以及n的值.17.从权威部门获悉,中国海洋面积是万平方公里,约为陆地面积的三分之一, 万平方公里用科学计数法表示为平方公里A. B. C. D.【解析】∵万平方公里=×106平方公里,且结果保留两位有效数字∴×106平方公里≈【答案】C.【点评】此题考查对科学计数法和有效数字的理解,把一个绝对值大于10的整数记为a×10n的形式, 这种记数法叫做科学记数法.; 在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所有的数字都叫这个近似数字的有效数字。

2019年全国各地中考数学压轴题汇编:几何综合(湖北专版)(解析卷)

2019年全国各地中考数学压轴题汇编:几何综合(湖北专版)(解析卷)

2019年全国各地中考数学压轴题汇编(湖北专版)几何综合参考答案与试题解析.解答题(共22小题)1 . (2019?天门)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB = AD, / B=Z D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD // BC, Z A=Z D,画出BC边的垂直平分线n.图②解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求2. (2019?武汉)已知AB是。

的直径,AM和BN是。

的两条切线,DC与。

相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD?BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若/ADE = 2/OFC, AD = 1 ,求图中阴影部分的面积.(1)证明:连接OC、OD,如图1所示:■「AM和BN是它的两条切线,・•• AMXAB, BNXAB,AM // BN,・./ ADE + / BCE= 180°DC 切。

于E,・./ODE =▲/ADE, /OCE=^/BCE,2 2・./ ODE + ZOCE = 90° ,・./ DOC =90° ,・./AOD + /COB = 90° ,・. /AOD + /ADO = 90° ,・./ AOD =/ OCB,・. / OAD =/ OBC=90° ,.•.△AOD^ABCO,BO BC・•.OA2=AD?BC,』AB) 2=AD?BC,2・•・ AB2=4AD?BC;(2)解:连接OD , OC,如图2所示:・. / ADE = 2/OFC ,/ ADO = / OFC ,・•• / ADO = / BOC , / BOC = / FOC ,・./ OFC =Z FOC,.•.CF = OC,・••CD垂直平分OF,.•.OD=DF,'OCXF 在ACOD 和^CFD 中,・ 0D=DF ,CD=CD.,.△COD^ACFD (SSS),・ ./ CDO =Z CDF ,・ . /ODA + /CDO+/CDF = 180° ,・ ./ ODA = 60° =Z BOC,・ ./ BOE= 120° ,在 RtADAO , AD =运OA, 31 △BOC 中,BC = 73OB ,2 •.AD: BC = 1 : 3,3 •• AD = 1,BC=3, OB = V3,.二图中阴影部分的面积= 2S A OBC - S 扇形 OBE= 2 x ~^x X 3 — 1乂_=3、/^一兀. 二 I图1图12 (2019?天门)如图,E, F 分别是正方形 ABCD 的边CB, DC 延长线上的点,且 BE=CF,过点E 作EG // BF ,交正方形外角的平分线 CG 于点G,连接GF .求证:(1) AEXBF ;(2)四边形BEGF 是平行四边形.证明:(1)二.四边形 ABCD 是正方形,3. A D M AD F M,AB=BC, Z ABC = Z BCD = 90° ,・./ ABE=/ BCF=90° ,'AB 二BC在AABE 和^ BCF 中,,/ABE:NBCF,脚工FABE^A BCF (SAS),AE= BF, / BAE = Z CBF ,・•• EG // BF,・./ CBF = Z CEG,・. / BAE+Z BEA=90° ,・./ CEG + /BEA= 90° ,AE± EG,AE± BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示: 则AP=CE, / EBP =90° ,・./ P = 45° ,・•• CG为正方形ABCD外角的平分线,・./ ECG = 45° ,・./ P = Z ECG,由(1)得/ BAE=Z CEG,'Z P=Z ECG在△ APE 和△ ECG 中,.研二,l ZBAE=ZCEGAPE^A ECG (ASA),AE= EG,••• AE= BF,EG = BF,••• EG // BF,••・四边形BEGF是平行四边形.4. ( 2019?武汉)在△ ABC 中,Z ABC = 90° , —=n, M 是 BC 上一点,连接 AM.BC(1)如图1,若n= 1, N 是AB 延长线上一点, CN 与AM 垂直,求证:BM = BN.(2)过点B 作BPXAM, P 为垂足,连接 CP 并延长交 AB 于点Q.• •• AMXCN,• •.Z AHC = 90° ,• . /ABC=90° ,• ./BAM+/AMB = 90° , Z BCN + Z CMH =90° ,• . / AMB =/ CMH ,/ BAM = / BCN ,• . BA=BC, Z ABM =Z CBN = 90• •.△ABM^ACBN (ASA), BM= BN.①如图2,若n=1,求证:—.PQ BQ②如图3,若M 是BC 的中点,直接写出tan/BPQ 的值.(用含n 的式子表示)AM 交CN 于点H .(1)证明:如图1中,延长(2)①证明:如图2中,作CH//AB交BP的延长线于H .图?BP± AM,・./ BPM =/ ABM =90 ° ,・. /BAM+/AMB = 90° , / CBH+/BMP = 90° ,/ BAM = / CBH ,. CH //AB,・./ HCB+/ABC= 90° ,・. /ABC=90° ,・./ ABM =/ BCH = 90° ,・•• AB= BC,・•.△ABM^ABCH (ASA),BM = CH,. CH // BQ,.PC _ CH _ Bl . = =PQ BQ BQ②解:如图3中,作CH //AB交BP的延长线于H,作CN^BH于N.不妨设BC=2m,则AB = 2mn.A Q~ 邺则BM = CM=m, CH= —, BH =%]+4门2, AM = m/]+4n2,・••—?AM?BP= —?AB?BM ,2 2・-------- PB=7彳,.L?BH?CN= J L?CH?BC ,2 2•. CNXBH, PM ±BH ,MP // CN, ••• CM= BM,・. / BPQ = / CPN,5. (2019?十堰)如图,△ ABC中,AB=AC,以AC为直径的。

2019年全国各地中考数学压轴题汇编:几何综合(江苏专版)(解析卷)

2019年全国各地中考数学压轴题汇编:几何综合(江苏专版)(解析卷)

2019年全国各地中考数学压轴题汇编(江苏专版)几何综合参考答案与试题解析1.(2019•南京)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB==5,则CD=x,AD=x,∵AD+CD=AC,∴+x=3,∴x=,∴CD=x=,观察图象可知:0≤CD<时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴=,∴=,解得m=,∴CD=3﹣=,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴=,∴=,∴n=,∴CG=4﹣=,∴CD==,观察图象可知:当0≤CD<或<CD<3时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2.2.(2019•无锡)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,F 即为所求②如图3所示,AH即为所求.3.(2019•常州)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=1+3+5+7+…+2n﹣1.;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=6;当n=5,m=3时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=n+2(m﹣1)(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.解:(1)有三个Rt△其面积分别为ab,ab和c2.直角梯形的面积为(a+b)(a+b).由图形可知:(a+b)(a+b)=ab+ab+c2整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.故结论为:直角长分别为a、b斜边为c的直角三角形中a2+b2=c2.(2)n行n列的棋子排成一个正方形棋子个数为n2,每层棋子分别为1,3,5,7,…,2n﹣1.由图形可知:n2=1+3+5+7+…+2n﹣1.故答案为1+3+5+7+…+2n﹣1.(3)①如图4,当n=4,m=2时,y=6,如图5,当n=5,m=3时,y=9.②方法1.对于一般的情形,在n边形内画m个点,第一个点将多边形分成了n个三角形,以后三角形内部每增加一个点,分割部分增加2部分,故可得y=n+2(m﹣1).方法2.以△ABC的二个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成3+2(m﹣1)个互不重叠的小三角形.以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成4+2(m﹣1)个互不重叠的小三角形.故以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成n+2(m﹣1)个互不重叠的小三角形.故可得y=n+2(m﹣1).故答案为:①6,3;②n+2(m﹣1).4.(2019•扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是上的一点.①求∠AQB的度数;②若OA=18,求的长.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;(2)解:①∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°;②∵∠AQB=65°,∴∠AOB=130°,∴的长=的长==23π.5.(2019•无锡)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.②如图2﹣1中,当∠PCB’=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB’=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB’中则有:,解得t=6.如图2﹣3中,当∠CPB’=90°时,易证四边形ABP’为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB’M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB’=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B’AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB’=90°﹣x,∴∠DAB’=∠P AB’﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB’=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.6.(2019•苏州)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB=90°,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.7.(2019•常州)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:1;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:1+;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.解:(1)①半径为1的圆的宽距离为1,故答案为1.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt△ODC中,OC===∴OP+OC≥PC,∴PC≤1+,∴这个“窗户形“的宽距为1+.故答案为1+.(2)①如图2﹣1中,点C所在的区域是图中⊙O,面积为=π.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.∵AC≤AM+CM,又∵5≤d≤8,∴当d=5时.AM=4,∴AT==2,此时M(2﹣1,2),当d=8时.AM=7,∴AT==3,此时M(3﹣1,2),∴满足条件的点M的横坐标的范围为2﹣1≤x≤3﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣3+1≤x﹣2+1.8.(2019•连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E 在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.9.(2019•苏州)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为2cm/s,BC的长度为10cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由。

2019年浙江省中考数学真题分类汇编 专题10 图形的性质之解答题(解析版)

2019年浙江省中考数学真题分类汇编 专题10 图形的性质之解答题(解析版)

专题10 图形的性质之解答题参考答案与试题解析一.解答题(共23小题)1.(2019•舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.【答案】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【点睛】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.2.(2019•温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED 的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【答案】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.3.(2019•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B 的度数.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.4.(2019•衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.【答案】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=CF.【点睛】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.5.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.【答案】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.【点睛】本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.6.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G 在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【答案】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH,∵CH=0.5,CG,∴HG,∴HD=HG.【点睛】本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.7.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【答案】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.8.(2019•舟山)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【答案】解:(1)由勾股定理得:CD=AB=CD',BD=AC=BD'',AD'=BC=AD'';画出图形如图1所示;(2)如图2所示.【点睛】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.9.(2019•温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP =NQ.【答案】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点睛】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.10.(2019•衢州)如图,在4×4的方格子中,△ABC的三个顶点都在格点上.(1)在图1中画出线段CD,使CD⊥CB,其中D是格点.(2)在图2中画出平行四边形ABEC,其中E是格点.【答案】解:(1)线段CD即为所求.(2)平行四边形ABEC即为所求.【点睛】本题考查作图﹣应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.11.(2019•金华)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.【答案】解:如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;EC,EF,FC,借助勾股定理确定F点,则EF⊥AC;借助圆规作AB的垂直平分线即可;【点睛】本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直、中点是解题的关键.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【答案】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、矩形面积公式以及二次函数的应用等知识;熟练掌握矩形的性质,证明三角形是等腰直角三角形是解题的关键.13.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【答案】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.【点睛】本题为四边形综合题,涉及到直角三角形中线定理、三角形相似等知识点,这种新定义类题目,通常按照题设顺序逐次求解,较为容易.14.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)【答案】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.15.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM 时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【答案】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:,∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴,,∴,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.【点睛】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.16.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.【答案】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形(4)如图,过点N作ND⊥ME于点D∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM∵∠BMN=∠QEM=90°∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°∴△QEM≌△MDN(AAS)∴EQ=DM EM,∵∠BMN=∠QEM=90°∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴,∴BM=2BE,BE=2BQ∴BM=4BQ∴QM=3BQ=MN,BN=5BQ∴∴BN MN()【点睛】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE,∠C=30°,求的长.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD22,∴的长为:.【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.18.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.【答案】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA t,则HO t,∵OC=2OH,∴∠OCE=30°.【点睛】本题主要利用了切线和平行四边形的性质,其中(2),要利用(1)中△AOB是等腰直角三角形结论.19.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD AB时,求⊙O的直径长.【答案】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF3,即⊙O的直径长为3.【点睛】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.20.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.【答案】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC AB=1,∴AC BC.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【答案】解:(1)①连接OB、OC,则∠BOD BOC=∠BAC=60°,∴∠OBC=30°,∴OD OB OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD,△ABC面积的最大值BC×AD2OB sin60°;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.【点睛】本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.22.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.【答案】证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG,∴在Rt△ABG中,AG BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH,BH,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE BE=(2x)BE,∴在Rt△AHE中,tan∠EAD,∴y;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM EC a+ax,∴BM=EM﹣BE=ax a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG,∴BF,∴△OFB的面积,∴△AEC的面积,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,【点睛】此题是圆的综合题,关键是根据等边三角形的性质、勾股定理和相似三角形的判定和性质解答.23.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【答案】解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=AC sin45°=42圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点P的坐标为(3,6﹣3)或(3,6+3).【点睛】本题为圆的综合运用题,涉及到一次函数、圆的切线性质等知识点,其中(2),关键要确定圆的位置,分类求解,避免遗漏.。

【精品】2019中考数学几何证明专题试卷精选汇编(有解析答案)

【精品】2019中考数学几何证明专题试卷精选汇编(有解析答案)

几何证明东城区19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 交AD 于点E ,交AC 于点F . 求证:AE =AF .19.证明: ∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分 ∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分 ∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分 ∴∠AFB =∠DEB . -------------------4分 ∵∠DEB =∠FEA , ∴∠AFB =∠FEA .∴AE =AF . -------------------5分 西城区19.如图,AD 平分BAC ∠,BD AD ⊥于点D ,AB 的中点为E ,AE AC <. (1)求证:DE AC ∥.(2)点F 在线段AC 上运动,当AF AE =时,图中与ADF △全等的三角形是__________.ECBA【解析】(1)证明:∵AD 平分BAC ∠, ∴12∠=∠, ∵BD AD ⊥于点D , ∴90ADB ∠=︒, ∴ABD △为直角三角形. ∵AB 的中点为E , ∴2AB AE =,2ABDE =, ∴DE AE =, ∴13∠=∠, ∴23∠=∠, ∴DE AC ∥. (2)ADE △.321ECBA海淀区19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC 平分ABF ∠.FE DCB A19. 证明:∵90ACB ∠=︒,D 为AB 的中点, ∴12CD AB BD ==. ∴ABC DCB ∠=∠. …………… ∵DC EF ∥,∴CBF DCB ∠=∠.∴CBF ABC ∠=∠. ∴BC 平分ABF ∠. 丰台区19.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE = DF .F E CBA19.证明:连接AD .∵AB =BC ,D 是BC 边上的中点,∴∠BAD =∠CAD . ………………………3分 ∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE =DF . ………………………5分 (其他证法相应给分) 石景山区19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.O H FE DCB A(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分朝阳区19. 如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.求证:∠DAB =∠ACE.19. 证明:∵AC =BC ,CE 为△ACB 的中线,AB CEF∴∠CAB=∠B,CE⊥AB. ……………………………………………2分∴∠CAB+∠ACE=90°. ………………………………………………3分∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°. ……………………………………………………4分∴∠DAB=∠ACE. ………………………………………………………5分燕山区19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题。

2019全国中考数学真题分类汇编:直角三角形、勾股定理及参考答案

一、选择题1.(2019·广元)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是________【答案】843【解析】连接AD,过点D作DM⊥BC于点M,DN⊥AC于点N,易得△ACD是等边三角形,四边形BNDM是正方形,设CM=x,则DM=MB=x+2,∵BC=2,∴CD=AC=,∴在Rt△MCD中,由勾股定理可求得,x1,DM=MB1,∴在Rt△BDM中,BD2=MD2+MB2=843.2.(2019·绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 ( )A.524 B.532C.173412D.173420【答案】A【解析】如图所示:设DM =x ,则CM =8﹣x , 根据题意得:(8﹣x +8)×3×3=3×3×5, 解得:x =4,∴DM =6,∵∠D =90°,由勾股定理得:BM ==5, 过点B 作BH⊥AH,∵∠HBA+∠ABM=∠ABM+∠ABM=90°, ∴∠HBA+=∠ABM,所以Rt△ABH∽△MBD, ∴BH BD AB BM =,即385BH =,解得BH =524,即水面高度为524. 3.(2019·益阳)已知M 、N 是线段AB 上的两点,AM=MN=2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC 、BC ,则△ABC 一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】如图所示, ∵AM=MN=2,NB =1,∴AB=AM=MN+NB =2+2+1=5,AC=AN=AM+MN=2+2=4,BC=BM=BN+MN1+2=3, ∴25522==AB ,16422==AC ,9322==BC , ∴222AB BC AC =+, ∴△ABC 是直角三角形.4.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E.使得∠CDE =15°,连接BE 并延长BE 到F,使CF =CB,BF 与CD 相交于点H,若AB =1,有下列结论:①BE =DE;②CE+DE =EF;③S △DEC =134,④231DH HC.则其中正确的结论有( )A.①②③B.①②③ ④C.①②④D.①③④【答案】A【解析】①利用正方形的性质,易得△BEC ≌△DEC,∴BE =DE,①正确;②在EF 上取一点G,使CG =CE,∵∠CEG =∠CBE+∠BCE =60°,∴△CEG 为等边三角形,易得△DEC ≌△FGC,CE+DE =EG+GF =EF,②正确;③过点D 作DM ⊥AC 于点M,S △DEC =S △DMC -S △DME =13412,③正确;④tan ∠HBC =2-,∴HC =2-,DH =1-HC =-1,∴3+1DH HC,④错误.故选A.5. (2019·宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】C【解题过程】设图中三个正方形边长从小到大依次为:a,b,c,则S阴影=c 2-a 2-b 2+b(a+b -c),由勾股定理可知,c 2=a 2-b 2,∴S 阴影=c 2-a 2-b 2+S 重叠=S 重叠,即S 阴影=S 重叠,故选C.6.(2019·重庆B 卷)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 与点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为( ) B. C. D.【答案】D【解析】∵∠ABC =45°,AD ⊥BC , ∴△ABC 是等腰直角三角形, ∴AD=BD.∵BE ⊥AC ,AD ⊥BD , ∴∠DAC =∠DBH ,4212题图F∴△D BH ≌△DAC (ASA ). ∵DG ⊥DE , ∴∠BDG =∠ADE ,∴△DBG ≌△DAE (ASA ), ∴BG=AE ,DG=DE ,∴△DGE 是等腰直角三角形, ∴∠DEC =45°.在Rt △ABE 中,BE , ∴GE =,∴DE =.∵D ,F 关于AE 对称, ∴∠FEC =∠DEC =45°,∴EF=DE=DG =,DF=GE =,∴四边形DFEG 的周长为2(+2-)=.故选D . 二、填空题221221222221127.(2019·苏州)“七巧板”是我们祖先的一项卓越创造.可以拼出许多有趣的图形,被誉为“东方魔板”图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形该“七巧板”中7块图形之一的正方形边长为 cm(结果保留根号).(图①)(图②)(第15题)【解析】本题考查了正方形性质、等腰直角三角形性质的综合,由题意可知,等腰×10=5cm,设正方形阴影部分三角形①与等腰三角形②全等,且它们的斜边长都为12x=sin45°,解得x.的边长为x cm,则5第15题答图8.(2019·威海)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC=°【答案】105°【解析】过点D作DE⊥AB于点E,过点C作CF⊥AB垂足为F,由∠ACB=90°,AC=BC,得△ABC是等腰直角三角形,由三线合一得CF为中线,从而推出2CF=AB,由AB∥CD得DE=CF,由AB=BD得BD=2DE,在Rt△DEB中利用三角函数可得∠ABD =30°,再由AB=BD得∠BAD=∠ADB=75°,最后由AB∥CD得∠BAD+∠ADC=180°求出∠ADC=105°.9.(2019·苏州)如图,一块舍有45°角的直角三角板,外框的一条直角边长为8 cm,cm,则图中阴影部分的面积三角板的外框线和与其平行的内框线之间的距离均为为 cm:(结果保留根号).(第18题)【答案】第18题答图解析:,所以△ABC与△DEF 有公共内心O ,连接AD 、BE 、FC 并延长相交于点O ,过O 作OG ⊥AB 于G ,交DE 于H .则GH =,S △ABC =12OG ×(AB +AC +BC )=12AB ×AC ,∴OG =8AB AC AB AC BC ⨯==-+-OH =8-∵DE ∥AB ,∴△ODE ∽△OAB ,∴OH DEOGAB=8DE=,解得DE =6-S阴影= S △ABC -S △DEF =(2211861022⨯--=+10.(2019·江西)在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0)、(4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,若DA =1,CP ⊥DP 于点P ,则点P 的坐标为 .【答案】(42322216+++,0)或(42322216+-+,0)【解析】设点P 的坐标为(x ,0),(1)当点D 在线段AB 上时,如图所示:∵DA=1,∴点D 的坐标为(224-,22). ∴222)224()]224(4[-+--=CD 22)22(2416)22(+-+=2417-=, 222)22()]224([+--=x PD 222)22()224()224(2+-+--=x x 2417)28(2-+--=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+,∴2417)28(2-+--x x 3282+-+x x 2417-=, 即032)216(22=+--x x ,∵△=3224)]216([2⨯⨯---=2322-<0, ∴原方程无解,即符合要求的点P 不存在. (2)当点D 在线段BA 的延长线上,如图所示:∵DA=1,∴点D 的坐标为(224+,22-). ∴222)]22(4[)]224(4[--++-=CD 22)224()22(++-=2417+=, 222)22()]224([-++-=x PD 222)22()224()224(2++++-=x x 2417)28(2+++-=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+, ∴2417)28(2+++-x x 3282+-+x x 2417+=, 即032)216(22=++-x x ,∵△=3224)]216([2⨯⨯-+-=2322+>0, ∴222322216⨯+±+=x 42322216+±+=, ∴点P 的坐标为(42322216+++,0)或(42322216+-+,0).11.(2019·枣庄)把两个同样大小含45°的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上,若AB=2,则CD=________.过点A作AM⊥BD于点M,则AM=【解析】在等腰直角△ABC中,∵AB=2,∴BC=MC=112. (2019·巴中)如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=________.【答案】【解析】将△ABP绕点B顺时针旋转60°到△CBP',连接PP',所以BP=BP',∠PBP'因为PP'=8,P'C=60°,所以△BPP'是等边三角形,其边长BP为8,所以S=PA=6,PC=10,所以PP'2+P'C2=PC2,所以△PP'C是直角三角形,S△PP'C=24,所以S△=S△BPP'+S△PP'C=ABP+S△BPC.三、解答题13.(2019·巴中)如图,等腰直角三角板如图放置,直角顶点C在直线m上,分别过点A,B作AE⊥直线m于点E,BD⊥直线m与点D.(1)求证:EC=BD;(2)若设△AEC三边分别为a,b,c,利用此图证明勾股定理.证明:(1)∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC, ∴∠ACE+∠BCD=90°,∵AE⊥EC, ∴∠EAC+∠ACE=90°,∴∠BCD=∠CAE,∵BD⊥CD, ∴∠AEC=∠CDB=90°,∴△AEC≌△CDB(AAS), ∴EC=BD.(2)∵△AEC≌△CDB,△AEC三边分别为a,b,c,,∴BD=EC=a,CD=AE=b,BC=AC=c,∴S梯形=12(AE+BD)ED=12(a+b)(a+b),S梯形=12ab+12c2+12ab,∴12(a+b)(a+b)=12ab+12c2+12ab,整理可得a2+b2=c2,故勾股定理得证.。

2019中考数学几何综合试卷精选汇编(含解析答案)

几何综合东城区27. 已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD的延长线于点H .(1)如图1,若60BAC ∠=︒①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.27. (1)①75B ∠=︒,45ACB ∠=︒;--------------------2分②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=︒,AD=2可得DE =1,AE =. Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1.∴AC 1=.Rt △ACH 中,由30DAC ∠=︒,可得AH =; --------------4分(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH . 易证△ACH ≌△AFH . ∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =, ∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分 西城区27.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图,当045α︒<<︒时, ①依题意补全图.②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明. (3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.CDBA图1备用图C DBAM【解析】(1)①补全的图形如图所示:NEMABD C②2NCE BAM ∠=∠.(2)1902MCE BAM ∠+∠=︒,连接CM ,NQMABDC EDAM DCM ∠=∠,DAQ ECQ ∠=∠,∴2NCE MCE DAQ ∠=∠=∠,∴12DCM NCE ∠=∠,∵BAM BCM ∠=∠,90BCM DCM ∠+∠=︒,∴1902NCE BAM ∠+∠=︒. (3)∵90CEA ∠=︒, ∴点E 在以AC 为直径的圆上,E∴max 1EF FO r =+=+ 海淀区27((27..解:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=,∴30OPE ∠=.∴30DPA OPE ∠=∠=.∴120EPD ∠=. ……………1分 ∵DP PE =,6DP PE +=, ∴30PDE ∠=,3PD PE ==.∴cos30DF PD =⋅︒=∴2DE DF ==分 (2)当M 点在射线OA上且满足OM =DMME的值不变,始终为1.理由如下: ………………4分当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠, ∴KPA DPA ∠=∠. ∴KPM DPM ∠=∠. ∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MKMD =. ………………5分作ML ⊥OE 于L ,MN ⊥EK 于N .∵60MO MOL =∠=, ∴sin 603ML MO =⋅=. ………………6分∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MK ME =. ∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立. ……………7分丰台区27.如图,Rt△ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N .(1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.A BCE27.解:(1)如图; …………………1分(2)45°; …………………2分 (3)结论:AM CN . …………………3分 证明:作AG ⊥EC 的延长线于点G .∵点B 与点D 关于CE 对称, ∴CE 是BD 的垂直平分线. ∴CB =CD . ∴∠1=∠2=α.∵CA =CB ,∴CA =CD .∴∠3=∠CAD . ∵∠4=90°, ∴∠3=12(180°-∠ACD )=12(180°-90°-α-α)=45°-α.∴∠5=∠2+∠3=α+45°-α=45°.…………………5分 ∵∠4=90°,CE 是BD 的垂直平分线, ∴∠1+∠7=90°,∠1+∠6=90°. ∴∠6=∠7. ∵AG ⊥EC ,∴∠G =90°=∠8. ∴在△BCN 和△CAG 中, ∠8=∠G , ∠7=∠6,BC =CA ,∴△BCN ≌△CAG .∴CN =AG . ∵Rt△AMG 中,∠G =90°,∠5=45°,∴AM AG .∴AM CN . …………………7分 (其他证法相应给分.)石景山区27.在正方形ABCD 中,M 是BC 边上一点,点P 在射线AM 上,将线段AP 绕点A 顺时针旋转90°得到线段AQ ,连接BP ,DQ . (1)依题意补全图1;(2)①连接DP ,若点P ,Q ,D 恰好在同一条直线上,求证:2222DP DQ AB +=; ②若点P ,Q ,C 恰好在同一条直线上,则BP 与AB 的数量关系为: .27.(1)补全图形如图1. ………………… 1分(2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分 证明:过点A 作AE⊥PQ 于E ,连接BE AC ∴AE 是△PAQ 的垂线∵三△PAQ 是等腰直角三角形(已证) ∴AE 是等腰直角三角形PAQ 的垂线,角平分线 ∴∠AEP=90°,AE=PEC图1∵正方形ABCD∴∠ABC=90°∠ACB=∠BAC=45°∠AEP+∠ABC=180°∴A ,B,C,E四点共圆∴∠AEB=∠ACB=45°,∠CEB=∠BAC=45°∴∠AEB=∠CEB=45°∵BE=BE∴△ABE≌△PBE (SAS)∴BP=AB朝阳区27. 如图,在菱形ABCD中,∠DAB=60°,点E为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD于点F,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示);(3)用等式表示线段AE、AF与CG之间的数量关系,并证明.27.(1)补全的图形如图所示.……………………………………1分(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ……………………………………………2分 ∴∠AGC=30°.∴∠AFC =α+30°. …………………………3分(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AF AE 3=+.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. …………………………………………………5分∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ……………………………6分 ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠⋅= ∴AG =3CG . …………………………………………7分 即AF+AE =3CG .燕山区27.如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由. ,备用图27.解:(1)MN 与AB 的关系是 MN ⊥AB ,MN=21AB…………………………………2′(2) m= 2 对应的碟宽是4…………………………………4′(3) ①由已知,抛物线必过(3,0),代入)0(3542>--=a a ax y准蝶形AMBABM得,03549=--a a31=a∴抛物线的解析式是3312-=x y …………………………………5′ ② 由①知,3312-=x y 的对称轴上P (0,3),P (0,-3)时,∠APB 为直角, ∴在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,p y 的取值范围是33〉〈-p p y y 或…………………………………7′门头沟区27. 如图,在△ABC 中,AB =AC ,2A α∠=,点D 是BC 的中点,DE AB E ⊥于点,DF AC F ⊥于点.(1)EDB ∠=_________°;(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N .①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM CN 、与BC 之间的数量关系, (用含α的锐角三角函数表示)并写出解题思路.27.(本小题满分7分)(1) EDB α∠= ……………………………………………1分 (2)①补全图形正确 ……………………………………2分 ②数量关系:DM DN =…………………………………3分 ∵,AB AC BD DC == ∴DA 平分BAC ∠∵DE AB E ⊥于点,DF AC F ⊥于点∴DE DF = , MED NFD ∠=∠ ……………………4分BB∵2Aα∠=∴1802EDFα∠=︒-∵1802MDNα∠=︒-∴MDE NDF∠=∠∴MDE NDF△≌△……………………5分∴DM DN=③数量关系:sinBM CN BCα+=⋅……………………6分证明思路:a.由MDE NDF△≌△可得EM FN=b. 由AB AC=可得B C∠=∠,进而通过BDE CDF△≌△,可得BE CF=进而得到2BE BM CN=+c.过BDERt△可得sinBEBDα=,最终得到sinBM CN BCα+=⋅……………7分大兴区27.如图,在等腰直角△ABC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥C F于点G,连接AG.(1)求证:∠ABG=∠ACF;(2)用等式表示线段C G,AG,BG之间的等量关系,并证明.27.(1)证明:∵∠CAB=90°.∵BG⊥CF于点G,∴∠BGF=∠CAB=90°.∵∠GFB=∠CFA. ………………………………………………1分∴∠ABG=∠ACF. ………………………………………………2分(2)CG+BG. …………………………………………………3分证明:在CG上截取CH=BG,连接AH,…………………………4分∵△ABC是等腰直角三角形,∴ ∠CAB =90°,AB =AC . ∵ ∠ABG =∠ACH .∴ △ABG ≌△ACH . …………………………………………………… 5分 ∴ AG =AH ,∠GAB =∠HAC . ∴ ∠GAH =90°.∴ 222AG AH GH +=.∴ GHAG . ………………………………………………………6分 ∴ CG =CH +GH+BG . ………………………………………7分 平谷区27.在△ABC 中,AB=AC ,CD ⊥BC 于点C ,交∠ABC 的平分线于点D ,AE 平分∠BAC 交BD 于点E ,过点E 作EF ∥BC 交AC 于点F ,连接DF . (1)补全图1;(2)如图1,当∠BAC =90°时,①求证:BE=DE ;②写出判断DF 与AB 的位置关系的思路(不用写出证明过程); (3)如图2,当∠BAC=α时,直接写出α,DF ,AE 的关系.27.解:(1)补全图1; (1)图1BB图2B(2)①延长AE ,交BC 于点H . ····· 2 ∵AB=AC , AE 平分∠BAC ,∴AH ⊥BC 于H ,BH=HC .∵CD ⊥BC 于点C , ∴EH ∥CD .∴BE=DE . (3)②延长FE ,交AB 于点G .由AB=AC ,得∠ABC =∠ACB . 由EF ∥BC ,得∠AGF =∠AFG . 得AG=AF .由等腰三角形三线合一得GE=E F . ·· 4 由∠GEB =∠FED ,可证△BEG ≌△DEF .可得∠ABE =∠FDE . (5)从而可证得DF ∥AB . ······· 6 (3)tan 2DF αAE . (7)怀柔区27.如图,在△ABC 中,∠A=90°,AB=AC ,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC. (1)依题意补全图形; (2)求∠ECD 的度数;(3)若∠CAE=7.5°,AD=1,将射线DA 绕点D 顺时针旋转60°交EC 的延长线于点F ,请写出求AF 长的思路.BBB27.(1)如图………………………………………………1分(2) ∵线段AD 绕点A 逆时针方向旋转90°,得到线段AE. ∴∠DAE=90°,AD=AE. ∴∠DAC+∠CAE =90°. ∵∠BAC=90°, ∴∠BAD+∠DAC =90°.∴∠BAD=∠CAE . …………………………………………………………………………2分 又∵AB=AC, ∴△ABD≌△ACE. ∴∠B=∠ACE.∵△ABC 中,∠A=90°,AB=AC,∴∠B=∠ACB=∠ACE=45°.∴∠ECD=∠ACB+∠ACE=90°. ……………………………………………………………4分(3)Ⅰ.连接DE,由于△ADE 为等腰直角三角形,所以可求DE=2;……………………5分 Ⅱ.由∠ADF=60°,∠CAE=7.5°,可求∠EDC 的度数和∠CDF 的度数,从而可知DF 的长; …………………………………………………………………………………………………6分Ⅲ.过点A 作AH ⊥DF 于点H ,在Rt△ADH 中, 由∠ADF=60°,AD=1可求AH 、DH 的长; Ⅳ. 由DF 、DH 的长可求HF 的长;Ⅴ. 在Rt△AHF 中, 由AH 和HF,利用勾股定理可求AF 的长.…………………………7分延庆区27.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE 于点F ,连接FC .(1)求证:∠FBC =∠CDF .(2)作点C 关于直线DE 的对称点G ,连接CG ,FG .①依据题意补全图形;②用等式表示线段DF ,BF ,CG 之间的数量关系并加以证明.27.(1)证明:∵四边形ABCD 是正方形,∴∠DCB =90°. ∴∠CDF +∠E =90°. ∵BF ⊥DE ,∴∠FBC +∠E =90°. ∴∠FBC =∠CDF .……2分(2)①图1FDBA GFDECBA……3分②猜想:数量关系为:BF=DF+CG.证明:在BF上取点M使得BM=DF连接CM.∵四边形ABCD是正方形,∴BC=DC.∵∠FBC=∠CDF,BM=DF,∴△BMC≌△DFC.∴CM=CF,∠1=∠2.∴△MCF是等腰直角三角形.∴∠MCF=90°,∠4=45°.……5分∵点C与点G关于直线DE对称,∴CF=GF,∠5=∠6.∵BF⊥DE,∠4=45°,∴∠5=45°,∴∠CFG=90°,∴∠CFG=∠MCF,∴CM∥GF.∵CM=CF,CF=GF,∴CM=GF,∴四边形CGFM是平行四边形,∴CG=MF.∴BF=DF+CG.……7分顺义区27. 如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.(1)依题意补全图形;(2)求证:∠FAC=∠APF;(3)判断线段FM与PN的数量关系,并加以证明.27.(1)补全图如图所示. ………………………………………………………… 1分 (2)证明∵正方形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°, ∴∠PAH =45°-∠BAE . ∵FH ⊥AE .∴∠APF =45°+∠BAE . ∵BF=BE ,∴AF=AE ,∠BAF =∠BAE . ∴∠FAC =45°+∠BAF .∴∠FAC =∠APF .…………………………… 4分(3)判断:FM =PN . …………………………………… 5分 证明:过B 作BQ ∥MN 交CD 于点Q ,∴MN =BQ ,BQ ⊥AE . ∵正方形ABCD ,∴AB =BC ,∠ABC =∠BCD=90°. ∴∠BAE =∠CBQ . ∴△ABE ≌△BCQ . ∴AE =BQ . ∴AE =MN . ∵∠FAC =∠APF , ∴AF =FP . ∵AF=AE , ∴AE =FP . ∴FP =MN .∴FM =PN .…………………………………………………………… 8分。

上海市2019年初三中考数学二模汇编:23题几何证明专题

上海市2019年初三中考数学二模汇编:23题几何证明专题本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March上海市2019年中考二模数学汇编:23题几何证明 闵行23.(本题共2小题,每小题6分,满分12分)如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,BD = 2AC .过点A 作AE ⊥CD ,垂足为点E ,AE 与BD 相交于点F .过点C 作CG ⊥AC ,与AE 的延长线相交于点G .求证:(1)△ACG ≌△DOA ;(2)2DF BD DE AG ⋅=⋅.宝山23.(本题满分12分,第(1)、第(2)小题满分各6分) 如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点,(1)求证:四边形AECF 为平行四边形;(2)如果PA=PC ,联结BP ,求证:△APB ≅△EPC .ABCDOE GF (第23题A B C DOE H F第23题图崇明23.(本题满分12分,每小题满分各6分)如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F .(1)联结OE ,若BE AOEC OF =,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=.奉贤23.(本题满分12分,每小题满分各6分)已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段BF 上,BG=AF .(1)求证:CG ⊥BE ;(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB .金山22. 已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.普陀 A BCD OEF 图7ABCDF G E图823.(本题满分12分)已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2.杨浦23. 已知:在ABC 中,AB=BC ,∠ABC=90°,点D 、E 分别是边AB 、BC 的中点,点F 、G是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC. 求证:(1)四边形FBGH 是菱形;(2)四边形ABCH 是正方形.长宁图10A BCD E23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图5,平行四边形ABCD的对角线BDAC、交于点O,点E在边CB的延长线上,且︒=∠90EAC,ECEBAE⋅=2.(1)求证:四边形ABCD是矩形;(2)延长AEDB、交于点F,若ACAF=,求证:BF AE=.黄浦嘉定22.静安图5AB CD EO松江徐汇答案闵行23.证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC , ∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,∴ △ACG ≌△DOA . ……………………………………………(2分) (2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)∴CD ODDF DE=.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分) 又∵ 12OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分)宝山23.(1)证明:由折叠得到EC 垂直平分BP , ………………1分 设EC 与BP 交于Q ,∴BQ=EQ ………………1分 ∵E 为AB 的中点, ∴AE =EB , ………………1分 ∴EQ 为△ABP 的中位线,∴AF ∥EC , ………………2分 ∵AE ∥FC , ∴四边形AECF 为平行四边形; ………………1分 (2)∵AF ∥EC ,∴∠A PB =∠EQB =90°………………1分 由翻折性质∠E PC =∠EBC =90°,∠PEC =∠BEC ………………1分 ∵E 为直角△APB 斜边AB 的中点,且AP =EP ,∴△AEP 为等边三角形 , ∠BAP =∠AEP =60°, ………………1+1分︒=︒-︒=∠=∠60260180CEB CEP ………………1分 在△ABP 和△EPC 中, ∠BAP =∠CEP ,∠APB=∠E PC ,AP =EP ∴△ABP ≌△EPC (AAS ), ………………1分 崇明23.(本题满分12分,每小题满分各6分) 证明(1)∵90ABD ∠=︒,BC DE ⊥∴//AB DE ………………………………………………………………(1分)∴AO BOOF OD=………………………………………………………………(2分) ∵BE AOEC OF =∴AO BEOF EC=……… ………………………………………………………(2分) ∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE ,∴四边形ABED 为平行四边形 又∵90ABD ∠=︒∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥∴90BDC BDE CDE ∠=∠+∠=︒︒=∠+∠=∠90BDE ADB ADE∴CDE ADB ∠=∠ …………………………………………………………(1分)AD CD = ∴DCA DAC ∠=∠∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =DE AB // ∴AF BE AD AC BC BC==…………………………………………………………(1分) ∵BC AD //∴BODFBO OD BC AD ==…………………………………………………………(1分) ∴AF DFAC OB=…………………………………………………………………(1分) 奉贤22.证明:(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC. (1分)∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ·························· (1分) 又∵AF BG =,∴△AFB ≅△BGC . ·································· (2分) ∴AFB BGC ∠=∠. ·························································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ····················· (1分)(2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴△AEB ∽△FAB .∴AE AFAB BF=. ······································ (3分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =. ········ (1分)∵AF BG =,∴12BG BF =,即FG BG =. ································· (1分)∵CG ⊥BE ,∴CF CB =. ·················································· (1分)金山23.(1)证明:∵四边形ABCD 是菱形,∴BC AD //,DAC BAD ∠=∠2,DBC ABC ∠=∠2; (2分) ∴ 180=∠+∠ABC DAB ; (1分) ∵DBC CAD ∠=∠;∴ABC BAD ∠=∠, (1分) ∴ 1802=∠BAD ; ∴ 90=∠BAD ; (1分) ∴四边形ABCD 是正方形. (1分) (2)证明:∵四边形ABCD 是正方形;∴BD AC ⊥,BD AC =,AC CO 21=,BO DO 21=; (1分) ∴ 90=∠=∠DOC COB ,DO CO =; (1分) ∵CE DH ⊥,垂足为H ;∴ 90=∠DHE , 90=∠+∠DEH EDH ; (1分) 又∵ 90=∠+∠DEH ECO ; ∴EDH ECO ∠=∠; (1分)∴ECO ∆≌FDO ∆; (1分) ∴OF OE =. (1分)普陀 23.证明:(1)∵ ACE BCD ∠=∠,∴DCE BCA ∠=∠. ································ (1分)∵EC ED EA =⋅2,∴ED ECEC EA=. ··········································· (1分) 又∵E ∠是公共角,∴△EDC ∽△ECA . ·································· (1分) ∴DCE CAE ∠=∠. ····························································· (1分) ∴BCA CAE ∠=∠.∴AD ∥BC . ····································································· (1分) ∵AD BC <,∴AB 与CD 不平行.∴四边形ABCD 是梯形. ······················································· (1分)(2)∵△EDC ∽△ECA .∴EC CDEA AC =. ∵EC AB EA AC=,∴AB DC =. ··············································· (1分) ∴四边形ABCD 是等腰梯形. ·············································· (1分) ∴B DCB ∠=∠. ······························································ (1分) ∵AD ∥BC .∴EDC DCB ∠=∠. ∴EDC B ∠=∠.∵ECD ACB ∠=∠,∴△EDC ∽△ABC . ······························ (1分) ∴ED DCAB BC=. ·································································· (1分) ∴AB ED BC =⋅2. ·························································· (1分)杨浦23.(1)证明略 (2)证明略 长宁23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵EC EB AE ⋅=2 ∴AEEB ECAE =又 ∵CEA AEB ∠=∠ ∴AEB ∆∽CEA ∆ (2分) ∴EAC EBA ∠=∠∵︒=∠90EAC ∴︒=∠90EBA (1分) 又 ∵︒=∠+∠180CBA EBA ∴︒=∠90CBA (1分)∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形 (1分)(2)∵ AEB ∆∽CEA ∆ ∴ ACAB AEBE = 即 ACAE ABBE = , ECA EAB ∠=∠ (2分)∵四边形ABCD 是矩形 ∴BD AC =又 ∵BD OB 21=, AC OC 21= ∴OC OB = ∴ECA OBC ∠=∠又 ∵OBC EBF ∠=∠ ECA EBA ∠=∠ ∴EAB EBF ∠=∠又 ∵F F ∠=∠ ∴EBF ∆∽BAF ∆ (3分)∴AB BE AF BF = ∴AC AE AF BF =(1分) ∵AC AF =∴AE BF = (1分)黄浦嘉定静安松江徐汇。

2019全国中考数学真题分类含答案解析-知识点48 几何最值2019

一、选择题12.(2019·长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+5 BD的最小值是【】A.25B.45C.53D.10【答案】B二、填空题16.(2019·黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8.点M为AB的中点.若∠CMD=120°,则CD的最大值是.【答案】14【解析】将△CAM沿CM翻折到△CA′M,将△DBM沿DM翻折至△DB′M,则A′M=B′M,∠AMC=∠A′MC,∠DMB=∠DMB′,∵∠CMD=120°,∴∠AMC+∠DMB=∠A′MC+∠DMB′=60°,∴∠A′MB′=180°-(∠AMC+∠DMB+∠A′MC+∠DMB′)=60°,∴△A′MB′是等边三角形,又∵AC=2,BD=8,AB=8.点M为AB的中点,∴A′B′=A′M=B′M=AM=12AB=4,CA′=AC=2,DB′=DB=8,又CD≤CA′+A′B′+DB′=2+4+8=14.三、解答题24.(2019山东威海,24,12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止,设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围; (3)求△BEF 面积的最大值. 【解题过程】(1)证明:过E 作MN ∥AB ,交AD 于M ,交BC 于N , ∵四边形ABCD 是正方形,∴AD ∥BC ,AB ⊥AD , ∴MN ⊥AD ,MN ⊥BC , ∴∠AME =∠FNE =90°=∠NFE +∠FEN , ∵AE ⊥EF ,∴∠AEF =∠AEM +∠FEN =90°, ∴∠AEM =∠NFE , ∵∠DBC =45°,∠BNE =90°, ∴BN =EN =AM .∴△AEM ≌△EFN (AAS ). ∴AE =EF .∵四边形ABCD 是正方形, ∴AD =CD ,∠ADE =∠CDE , ∵DE =DE ,∴△ADE ≌△CDE (SAS ), ∴AE =CE =EF .(2)在Rt △BCD 中,由勾股定理得:BD=,∴0≤x ≤. 由题意,得BE =2x ,∴BN =EN x.由(1)知:△AEM ≌△EFN , ∴ME =FN ,∵AB =MN =10,∴ME =FN =10x ,如图(1),当0≤x ≤2时, ∴BF =FN -BN =10x x =10-x . ∴y =12BF ·EN =1(102-=-2x 2+(0≤x ≤2); 如图(2)x ≤∴BF =BN -FNx -(10x)=-10, ∴y =12BF ·EN=12-=2x 2-(2≤x≤.∴222(0);22(2x x y x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) (2) (3)y =-2x 2+5x =-2(x-524)2+254,∵-2<0, ∴当x =524时,y 有最大值是;即△BEF 面积的最大值是;<x ≤ y =2x 2-=22()4x --254, 此时2>0,开口向上,对称轴为直线x =4, ∵对称轴右侧,y 随x 的增大而增大, ∴当x =y 最大值=50.∴当x =BEF 面积的最大值是50.【知识点】四边形综合运用,二次函数的解析式,二次函数的最值问题,三角形全等的判定. 25.(2019山东省威海市,题号25,分值12) (1)方法选择如图①,四边形ABCD 是OO 的内接四边形,连接AC ,BD .AB =BC =AC . 求证:BD =AD +CD .小颖认为可用截长法证明:在DB 上截取DM =AD ,连接AM ..…… 小军认为可用补短法证明:延长CD 至点N ,使得DN =AD …… 请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .BC 是⊙O 的直径,AB =AC .试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论. 【探究2】如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,∠ABC =30°,则线段AD ,BD ,CD 之间的等量关系式是. (3)拓展猜想如图④,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是O 0的直径,BC :AC :AB =a :b :c ,则线段AD ,BD ,CD 之间的等量关系式是.【思路分析】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,由旋转全等得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,由旋转全等得BN =CD ,∴BD =ND +BNAD +CD 【探究2】数量关系为:BD =2AD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形, 由旋转相似得BP,∴BD =PD +BP =2ADCD (3)拓展猜想数量关系为:BD =a bAD +cb CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,由旋转相似得=BQ AB c CD AC b =,=DQ BC aAD AC b=, 图①图②B图③BC 图④BC∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +c b CD【解题过程】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,可得△AMD 为等边三角形,可证△BAM ≌△CAD (SAS )得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,∠BAN =∠CAD ,可证△BAN ≌△CAD (SAS )得BN =CD ,∴BD =ND +BNAD +CD【探究2】数量关系为:BD =2AD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形,∴=tan 30AP ABAD AC=︒∠BAP =∠CAD ,可证△BAP ∽△CAD 得BP,∴BD =PD +BP =2ADCD答案图①答案图②B(3)拓展猜想数量关系为:BD =a bAD +c b CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,可得∠BAQ =∠CAD ,∠ABQ =∠ACD ,∠ADQ =∠ACB ,∠BAC =∠QAD ∴△BAP ∽△CAD ,△ADQ ∽△ACB ∴=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +cb CD26.(2019·益阳)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动. (1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.第26题图 第26题备用图【解题过程】(1)如图1,过点C 作CE ⊥y 轴,垂足为E.答案图③B答案图④BC第26题答图1∵矩形ABCD 中,CD ⊥AD , ∴∠CDE+∠ADO=90°, 又∵∠OAD+∠ADO=90°, ∴∠CDE=∠OAD=30°. 在Rt △CED 中,CE=21CD=2, ∴DE=32242222=-=-CE CD ; 在Rt △OAD 中,∠OAD=30°, ∴OD=21AD=3. ∴点C 的坐标为(2,323+). (2)∵M 为AD 的中点, ∴DM=3,6=DCM S △. 又∵221=OMCD S 四边形, ∴29=ODM S △, ∴9=OAD S △. 设OA=x ,OD=y ,则⎪⎩⎪⎨⎧==+9213622xy y x , ∴xy y x 222=+, 即0)(2=-y x , ∴x=y.将x=y 代入3622=+y x 得182=x , 解得23=x (23-不合题意,舍去), ∴OA 的长为23.(3)OC 的最大值为8.理由如下: 如图2,第26题答图2 ∵M 为AD 的中点,∴OM=3,522=+=DM CD CM .∴OC ≤OM+CM=8,当O 、M 、C 三点在同一直线时,OC 有最大值8.连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N. ∵∠CDM=∠ONM=90°,∠CMD=∠OMN , ∴△CMD ∽△OMN , ∴OM CMMN DM ON CD ==, 即3534==MN ON , 解得59=MN ,512=ON , ∴56=-=MN AM AN . 在Rt △OAN 中,∵55622=+=AN ON OA , ∴55cos ==∠OA AN OAD . 26.(2019·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以cm/s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 延长线方向匀速运动.当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB′的值最小?并求出最小值.解:(1)∵△ABC为等边三角形,∴∠B=60°,∵BP⊥PQ,∴2BP=BQ即2(6-t)=6+t,解得t=2.∴当t为2时,△BPQ为直角三角形;(2)存在.作射线BF,∵PE⊥AC,∴AE=0.5t.∵四边形CQFE是平行四边形,∴FQ=EC=6-0.5t,∵BF 平分∠ABC,∴∠FBQ+∠BQF=90°.∵BQ=2FQ,BQ=6+t,∴6+t=2(6-0.5t),解得t=3.(3)过点P作PG∥CQ交AC于点G,则△APG是等边三角形.∵BP⊥PQ,∴EG=12AG.∵PG∥CQ,∴∠PGD=∠QCD,∵∠PDG=∠QDC,PG=PA=CG=t,∴△PGD≌△QCD.∴GD=12GC.∴DE=12AC=3.(4)连接AM,∵△ABC为等边三角形,点M是BC的中点,∴BM=3.由勾股定理,得AM=.由折叠,得BM′=3.当A 、B′、M在同一直线上时,AB′的值最小,此时AB′=3.过点B′作B′H⊥AP于点H,则cos30°=AHAB',t,解得t=9-∴t为9-AB′的值最小,最小值为3.MMM QB C1.(2019·重庆A 卷)如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值;(2)在(1)中,当MN 取得最大值,HF +FP +13PC 取得小值时,把点P 向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A OQ '',其中边A Q ''交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得OG Q Q ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.解:(1)由题意得A (-1,0),B (3,0),C (0,-3),D (1,-4),直线BD :y =2x -6. 如答图1,连接DN 、BN ,则S △BDN =12BD •MN ,而BD 为定值,故当MN 最大时,S △BDN 取最大值.此时由S △BDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0). 在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a =324,于是在x 轴上取点H B'M FD E QA BP yxOEDCBA第26题备用图第26题图K (-324,0),连接KC ,易求直线KC :y =-22x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP+13PC 最小值=HF +FR .在y =-22x -3中,当y =-2,x =-24,于是FT =2+24.在Rt △FTR 中,由223FR FT =,得FR =223FT =223(2+24)=14233+,故HF +FP +13PC 最小值=2+14233+=7423+.(2)4525(,)55--,2545(,)55-,4525(,)55,2545(,)55-. 第26题答图4第26题答图5第26题答图1 T KR QP HF NMyxO ED CBA第26题答图2第26题答图32.(2019·重庆B 卷)在平面直角坐标系中,抛物线2y =++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记作D ’,N 为直线DQ 上一点,连接点D ’,C ,N ,△D ’CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.解:(1)∵2y x =+与x 轴交于A ,B 两点, ∴当y=0时,即20=+,∴122,4x x =-=,即A (-2,0),B (4,0), 设直线BC 的解析式为y =kx +b ,∵C (0,,B (4,0),∴40b k b ⎧=⎪⎨+=⎪⎩,∴b k ⎧=⎪⎨=⎪⎩,∴直线BC的解析式为y =+设点2(,4),P m m +<< ∵PE ∥y 轴且点E 在直线BC上,∴(,E m +∠PEF =∠OCE ,∴2(04),PE m =<< ∵PF ⊥BC ,∴∠PFE =∠COB =90°,∴△PEF ∽△BCO ,设△PEF 的周长为1l ,△BCO 的周长为2l , 则12l PEl BC=,∵B (4,0),C (0,,∴BC=24l =+∴21)(04),l m =<< 备用图图1图2∴当m=2时,1l此时点P 的坐标为(2,, ∵A (-2,0),C (0,,∴∠ACO =30°,∠CAO =60°, ∵BG ∥AC ,∴.∠BGD =30°,∠OBG =60°,∴G (0,-, 直线BG解析式为y -PM解析式为y =,过点G 作GN ⊥BG ,过点P 作PM ⊥GN 于点M ,如图1,此时,点H 为PM 与对称轴的交点,K 为PM 与y 轴的交点,点K 与点O 重合, 则KM=OMKG ,PH +HKKG 的最小值为线段PM 的长.(此问题是胡不归问题).解法一:(作一线三直角利用相似求解)如图2,过点P 作PQ ∥x 轴交对称轴于点T , 过点M 作MQ ⊥y 轴交PT 于点Q ,过点G 作GJ ⊥MQ 交MQ 于点J.设点Q (n,,∴J (n,-,∴PQ =2-n ,2-n ), ∵GJ =-n ,∴MJ=,∴MQ +MJ =CG=(-=2-n )+()=n =-3,∴Q (-3,),∴PQ =5, ∴PM =2PQ =10,∴PH +HKKG 的最小值为10, ∵∠OGM =60°,∠PHT=30°,∠HPT=60°,∴PT =1,∴HTH (1.图1N解法二:由上面的解法可知MG ⊥BG ,直线MG的解析式为:y =- 如图3,过点P 作PR ⊥x 轴交MG 于点R ,∴R (2,, 由第一种解法可知∠PRG =60°,∴PMP R()=10, ∴PH +HKKG 的最小值为10,同理可求H (1.(2)这样的N 点存在.当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .【提示】由(1)可知∠ACO=30°,∠OAC=60°,又∵221)y x =++=-D (1, ∵抛物线按射线AC的方向平移,设平移后顶点'(D a +,平移后的抛物线解析式为21)y x a =--++该抛物线经过原点,则201)a =--+图2NN∴2280a a --=,∴a =4或a =-2(舍去),即D .设点N (1,b )'CDCN ='ND 如图4,当△'CD N 为等腰三角形时,分三种情况: ①当'CD CN ==,可得1N,2N ; ②当''CD D N ==3N,4N ,③当'CN D N =可得5N , ∴当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .3.(2019·天津)已知抛物线y=x 2-bx+c(b,c 为常数,b>0)经过点A (-1,0),点M(m,0)是x 轴正半轴上的动点,(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D )在抛物线上,当AM=AD,m=5时,求b 的值; (3)点Q(1b ,2+y Q )2QM +时,求b 的值. 解:(1)∵抛物线y=x 2-bx+c 经过点A (-1,0), ∴1+b+c=0,∴c=-1-b 当b=2时,c=-3,∴抛物线的解析式为y=x 2-2x-3, ∴顶点坐标为(1,-4) (2)由(1)知,c=-1-b , ∵点D(b,y D )在抛物线上, ∴y D =-b-1,∵b>0,∴b 02b >>,-b-1<0,∴D(b,-b-1)在第四象限,且在抛物线对称轴2bx =的右侧.如图,过点D 作DE ⊥x 轴于E ,则E (b ,0),∴AE=b+1=DE,所以1)b +, ∵m=5,∴AM=5-(-1)=6, ∴1)b +∴b=(3)∵点Q(1b ,2+y Q )在抛物线上, ∴yQ=2113)()12224b b b b b +-+--=--(, ∴点Q (1b ,2+3-24b -)在第四象限,且在直线x=b 的右侧,2QM +的最小值为4,A(-1,0) ∴取点N(0,1),如图,过点Q 作QH ⊥x 轴于H ,作QG ⊥AN 于G,QG 与x 轴交于点M ,则H (1b ,2+0),∠GAM=45°,∴GM=2AM ,∵M (m,0),∴AM=m+1,MH=1b 2m +-,QH=324b +, ∵MH=QH,∴1b 2m +-=324b +, ∴m=1-24b ,∴AM=13-12424b b +=+,3)24b =+(2QM +33)))24244b b +++=(,∴b=4. 4.(2019·自贡)如图,已知直线AB 与抛物线:y =ax 2+2x +c 相交于点A (-1,0)和点B (2,3)两点. (1)求抛物线C 函数解析式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标; (3)在抛物线C 的对称轴上是否存在顶点F ,使抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)将A (-1,0)和B (2,3)代入抛物线解析式得{a −2+c =04a +4+c =3解得,{a =−1c =3∴抛物线解析式为y =-x 2+2x +3.(2)过M 作MH ∥y 轴,交AB 于H ,设直线AB 为y =kx +b ,将A ,B 坐标代入得,{−k +b =02k +b =3解得,{k =1b =1.∴直线AB 的解析式为y =x +1.设M 为(m ,-m 2+2m +3),则H (m ,m +1) ∴MH =y M -Y H =(-m 2+2m +3)-( m +1)=-m 2+m +2. ∴S △ABM =S △AMH +S △BMH =12·MH ·(x B -x A ) =12·(-m 2+m +2)·(2+1)=-32(m 2-m )+3 =-32(m -12)2+278.∵四边形MANB 是以MA 、MB 为相邻的两边的平行四边形, ∴△ABM ≌△BAN .∴S 四边形MANB =2 S △ABM =-3(m -12)2+274,∵a =-3<0且开口向下,∴当m =12时,S 四边形MANB 的最大值为274. 此时,M 坐标为(12,154). (3)存在,理由如下:过P 作直线y =174的垂线,垂足为T ,∵抛物线为y =-x 2+2x +3=-(x -1)2+4.∴抛物线的对称轴为直线x =1,顶点坐标为(1,4). 当P 为顶点,即P (1.4)时, 设F 点坐标为(1,t ), 此时PF =4-t ,PT =174-4=14.∵P 到F 的距离等于到直线y =174的距离,∴4-t =14,即t =154.∴F 为(1,154)设P 点为(a ,-a 2+2a +3),由勾股定理,PF 2=(a -1)2+(-a 2+2a +3-154)2=a 4-4a 3+132a 2-5a +2516.又∵PT 2=[174-(-a 2+2a +3)]2= a 4-4a 3+132a 2-5a +2516. ∴PF 2=PT 2,即PF =PT .∴当F 为(1,154)时,抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离 .27.(2019·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB.将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP=°;②连接CE ,直线CE 与直线AB 的位置关系是.(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°, ∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°, ∴∠ABC=∠BCE , ∴CE ∥AB.答案:①50°;②平行(2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC. 又∵△BPF ∽△BEC , ∴∠BCE=∠BFP=40°, ∴∠BCE=∠ABC=40°, ∴CE ∥AB.(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC ,∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上, 如图所示:∴AE 的最小值为AC=3.5.(2019·凉山州)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小,若存在,请求出点 P 的坐标及△P AC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △P AM =S △P AC ,若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)由题知⎪⎩⎪⎨⎧==++=+-30390c c b a c b a ,解得⎪⎩⎪⎨⎧==-=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△P AC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴P A =PB ,∴△P AC 的周长=AC +PC +P A = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△P AC 的周长为10+32;(3)存在.由题知AB =4,∴S △P AC =S △ABC -S △P AB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则⎩⎨⎧=+=+-20n m n m ,解得⎩⎨⎧==11n m ,∴AP :y =x +1. ①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由⎩⎨⎧++-=+=3232x x y x y 解得⎩⎨⎧==3011y x ,⎩⎨⎧==4122y x ,∴M (1,4);②设抛物线对称轴交x 轴于点E (1,0),则S △P AC =21×2×2=2=S △P AC .过点E 作AP 的平行线交x轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由⎩⎨⎧++-=-=3212x x y x y 解得⎪⎪⎩⎪⎪⎨⎧--=-=2171217111y x (舍),⎪⎪⎩⎪⎪⎨⎧+-=+=2171217122y x ,∴M (2171+,2171+-). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+-).27.(2019·苏州,26,10)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =.如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示. (1)直接写出动点M 的运动速度为 cm/s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D →C →B 的方向匀速运动,设动点N 的运动速度为v (cm/s ).已知两动点M ,N 经过时间x (s )在线段BC 上相遇(不包含点C ),动点M ,N 相遇后立即同时停止运动,记此时△APM 与△DPN 的面积分别为S 1(cm 2),S 2(cm 2) ①求动点N 运动速度v (cm/s )的取值范围;②试探究S 1•S 2是否存在最大值,若存在,求出S 1•S 2的最大值并确定运动时间x 的值;若不存在,请说明理由.图① 图② 图③(第27题)【解题过程】解:(1)∵t =2.5s 时,函数图象发生改变,∴t =2.5s 时,M 运动到点B 处,∴动点M 的运动速度为52.5=2cm/s ,∵t =7.5s 时,S =0,∴t =7.5s 时,M 运动到点C 处,∴BC =(7.5﹣2.5)×2=10(cm ), 故答案为2,10;(2)①∵两动点M ,N 在线段BC 上相遇(不包含点C ),∴当在点C 相遇时,v 527.53==(cm/s ),当在点B 相遇时,v 5102.5+==6(cm/s ),∴动点N 运动速度v (cm/s )的取值范围为23cm/s <v ≤6cm/s ; ②过P 作EF ⊥AB 于F ,交CD 于E ,如图所示:则EF ∥BC ,EF =BC =10,∴AF APAB AC=,∵AC==∴5AF =,解得AF =2,∴DE =AF =2,CE =BF =3,PF ==4, ∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S 梯形PFBM ﹣S △ABM 12=⨯4×212+(4+2x ﹣5)×312-⨯5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM 12=⨯2×612+(6+15﹣2x )×312-⨯5×(15﹣2x )=2x , ∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x 154-)22254+,∵2.5154<<7.5,在BC 边上可取,∴当x 154=时,S 1•S 2的最大值为2254.第27题答图6.(2019·巴中)如图,抛物线y =ax 2+bx -5(a ≠0)经过x 轴上的点A(1,0)和点B 及y 轴上的点C,经过B,C 两点的直线为y =x+n.①求抛物线的解析式;②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 描,求t 为何值时,△PBE 的面积最大,并求出最大值.③过点A 作AM ⊥BC 与点M,过抛物线上一动点N(不与点B,C 重合)作直线AM 的平行线交直线BC 于点Q,若点A,M,N,Q 为顶点的四边形是平行四边形.求点N 的横坐标.第26题图分析:①由点A 和直线y =x+n 可得方程组,解出系数,求得二次函数的解析式;②根据题意表示出三角形面积,利用二次函数最值进行求解;③分析得到AM 平行且等于NQ,设出坐标,利用坐标关系列方程进行求解,并检验. 解:①因为点B,C 在y =x+n 上,所以B(-n,0),C(0,n),因为点A(1,0)在抛物线上,所以250505a b an bn n ,解得,a =-1,b =6,所以抛物线的解析式为:y =-x 2+6x -5. ②由题意得:PB =4-t,,BE =2t ,由①可知:∠OBC =45°,点P 到BC 上的高h =BPsin45(4-t), 所以S △PBE =12BE h =22222t ,当t =2时,S 取得最大值为③因为l BC :y =x -5,所以B(5,0), 因为A(1,0),所以AB =4,在Rt △ABM 中,∠ABM =45°,AMAB =M(3,-3), 过点N 作x 轴的垂线交直线BC 于点P 交x 轴于点H, 设N(m,-m 2+6m -5),则H(m,0),P(m,m -5),易证△PQN 为等腰直角三角形,即NQ=PQ=所以PN =4.当NH+HP =4时,即-m 2+6m -5-(m -5)=4, 解之得,m 1=1,m 2=4.当m 1=1时,点N 与点A 重合,故舍去;当NH+HP =4时,即m -5-(-m 2+6m -5)=4, 解得,m 1541,m 2541,因为m>5,所以m =5412; 当NH -HP =4,即-(-m 2+6m -5)-[-(m -5)]=4, 解得,m 1541,m 2541,因为m<0,所以m =5412.综上所述,要使点A,M,N,Q 为顶点的四边形是平行四边形,点N 的横坐标为:4541或541.第26题答图7.(2019·淄博)如图,顶点为M 的抛物线y =ax 2+bx +3与x 轴交于A (3,0),B (-1,0)两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由. (3)若在第一象限的抛物线下方有一动点D ,满足DA =OA ,过D 作DG ⊥x 轴于点G ,设△ADG 的内心为I ,试求CI 的最小值.解:(1)将A 、B 两点坐标代入抛物线表达式,得933030a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=⎩.∴y =-x 2+2x +3.(2)假设存在点P ,使△P AM 是直角三角形.当点M 为直角顶点,过M 作CD ⊥y 轴,过A 作AD ⊥x 轴,交CD 于D ,CD 交y 轴于C ,∵∠AMP =90°,图∴∠CMP +∠AMD =90,∴∠CMP =∠MAD ,又∵∠DM =∠PCM ,∴△CPM ∽△DMA ,∴CM AD =PCMD, ∴14=2PC ,∴PC =12,∴P 1(0,72); 当点A 为直角顶点,过A 作CD ⊥x 轴,过M 作MD ⊥y 轴交AD 于D ,过P 作PC ⊥y 轴交CD 于C ,同上△CP A∽△DAM ,∴PC AD =AC MD ,∴34=2AC ,∴AC =32,∴P 2(0,-32); 当点P 为直角顶点,过M 作CM ⊥y 轴于C ,∴△CPM ∽△OAP ,∴PC AO =CM PO ,∴3PC =14-PC,∴PC =1或3,∴P 3(0,3),P 4(0,1).综上所述,使△P AM 是直角三角形的点P 的是P 1(0,72),P 2(0,-32),P 3(0,3),P 4(0,1).(3)(方法1)由(1)得DA =OA =3,设D (x ,y ),△ADG 的内切圆半径为r ,则△ADG 的内心I 为(x +r ,r ), ∴DG =y ,AG =3-x由两点距离公式可得()2222339DA x y =-+==①由等面积法得r =()33+22y x DG AG DA +---==2y x-②∴()()2223CI x r r =++-③由①②③得(2229123124CI x y -⎡⎤⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,2CI在312x y =最小,此时CI 也最小,min 32CI =(方法2)简解:如图,由内心易知:∠DIA =135°,∠DAI =∠OAI ,△DAI ≌△OAI (SAS ),∴∠DIA =∠OIA =135°,则I 在圆周角∠OIA =135°⊙T 的圆周上运动,且半径R T 为(32,32),∴CI在△CIA 中,CI ≥CT-IT=32,当C 、I、T三点一线时,min 3=2CI .(2)答图18.(2019·枣庄)已知抛物线y =ax 2+32x+4的对称轴是直线x =3,与x 轴相交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C.(1)求抛物线的解析式和A 、B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由.(3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点M 的坐标.解:(1)抛物线y =ax 2+32x+4的对称轴为:x =332224b a a a -=-=-=3,∴a =14-,∴抛物线的解析式为:y =14-x 2+32x+4,令y =0,得14-x 2+32x+4=0,解之,得,x 1=-2,x 2=8,∵点B 在点A 的右侧,∴A(-2,0),B(8,0);(2)连接BC,在抛物线y =14-x 2+32x+4中,令x =0,得y =4,∴C(0,4),∴OC =4,OB =8,∴S △OBC =16,∵B(8,0),C(0,4),设l BC :y =kx+b ,得0=8k+b ,4=b ,∴k =12-,b =4,l BC :y =12-x+4,∴过点P 作PD ∥y 轴交BC 于点D,过点C作CE 垂直PD 于点E,过点B 作BF ⊥PD 于点F,则S △PBC =S △PCD +S △PBD =12PD ×CE+12PD ×BF =12PD ×(CE+BF)=12PD ×(x B -x C )=12PD ×8=4PD,∵点P 在抛物线上,设点P(x,14-x 2+32x+4),∵PD ∥y 轴,点D 在直线BC 上,∴D(x,12-x+4),∵点P 在B,C 间的抛物线上运动,∴PD =y P -y D =14-x 2+32x+4-(12-x+4)=14-x 2+2x,S △PBC =4PD =4(14-x 2+2x)=-x 2+8x =-(x -4)2+16,∴当x =4时,S △PBC 取最大值16,∴此时S 四边形OBPC =S △OBC +S △PBC =32;Iy 12第25题答图(3)∵MN∥y轴,∴设M,N的横坐标为m,∵点M在抛物线上,设点M(m,n),其中n=14-m2+32m+4,点N在直线BC上,∴N(m,12-m+4),∵点M是抛物线上任意一点,∴点M和点N的上下位置关系不确定,∴MN=|14-m2+32m+4-(12-m+4)|=|14-x2+2x|,∵MN=3,∴|14-x2+2x|=3,即14-x2+2x=3或14-x2+2x=-3,解这两个方程,得m1=2,m2=6, m3=4+4=4-∴n1=6, n2=4, n31, n41,∴M1(2,6), M2(6,4), M3(4+-1), M4(4-1).9.(2019·聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线,线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.第25题图解:(1)由已知,将C(0,8)代入y=ax2+bx+c,∴c=8,将点A(-2,0)和B(4,0)代人y=ax2+bx+8,得4280 16480a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+2x+8;(2)∵A(-2,0),C(0,8),∴OA=2,OC=8,∵l⊥x轴,∠PEA=∠AOC=90°,∵∠PAE≠∠CAO,只有当∠PAE=∠ACO 时,△PEA ∽△AOC.此时AE PECO AO=,∴AE =4PE.设点P 的纵坐标为k,则PE =k,AE =4k,∴OE =4k -2,P 点的坐标为(4k -2,k),将P(4k -2,k)代入y =-x 2+2x+8,得-(4k -2)2+2(4k -2)+8=k,解得k 1=0(舍去),k 2=2316,当k =2316时,4k -2=154,∴P 点的坐标为(154,2316). (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠OCB,∴Rt △PFD ∽Rt △BOC,∴2PFD=S PD S BC ⎛⎫ ⎪⎝⎭△△BOC,∴S △PFD =2PD S BC ⎛⎫⋅ ⎪⎝⎭△BOC ,由B(4,0)知OB =4,又∵OC =8,∴BC 又S △BOC =12OB OC ⋅=16,∴S △PFD =215PD ,∴当PD 最大时,S △PFD 最大.由B(4,0),C(0,8)可解得BC 所在直线的表达式为y =-2x+8,设P(m,-m 2+2m+8),则D(m,-2m+8),∴PD =-(m -2)2+4,当m =2时,PD 取得最大值4,∴当PD =4时,S △PFD =165,为最大值.10.(2019·济宁)如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.解:(1)由折叠可得AF =AD =10,EF =ED ,矩形ABCD 中,∠B =90°,∴AB 2+BF 2=AF 2,∴6,BF ===∴CF =BC -BF =AD -BF =10-6=4.设CE =x ,则EF =DE =CD -CE =AB -CE =8-x ,∵EF 2=CE 2+CF 2.∴(8-x )2=x 2+42.∴x =3,∴CE =3. (2)①∵矩形ABCD 中,AD ∥BC ,∴∠DAG =∠AGF , ∵∠DAG =∠F AG , ∠DAG =∠AGF , ∴∠F AG =∠AGF ,∴AF =FG =10, ∴BG =BF +FG =6+10=16. ∵矩形ABCD 中∠B =90°, ∴AB 2+BG 2=AG 2,∴AG ===∵AD =FG ,AD ∥FG ,∴四边形AFGE是平行四边形,又∵AD=AF,∴平行四边形AFGE是菱形,∴DG=DA=10,∴∠DAG=∠DGA,∵∠DMG=∠DMN+∠NAG=∠DAM+∠ADM, ∠DMN=∠DAM,∴∠NMG=∠ADM.在△ADM和△MNG中,∠ADM=∠NMG, ∠DAG=∠DGA,∴△ADM∽△GMN.∴AD AMMG NG=10xy=-,∴211010y x x=-+,∵110>0,∴当51210x=-=⨯时,y有最小值为214101021410⎛⨯⨯-⎝⎭=⨯.∴y关于x的函数解析式是:211010y x x=-+,当x=y有最小值为2.②在△DMN和△DMG中,∠DMN=∠DGM,∠MDG=∠MDG,∴△DMN和△DMG是相似三角形.当△DMG是等腰三角形时,△DMN也是等腰三角形.∵M不与A重合,∴DM≠DG,∴△DMG是等腰三角形只有GM=GD或DM=GM两种情况:(1)如图3,当△DMG中GM=GD=10时,△DMN也是等腰三角形,即x=AG-MG=10;(2)如图4,当△DMG中DM=GM时,△DMN也是等腰三角形,∴∠MDG=∠DGM,∴∠DAG=∠MDG=∠MDG,∴△ADG∽△DMG,∴AD AGMG DG=,=,∴x综上:当x的值为2△DMN是等腰三角形.11.(2019·滨州)如图①,抛物线y=-x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A 逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.解:(1)当x=0时,y=4,则点A的坐标为(0,4),………………………………………1分当y=0时,0=-x2+x+4,解得x1=-4,x2=8,则点B的坐标为(-4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°.∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0).………………………………………………………………………2分设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=-x+4.……………………………………………………………4分(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,-t2+t+4),则点N的坐标为(t,-t+4),∴PN=(-t2+t+4)-(-t+4)=-t2+t,………………………………………………6分∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°.作PH⊥AD于点H,则∠PHN=90°,∴PH==(-t2+t)=t=-(t-6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),………………………………8分即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是.………………9分②当点P到直线AD的距离为时,如右图②所示,则t=,解得t1=2,t2=10,………………………………………………………………………10分则P1的坐标为(2,),P2的坐标为(10,-).当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;…………………………………………………………12分当P2的坐标为(10,-),则P2A==,∴sin∠P2AD==;由上可得,sin∠P AD的值是或.……………………………………………14分二、填空题16.(2019·南充)如图,矩形硬纸片ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及BC=.给出下列结论:①点A从点O出发,到点B运动至点O为原点上滑动,点E为AB的中点,24AB=,5∆的面积最大值为144;③当OD最大时,点D的坐标为,止,点E经过的路径长为12π;②OAB.其中正确的结论是.(填写序号)【答案】②③ 【解析】点E 为AB 的中点,24AB =,1122OE AB ∴==, AB ∴的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, 90AOB ∠=︒,∴点E 经过的路径长为90126180ππ⨯⨯=,故①错误; 当OAB ∆的面积最大时,因为24AB =,所以OAB ∆为等腰直角三角形,即OA OB =, E 为AB 的中点,OE AB ∴⊥,1122OE AB ==, ∴124121442AOB S ∆=⨯⨯=,故②正确; 如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF y ⊥轴于点F , 5AD BC ==,1122AE AB ==,∴13DE ==,131225OD DE OE ∴=+=+=, 设DF x =,∴OF =四边形ABCD 是矩形,90DAB ∴∠=︒,DFA AOB ∴∠=∠,DAF ABO ∴∠=∠, DFA AOB ∴∆∆∽∴DF DA OA AB =,∴524x OA =,∴245x OA =, E 为AB 的中点,90AOB ∠=︒,AE OE ∴=,AOE OAE ∴∠=∠,DFO BOA ∴∆∆∽,∴OD OF AB OA=,∴25245=,解得x,x =舍去,∴OF ,∴D .故③正确. 故答案为:②③.【知识点】直角形的性质;矩形的性质;相似三角形的判定和性质三、解答题17. (2019 · 镇江)如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D 在x 轴上方,对角线BD (2,0)E -为BC 的中点,点P 在菱形ABCD 的边上运动.当点(0,6)F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于( )A .103BC .163D .3【答案】A【解析】如图1中,当点P 是AB 的中点时,作FG PE ⊥于G ,连接EF .(2,0)E -,(0,6)F ,2OE ∴=,6OF =,EF ∴=90FGE ∠=︒,FG EF ∴,∴当点G 与E 重合时,FG 的值最大. 如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设2BC a =.PA PB =,BE EC a ==, //PE AC ∴,BJ JH =, 四边形ABCD 是菱形,AC BD ∴⊥,BH DH ==BJ =, PE BD ∴⊥,90BJE EOF PEF ∠=∠=∠=︒, EBJ FEO ∴∠=∠, BJE EOF ∴∆∆∽, ∴BE BJ EF EO=,∴62=, 53a ∴=, 1023BC a ∴==, 故选:A .【知识点】菱形的性质;平面直角坐标系;相似三角形的判定和性质;垂线段最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明
东城区
19.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D.BF平分∠ABC交AD于点E,交AC于点F.求
证:AE=AF.
19.证明:∵∠BAC=90°,
∴∠FBA+∠AFB=90°.-------------------1分
∵AD⊥BC,
∴∠DBE+∠DEB=90°.----------------2分
∵BE平分∠ABC,
∴∠DBE=∠FBA.-------------------3分
∴∠AFB=∠DEB.-------------------4分
∵∠DEB=∠FEA,
∴∠AFB=∠FEA.
∴AE=AF.-------------------5分
西城区
19.如图,AD平分∠BAC,BD⊥AD于点D,AB的中点为E,AE<AC.
(1)求证:DE∥AC.
(2)点F在线段AC上运动,当AF=AE时,图中与△ADF全等的三角形是__________.
1
∴AE=AB
A
E
C
B D
【解析】(1)证明:∵AD平分∠BAC,
∴∠1=∠2,
∵BD⊥AD于点D,
∴∠ADB=90︒,
∴△ABD为直角三角形.
∵AB的中点为E,
AB
,DE=,
22
∴DE=AE,
∴∠1=∠3,
∴∠2=∠3,
∴DE∥AC.
(2)△ADE.
A
12
E
C
3
B D
海淀区
19.如图,△ABC中,∠ACB=90︒,D为AB的中点,连接C D,过点B作CD的平行线EF,求证:BC平分∠ABF.
2
A
D C
E B F
19.证明:∵∠ACB=90︒,D为AB的中点,
1
∴CD=AB=BD.
2
∴∠ABC=∠DCB.……………
∵DC∥EF,
∴∠CBF=∠DCB.
∴∠CBF=∠ABC.
∴BC平分∠ABF.
丰台区
19.如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.
A
E F
B
D C 19.证明:连接AD.
∵AB=BC,D是BC边上的中点,A
3E F
可证 △S AOE S 四边形EOFB = S 四边形FOGC =S 四边形GOHD =
∴∠BAD =∠CAD .
………………………3 分
∵DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,
∴DE =DF .
………………………5 分
(其他证法相应给分)
石景山区
19.问题将菱形的面积五等分.
小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是
菱形 ABCD 的对角线交点, AB = 5 ,下面是小红将菱形 ABCD 面积五等分的操作与证明思路,请补
充完整.
A
E B
H
D
O
G C
F
(1)在 AB 边上取点 E ,使 AE = 4 ,连接 OA , OE ;
(2)在 BC 边上取点 F ,使 BF =
,连接 OF ;
(3)在 CD 边上取点 G ,使 CG =
,连接 OG ;
(4)在 DA 边上取点 H ,使 DH =
,连接 OH .
由于 AE =

= +
=

=
.

S HOA .
19.解:3,2,1;
………………2 分
EB 、BF ;FC 、CG ;GD 、DH ;HA.
………………4 分
朝阳区
19. 如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.
求证:∠DAB =∠ACE.
19. 证明:∵AC =BC ,CE 为△ACB 的中线,
∴∠CAB =∠B ,CE ⊥AB .
……………………………………………2 分
4
B
S3C
∴∠CAB+∠ACE=90°.………………………………………………3分∵AD为△ACB的高线,
∴∠D=90°.
∴∠DAB+∠B=90°.……………………………………………………4分∴∠DAB=∠ACE.………………………………………………………5分
燕山区
19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题。

已知正方形的边长是2,就能求出图中阴影部分的面积.
S
4S
5S
A D6
S
2S
1
S
1
S
1
证明:S
矩形ABCD =S+S+S=2,S=,S=, 12345
S=+,
6
S 阴影=S+S=S+S+S=.
16123
19.
S
4
=S
2
,S
5
=S
3
S=S
64
+S
5
S
阴影面积
=S+S=S+S+S=2……………………….5′16123
门头沟区
19.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.A
E
B D C
19.解(本小题满分5分)∵BE平分∠ABC,
∴∠ABC=2∠ABE=2×25°=50°,………2分
5
∵AD是BC边上的高,
∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,…………4分
∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°………………5分
大兴区
19.如图,在△ABC中,AB=AC,点D,点E
分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,
∠B=50°,求∠DEC的度数.
19.解:∵AB=AC,
∴∠B=∠C.
A ∵∠B=50°,
∴∠C=50°.……………………1分B D
E
C
∴∠BAC=180°-50°-50°=80°.…………………………………………………2分
∵∠BAD=55°,
∴∠DAE=25°.…………………………………………………………………3分
∵DE⊥AD,
∴∠ADE=90°.…………………………………………………………………4分
∴∠DEC=∠DAE+∠ADE=115°.………………………………………………5分
平谷区
19.如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.
A
E
B D F
C 19.证明:∵AB=AC,
∴∠B=∠C. (1)
6
∵EF垂直平分CD,
∴ED=EC. (2)
∴∠EDC=∠C. (3)
∴∠EDC=∠B. (4)
∴DF∥AB. (5)
A
E
B D F C
怀柔区
19.如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,△DEF和△ABC的顶点都在格点上,回答下列问题:
(1)△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC 得到△DEF的过程:;
(2)画出△ABC绕点B逆时针旋转90的图形△A′BC′;
(3)在(2)中,点C所形成的路径的长度为.
19.(1)答案不唯一.例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折.……………3分
7
(2)如图所示
………………………………………4 分
y 6
A
5 4 3
2 C
B 1
–5 –4 –3 –2 –1 O
1 2
D
3 4 5 6 x A'
C' –1 –2
E
F
–3 –4
–5
(3)π .………………………………………………5 分
延庆区
19.如图,在△ABC 中,AD 平分∠BAC 交 BC 于点 D ,过点 D 作 DE ∥AB 交 AC 于点 E .求证:AE=DE .
A
E
B
D
C
19.证明:∵AD 平分∠BAC
∴∠BAD =∠DAE ,
∵DE ∥AB
∴∠BAD =∠ADE
……3 分
∴∠DAE =∠ADE
……4 分
∴AE =DE
……5 分
顺义区
19.如图,矩形 ABCD 中,点 E 是 CD 延长线上一点,
且 DE=DC ,求证:∠E =∠BAC .
E
A
D
B
C
8
19.证明:∵四边形ABCD是矩形,
∴∠ADC=90,AB∥CD.…………………………………………………1分
∵DE=DC,
∴AE=AC.…………………………………………………………………2分
∴∠E=∠ACE.………………………………………………………………3分
∵AB∥CD,
∴∠BAC=∠ACE.……………………………………………………………4分
∴∠E=∠BAC.……………………………………………………………5分
9。

相关文档
最新文档