自组织神经网络方法及其应用

合集下载

基于遗传算法优化的SOFM神经网络生成测试数据集的方法

基于遗传算法优化的SOFM神经网络生成测试数据集的方法

基于遗传算法优化的SOFM神经网络生成测试数据集的方法在当今科技飞速发展的时代,数据已成为驱动创新的重要燃料。

然而,高质量的测试数据集往往难以获取,尤其是在机器学习和人工智能领域。

传统的数据集生成方法往往存在效率低下、质量参差不齐等问题。

因此,寻找一种高效且可靠的数据集生成方法显得尤为重要。

本文将探讨一种基于遗传算法优化的自组织特征映射(SOFM)神经网络生成测试数据集的新方法。

首先,让我们来理解一下SOFM神经网络。

SOFM神经网络是一种无监督学习的神经网络模型,它能够将高维数据映射到低维空间,同时保持数据的内在结构。

这种特性使得SOFM神经网络在数据可视化、聚类分析等领域有着广泛的应用。

然而,SOFM神经网络的训练过程往往需要大量的计算资源和时间,这在一定程度上限制了其在大规模数据集生成中的应用。

为了解决这一问题,我们可以引入遗传算法来优化SOFM神经网络的训练过程。

遗传算法是一种模拟自然选择和遗传机制的全局优化算法,它具有并行性、鲁棒性和自适应性等特点。

通过将遗传算法与SOFM神经网络相结合,我们可以在训练过程中自动调整网络参数,从而提高训练效率和数据质量。

具体来说,我们可以将SOFM神经网络的权重矩阵作为遗传算法的个体编码,通过交叉、变异等操作产生新的个体,并根据适应度函数评估个体的优劣。

适应度函数可以根据数据集的质量指标(如聚类精度、信息熵等)来设计。

通过多代进化,我们可以找到一组最优的网络参数,从而生成高质量的测试数据集。

这种基于遗传算法优化的SOFM神经网络生成测试数据集的方法具有以下优势:1.高效性:通过遗传算法自动调整网络参数,可以大大减少人工调参的时间和精力,提高训练效率。

2.可靠性:遗传算法具有较强的全局搜索能力,可以避免陷入局部最优解,从而提高数据集的质量。

3.可扩展性:该方法可以应用于各种规模的数据集生成任务,只需调整遗传算法的参数即可。

当然,这种方法也存在一定的局限性。

SOM神经网络原理

SOM神经网络原理

1 . SOM是由输入层和竞争层组成的单层神经网络,输入层是一维的 神经元,有n个节点。竞争层是二维的神经元,按二维的形式排列成 节点矩阵,有M=m^2个节点。
视频名称:SOM神经网络理论及其matlab实现 会员:Hgsz2003
2013-10-29 10 我 版权申明:视频归原创作者跟Matlab中文论坛所有,可以在Matlab中文论坛下载或者观看,请勿转载! !
视频名称:SOM神经网络理论及其matlab实现 会员:Hgsz2003
SOM是由芬兰赫尔辛基大学神经网络专家Kohonen教授在1981年提 出的。这种网络模拟大脑神经系统自组织特征映射的功能,是一种竞 争型网络,并在学习中能无导师进行自组织学习。
2013-10-29 我 版权申明:视频归原创作者跟Matlab中文论坛所有,可以在Matlab中文论坛下载或者观看,请勿转载! !5
在网络结构上,自组织竞争网络一般是有输入和竞争层构成的单层网 络,网络没有隐藏层,输入和竞争层之间的神经元实现双向连接,同 时竞争层各神经元之间还存在横向连接。
视频名称:SOM神经网络理论及其matlab实现 会员:Hgsz2003
2013-10-29 我 版权申明:视频归原创作者跟Matlab中文论坛所有,可以在Matlab中文论坛下载或者观看,请勿转载! !4
Matlab&Simulink为美国mathworks公司注册商标!版权归mathworks公司所有!

SOM算法是一种无导师的聚类法,它能将任意维输入模式在输出层映 射成一维或者二维离散图形,并保持其拓扑结构不变,即在无导师的 情况下,通过对输入模式的自组织学习,在竞争层将分类结果表示出 来,此外,网络通过对输入模式的反复学习,可以使连接权值空间分 布密度与输入模式的概率分布趋于一致,即连接权向量空间分布能反 映输入模式的统计特征。

神经网络精选全文完整版

神经网络精选全文完整版

概述
神经网络的发展简史
初创(1943—1969) 1943年,McCulloch和Pitts 提出了M-P模型 1949年,Hebb提出Hebb学习规则 1957年,Rosenblatt提出感知器(perceptrons) 1969年,Minsky和Papert发表“Perceptrons”
x
(0) p2
x
(0) p, n0
T
d p d p1 d p1 d p,nQ T
( p 1,2, P)
利用该样本集首先对BP网络进行训练,也即对网络的连接权系数 进行学习和调整,以使该网络实现给定的输入输出映射关系。
i
2) 误差函数
e 1 2
k
(yˆ k yk )2
yˆ, y 分别表示输出层上节点k的期望输出与实
际输出
3) 连接权值的修正
w jk (t 1) w jk (t) w jk
wjk(t+1)和wjk(t)分别表示t+1和t时刻上从 节点j到节点k的连接权值, ∆wjk为修正量。
为了使连接权值沿着e的梯度变化方向得以改 善,网络逐渐收敛,取
e 1
2
( yˆk
yk )2
e yk
( yˆ
y)
又 yk netk
f
' (netk )
k ( yˆ k yk ) f ' (netk )
节点k不是输出层上的节点
k
e netk
e Ok
Ok netk
又 e Ok
m
mwkm
Ok netk
f ' (netk )
k f ' (netk ) mwkm
Y
N

人工神经网络简介

人工神经网络简介

人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。

简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。

1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。

自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。

1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。

人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。

人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。

这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。

每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。

MATLAB中常见的神经网络模型介绍

MATLAB中常见的神经网络模型介绍

MATLAB中常见的神经网络模型介绍神经网络是一种模拟生物神经网络工作机制的数学模型。

它由许多人工神经元组成,这些神经元之间存在着连接,通过学习和优化,神经网络能够模拟和处理各种复杂的输入输出关系。

在MATLAB中,有许多常见的神经网络模型可供使用,下面将介绍其中几个。

一、前馈神经网络(Feedforward Neural Network)前馈神经网络是最常见和基本的神经网络模型之一。

它的结构由多层神经元组成,每一层的神经元与下一层的神经元完全连接,信号只能从输入层传输到输出层,不会反向传播。

前馈神经网络适用于分类、回归等问题。

在MATLAB中,创建一个前馈神经网络可以使用“feedforwardnet”函数。

可以设置隐藏层的大小、传递函数类型、训练算法等参数。

通过训练数据,可以使用MATLAB提供的各种优化算法进行网络模型的训练和预测。

二、循环神经网络(Recurrent Neural Network)循环神经网络是一种具有回路结构的神经网络模型。

它的每一个神经元都接受来自上一时刻输出的信号,并将当前的输入和上一时刻的输出作为输入,进行计算。

循环神经网络能够处理具有时序关系的数据,例如序列预测、语言模型等。

在MATLAB中,创建一个循环神经网络可以使用“layrecnet”函数。

可以设置回路层的大小、传递函数类型、训练算法等参数。

通过训练数据,同样可以使用MATLAB提供的优化算法进行网络模型的训练和预测。

三、自组织映射网络(Self-Organizing Map)自组织映射网络是一种无监督学习的神经网络模型。

它通过将输入数据投影到一个低维的节点空间中,并学习节点之间的拓扑结构。

自组织映射网络在数据聚类、特征提取等领域有广泛的应用。

在MATLAB中,创建一个自组织映射网络可以使用“selforgmap”函数。

可以设置节点空间的维度、拓扑结构、距离度量等参数。

通过输入数据,可以使用MATLAB提供的训练算法进行网络模型的训练和预测。

人工神经网络在汽车发动机故障诊断中的运用

人工神经网络在汽车发动机故障诊断中的运用

动机故障检修更多的方法和途径,以更好地助推汽车发
动机的快速发展珥
发动机故障 断 神经网络
较 一,
用于发动机故障 断 关


在较大发展间& 于, 对 应用于汽车发动
机故障 断 人工神经网络进行了系统 , 提 了
发动机故障诊断未来的发展方向&
1人工神经网络在汽车发动机故障诊断中的应用
1.1 BP神经网络
模式识 类聚,具
的故障分类 的结,结果
表明:SOM神经网络可以有效地应用于发动机电控系统
的故障诊断中。李刚等问利用EDM与SOM神经网络结合 的 建立了气发动机故障诊断法,其具体做法是
将燃气发动机振动信号进行EMD分解,
出MF分
量的能量作为故障诊断的特征 ,以作为训练样本输
入SOM神经网络进行类聚,然后对 气发动机在正常、气 门间隙大、排气 气 种状态的 号进行分析。结果
等优点,对于非线性函数 较强的实用性叫
王 提等8>通过采集北京现代2005款途胜汽车G4GC
型电控发动机的故障数据流为训练输入样本,
对应
的故障 作为输岀样本对神经网络进行训练,从而 .
了 RBF神经网络故障诊断 ,结果表明,该网络具有较
高的故障诊断精度和诊断速度&谢春丽等冏利用RBF神经 网络 了发动机的故障诊断 ,其体做法是通过汽
方面入手,一 面是利用算法优化神经网络的网络参数,这
样神经网络的预测精度会更高;另一个方面可以利用神经
网络建立非线性关系作为适应函数联合相应的算法(如
遗传算法、粒子群算法等),对发动机工作参数进行优化。
参考文献:
[1] 石",王兴成.概率神经网络在发动机故障诊断中的应用卩].

神经网络基础

神经网络基础

神经网络理论基础§1 引言当你现在学习神经网络知识的时候,你实际上正在使用着一个复杂的生物神经网络。

神经生理学和神经解剖学证明,人的思维是由脑完成的。

神经元是组成人脑的最基本单元,能够接受并处理信息。

人脑约由101l~1012个神经元组成,其中,每个神经元约与104~105个神经元通过突触联接,形成极为错纵复杂而且又灵活多变的神经网络。

虽然,每个神经元都比较简单,但是,如此多的神经元经过复杂的联接却可以演化出丰富多彩的行为方式。

因此,人脑是一个复杂的信息并行加工处理巨系统。

探索脑组织的结构、工作原理及信息处理的机制,是整个人类面临的一项挑战,也是整个自然科学的前沿。

关于人脑的功能,一方面受先天因素的制约,即由遗传信息先天确定了其结构与特性,另一方面后天因素也起重要的作用,即大脑可通过其自组织(Self-Organization)、自学习(Self-Learning),不断适应外界环境的变化。

一般认为,包括记忆在内的所有生物神经功能,都存贮在神经元及其之间的连接上。

学习被看作是在神经元之间建立新的连接或对已有的连接进行修改的过程。

大脑的自组织、自学习性,来源于神经网络结构的这种可塑性(Plasticity),它主要反映在神经元之间联接强度是可变的。

既然我们已经对生物神经网络有一个基本的认识,那么能否利用一些简单的人工“神经元”构造一个小神经网络系统,然后对其进行训练,从而使它们具有一定有用功能呢?答案是肯定的。

当然,人工神经元不是生物神经元,它们是对生物神经元极其简单的抽象,可以用程序或硅电路实现。

虽然由这些神经元组成的网络的能力远远不及人脑的那么强大,但是可以对其进行训练,以实现一些有用的功能。

§2神经网络模型2.1 生物神经网络的启示前面分析可知,人脑由大量的、高度互连的神经元组成。

神经元主要由三部分组成:树突、细胞体和轴突。

树突是树状的神经纤维接收网络,它将电信号传送到细胞体,细胞体对这些输入信号进行整合并进行阈值处理。

人工神经网络原理及其应用-人工智能导论

人工神经网络原理及其应用-人工智能导论

人工神经网络原理及其应用1.人工神经网络的概念:人工神经网络是对人脑或生物神经网络若干基本特性的抽象和模拟。

2.生物神经网络:由中枢神经系统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最主要的是脑神经系统。

3.人工神经网络原理:因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。

生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成,轴突是从细胞体向外伸出的细长部分,也就是神经纤维。

轴突是神经细胞的输出端,通过它向外传出神经冲动;树突是细胞体向外伸出的许多较短的树枝状分支。

它们是细胞的输入端,接受来自其它神经元的冲动。

突触是神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。

对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高,对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高。

当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。

细胞进入抑制状态,此时无神经冲动输出。

“兴奋”和“抑制”,神经细胞必呈其一。

人工神经网络的工作原理与生物神经网络原理类似,但却又不相同,其主要是通过建立一些数学模型,去模拟生物神经网络。

4.神经网络的结构:(1)前馈型:本层每个神经元只作用于下一层神经元的输入,不能直接作用于下下一层的神经元,且本层神经元之前不能互相租用。

(2)反馈型:即在前馈型的基础上,输出信号直接或间接地作用于输入信号。

5.神经网络的工作方式:(1)同步(并行)方式:任一时刻神经网络中所有神经元同时调整状态。

(2)异步(串行)方式:任一时刻只有一个神经元调整状态,而其它神经元的状态保持不变。

6.人工神经网络的应用:经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档