2015扬州宝应县中考数学一模
中考数学模拟试卷精选汇编:一元二次方程及其应用附答案

一元二次方程及其应用一.选择题1.(2015·江苏高邮·一模).能说明命题“关于x 的一元二次方程x 2+mx +4=0,当m <-2时必有实数解”是假命题的一个反例为A. m =﹣4B. m =﹣3C. m =﹣2D. m =4 答案:B2.(2015·江苏常州·一模)已知一元二次方程062=−−c x x 有一个根为2,则另一个根为A .2B .3C .4D .-8答案:C3. (2015·吉林长春·二模)答案:A4.(2015·江苏江阴青阳片·期中)设一元二次方程(x ﹣1)(x ﹣2)=m (m >0)的两实根分别为α、β,且α<β,则α,β满足( ▲ )A .1<α<β<2B .1<α<2<βC .α<1<β<2D .α<1且β>2答案:D5.(2015·安庆·一摸)已知βα、是一元二次方程x 2-2x -3=0的两个根,则βα+的值是( ) A.2 B.-2 C.3 D.-3 答案: A ;6. (2015·合肥市蜀山区调研试卷)方程0)3(2=+x x 的根的情况是: A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根答案:A7.(2015·广东高要市·一模)若1x ,2x 是一元二次方程016102=++x x 的两个根,则21x x +的值是( ▲ ) A . ﹣10B . 10C . ﹣16D . 16答案:A8.(2015•山东潍坊•第二学期期中)若关于x 的一元二次方程2(1)5m x x −++23m m −20+= 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .0答案:B ;9.(2015•山东潍坊广文中学、文华国际学校•一模)若关于x 的一元二次方程x 2+(k +3)x +2=0的一个根是2−,则另一个根是( )A .2B .1C .1−D .0答案:C ;10.(2015·网上阅卷适应性测试)已知关于x 的一元二次方程2210mx x +−=有两个不相等的实数根,则m 的取值范围是( ▲ ).A .1m <−B .1m >C .1m <且0m ≠D .1m >−且0m ≠答案:D11.(2015·山东省枣庄市齐村中学二模)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2 B .a <2 C .a <2且a ≠1 D .a <-2答案:C12.( 2015·呼和浩特市初三年级质量普查调研)方程2650x x +−=的左边配成完全平方后所得方程为( )A .2(3)14x += B. 2(3)14x −= C. 2(6)41x += D .2(3)4x += .答案:A13.(2015·辽宁盘锦市一模)一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为 x,则列方程为A.688(1+x )2=1299B. 1299(1+x )2=688C. 688(1-x )2=1299D. 1299(1-x )2=688答案:D14.(2015·山东省济南市商河县一模)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为A.100)1(1442=−xB.144)1(1002=−xC.100)1(1442=+xD.144)1(1002=+x 答案:D15.(2015.河北博野中考模拟)一元二次方程x 2﹣4x +5=0的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 答案:D16.(2015·广东中山·4月调研)已知关于x 的一元二次方程220x x a +−=有两个相等的实数根,则a 的值是( )A .4B .4−C .1D .1− 答案:D17.(2015·江苏南京溧水区·一模)一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .32答案: D18.(2015·江苏扬州宝应县·一模)已知关于x 的一元二次方程22x m x −= 有两个不相等的实数根,则m 的取值范围是A .m >-1B .m <-2C .m ≥0D .m <0 答案: A19.(2015·无锡市宜兴市洑东中学·一模)根据下列表格中的对应值,•判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的个数是( )A .0B .1C .2D .1或2 答案:A二.填空题1. (2015·湖南岳阳·调研)如果关于x 的方程23mx =有两个实数根,那么m 的取值范围是 ; 答案:0m >2.(2015·江苏江阴青阳片·期中)已知方程032=+−k x x 有两个相等的实数根,则k =▲ . 答案:k =49 3.(2015·江苏江阴要塞片·一模)若关于x 的一元二次方程kx 2+2(k +1)x +k -1=0有两个实数根,则k 的取值范围是 ▲ . 答案:k ≥﹣且k ≠04. (2015·安徽省蚌埠市经济开发·二摸)已知关天x 的一元二次方程2(1)10m x x −++=有实数根,则m 的取值范围是 . 答案:54m ≤且1m ≠ 5.(2015·广东广州·二模)已知错误!未找到引用源。
中考数学模拟试卷精选汇编:统计附答案

统计一.选择题1.(2015·无锡市南长区·一模)下列说法中,正确的是 ( ) A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C .抛掷一个正方体骰子,点数为奇数的概率是13D .“打开电视,正在播放广告”是必然事件 答案:A2.(2015·无锡市宜兴市洑东中学·一模)一组数据2,7,6,3,4, 7的众数和中位数分别是 ( )A .7和4.5B .4和6C .7和4D .7和5 答案:D3.(2015·无锡市宜兴市洑东中学·一模)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是 ( ▲ ) A .极差是20 B .中位数是91 C .众数是98 D .平均数是91答案:D4.(2015·无锡市新区·期中)为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据最值得关注的是( ▲ ) A .中位数 B .平均数 C .众数 D .加权平均数 答案:C5.(2015·锡山区·期中)已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个的2倍,则A ,B 两个样本的方差关系是(▲) A .B 是A 的2倍 B .B 是A 的2倍 C .B 是A 的4倍 D .一样大答案:C6.(2015·锡山区·期中)下列调查方式合适的是(▲)A .为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C .为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式答案:D7.(2015·江苏南菁中学·期中)某市某一周的PM 2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM 2.5指数的众数和中位数分别是---------------------------------------( ▲ ) PM2.5指数150 155 160 165天数 3 2 1 1A.150,150 B.150,155 C.155,150 D.150,152.5 答案: B8.(2015·江苏扬州宝应县·一模)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为A.19和20 B.20和19 C.20和20 D.20和21答案: C9.(2015·江苏无锡北塘区·一模)假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg) 12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?( ▲ )A.一样划算B.小菲划算C.小琳划算D.无法比较答案: . C10.(2015•山东东营•一模)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中的a值分别是( )A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,24答案:D11.(2015•山东济南•模拟) 已知一组数据:15,13,15,16,17,16,14,15则这组数据的众数和中位数分别是A.15,15 B.15,14 C.16,14 D.16,15答案:A12.(2015•山东济南•网评培训)下列说法不正确的是A.选举中,人们通常最关心的数据是众数B.从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C.数据3、5、4、1、-2的中位数是3D.某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖答案:D13.(2015•山东济南•一模)某男子排球队20名队员的身高如下表:身高(cm)180 186 188 192 208人数(个) 4 6 5 3 2 则此男子排球队20名队员的身高的众数和中位数分别是()A.186cm,186cm B.186cm,187cm C.208cm,188cm D.188cm,187cm 答案:B14..(2015•山东青岛•一模)某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人;D.甲地区的人数比丙地区的人数少180人答案:D15.(2015•山东青岛•一模)五箱阳信鸭梨的质量分别为(单位:千克):18,20,21,22,19.则这五箱鸭梨质量的平均数和中位数分别为()A.19和20 B.20和19 C.20和20 D.20和21答案:C16.(2015·广东中山·4月调研)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数答案:D17. (2015·广东从化·一模)下列说法错误的是(* ).A.必然事件的概率为1B.数据6、4、2、2、1的平均数是3C.数据5、2、﹣3、0、3的中位数是2D.某种游戏活动的中奖率为20%,那么参加这种活动100次必有20次中奖答案:D18.(2015·山东枣庄·二模)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是()A.这50名学生是总体的一个样本B.每位学生的体考成绩是个体C.50名学生是样本容量D.650名学生是总体答案:B19.(2015.河北博野中考模拟)数据9、9、6、3、6、2、6 的众数是【】A.2 B.3 C.6 D.9答案:C20.(2015山东·枣庄一摸)如表是我市11个区县去年5月1日最高气温(℃)的统计结果:市中区峨眉山市沙湾区五通桥区金口河区犍为县井研县夹江县沐川县峨边县马边县26 25 29 26 28 26 26 27 25 28 25 该日最高气温的众数和中位数分别是().A.25℃,26℃B.26℃,26℃C.25℃,25℃D.26℃,27℃21.(2015·辽宁盘锦市一模)某篮球队12名队员的年龄如下表所示:A.18,19 B.19,19 C.18,19.5D.19,19.5答案:A22.(2015·辽宁东港市黑沟学校一模,3分)下列说法中,正确的是()C . 第一枚硬币,正面朝上的概率为D . 若甲组数据的方差=0.1,乙组数据的方差=0.01,则甲组数据比乙组数据稳定答案:C23.(2015·山东省东营区实验学校一模)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中的a 值分别是( ) A .全面调查,26 B .全面调查,24 C .抽样调查,26 D .抽样调查,24答案:D24.(2015·邗江区·初三适应性训练)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为,51.02=乙s ,48.02=丙s ,42.02=丁s ,则四人中成绩最稳定的是( ▲ )A .甲B .乙C .丙D .丁 答案:D25.(2015·网上阅卷适应性测试)为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,,7,14,10,,9,7(单位:个).关于这组数据,下列结论正确的是( ▲ ).A .极差是6B .众数是7C .中位数是D .平均数是10 答案:B26.(2015·重点高中提前招生数学练习)某医院内科病房有护士15人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要( B ) A .30天 B .35天 C .56天 D .448天 答案:B【解析】15人每2人一班,轮流值班,有15×142=105种排法.每8小时换班一次,一天须排3班,某两人同值一班后,到下次两人再同班,最长需要105÷3=35(天).27.(2015•山东滕州东沙河中学•二模)为了帮助本市一名患“白血病”的高中生,某班45名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是A .众数是100B .平均数是30C .极差是20D .中位数是20答案:D28.(2015•山东滕州张汪中学•质量检测二)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米B .26厘米,25.5厘米C .25.5厘米,25.5厘米D .26厘米,26厘米答案:D ;29(2015·福建漳州·一模)下列调查中,适合用普查方式的是A . 保证“神舟九号”载人飞船成功发射,对重要零部件的检查B .了解人们对环境保护的意识C .了解一批灯泡的使用寿命D.了解央视2013年“春节联欢晚会”栏目的收视率 答案:A30.(2015·福建漳州·一模)已知数据2,5,7,6,5,下列说法错误..的是 A .平均数是5 B .众数是5 C .极差是5 D .中位数是7 答案:D31(2015·广东广州·二模).肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是A .150,150B .150,155C . 155,150 D .150,152.5答案:B32.(2015·广东广州·一模)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:A.320,210,230 B.320,210,210 C.206,210,210 D.206,210,230 B33.(2015·广东高要市·一模)体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的(▲)A.平均数B.中位数C.众数D.方差答案:D34 .(2015·北京市朝阳区·一模)为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是A.平均数B.中位数C.众数D.方差答案:C35. (2015·安庆·一摸)下列说法错误的是()A. 打开电视机,正在播放广告这一事件是随机事件B. 要了解小红一家三口的身高,适合采用抽样调查C. 方差越大,数据的波动越大D. 样本中个体的数目称为样本容量答案:B;36. (2015·合肥市蜀山区调研试卷)数据3,5,1,7的平均数和方差分别是:A.5,2B. 3,5C.4,20D.4,5答案:D37. (2015·安庆·一摸)李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10B.10和12C.9和10D.10和10答案:C;38.(2015·江苏江阴长泾片·期中)某市70%的家庭年收入不少于3万元,下面一定不少于3万元的是()A.年收入的平均数B.年收入的中位数C.年收入的众数D.年收入的平均数和众数答案:B39.(2015·江苏江阴青阳片·期中)为了解某班学生每天使用零花钱的情况,随机调查了15名同学,结果如下表:下列说法正确的是(▲)A.众数是5元B.平均数是2.5元C.极差是4元D.中位数是3元答案:D40.(2015·江苏江阴要塞片·一模)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是(▲ )A.极差是20 B.中位数是91 C.众数是98 D.平均数是91答案:D41. (2015·江苏高邮·一模)校篮球队所买10双运动鞋的尺码统计如下表:尺码(cm)25 25.5 26 26.5 27购买量(双) 1 1 2 4 2则这10双运动鞋尺码的众数和中位数分别为A. 4cm,26cmB. 4cm,26.5 cmC. 26.5cm,26.5cmD. 26.5cm,26cm答案:C42.(2015·湖南岳阳·调研)某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和中位数分别是()A. 2,19;B. 18,19;C. 2,19.5;D. 18,19.5;答案:B43. (2015·湖南永州·三模)为了解祁阳县居民的用电情况,我们随机对浯溪镇宝塔社区的10户居民进行了调查,下表是这10户居民2015年3月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是55B .众数是60C .方差是29D .平均数是54答案:C 解析:A .月用电量的中位数是55度,正确;B .用电量的众数是60度,正确;C .用电量的方差是24.9度,错误;D .用电量的平均数是54度,正确.故选C .二.填空题 1. .(2015·江苏常州·一模)已知一组数据为1,2,1,2,4,2,则这组数据的众数是 ▲ ,方差是 ▲ .答案:2,12.(2015·江苏江阴·3月月考)调查市场上某种食品的色素含量是否符合国家标准,这种调查适合用____________________.(填入全国调查或者抽样调查) 答案:抽样调查3.(2015·江苏江阴夏港中学·期中)一组数据3,5,7,8,4,7的中位数是 . 答案:64(2015·福建漳州·一模)机床厂对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=20,2S 甲=0.01;机床乙:x 乙=20,2S 乙=0.05 ,由此可知:________(填甲或乙)机床较稳定. 答案:甲5(2015·重点高中提前招生数学练习)一个样本为l ,3,2,2,a ,b ,c .已知这个样本唯一的众数为3,平均数为2,则这个样本的方差为 . 【答案】87【解析】这个样本为l ,3,2,2,3,3,0.∴方差为87.6.( 2015·呼和浩特市初三年级质量普查调研)已知一组数据1,7,10,8,x ,6,0,3,若这组数据的平均数x =5,则x 应等于() A6 B5 C4 D2 答案:B7.(2015·山东枣庄·二模)离中考还有20天,为了响应“还时间给学生”的号召,学校领导在全年级随机的调查了20名学生每天作业完成时间,绘制了如下表格: 则这20个学生每天作业完成的时间的中位数为____________.答案:2.75 8.(2015·江苏南京溧水区·一模)2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 答案: 2,2;9.(2015·江苏南菁中学·期中) 有一组数据:3,a , 4,6,7,它们的平均数是5,那么这组数据的方差是_ ▲___. 答案: 210.(2015·无锡市宜兴市洑东中学·一模)某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是 . 答案:611.(2015·锡山区·期中)小军的期末总评成绩由平时、期中、期末成绩按权重比1:1:8 组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x 满足的条件是 ▲ . 答案:x ≥80三.解答题1. (2015·江苏高邮·一模)(本题满分8分)学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、 “羽毛球”、 “乒乓球”、“其他”进行调查,整理收集到的数据,绘 制成如下的两幅统计图.(1)学校采用的调查方式是 ▲ ;学校在各班随机选取了 ▲ 名学生;(2)补全统计图中的数据:羽毛球 ▲ 人、乒乓球 ▲ 人、其他 ▲ 人、其他 ▲ ﹪; (3)该校共有1100名学生,请估计喜欢“篮球”的学生人数.图2.各类活动人数所占百分比统计图图1.各类活动人数统计图解:(1) 抽样调查 ; 100 ; ………………………2分(2)羽毛球 21 人、乒乓球 18 人、其他 25 人、其他 25 ﹪; ………………………4分(3)估计喜欢“篮球”的学生人数为396 . ………………………2分2. (2015·江苏常州·一模)(本题满分7分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:⑴ 在统计表中,m = ▲ ,n = ▲ ,并补全条形统计图 ⑵ 扇形统计图中“C 组”所对应的圆心角的度数是 ▲ .⑶ 若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.答案:20.⑴ m =30 ----------------------------------------- 1′ n =20 --------------------------------------------------- 2′ ,画图正确 ---------------------------------------------- 3′. ⑵ 扇形统计图中“C 组”所对应的圆心角的度数是 90 . ------------------------------------- 4′⑶ 解:“听写正确的个数少于24个”的人数有:10+15+25=50 人比赛学生总人数有:15÷15%=100人 ------------- 5900×10050= 450 人 --------- 6′ 答:这所学校本次比赛听写不合格的学生人数约为450人. ------------------------ 7′3. (2015·吉林长春·二模).答案:(1)如图所示.(2分)(2)因为13424873125+=+++++=16%<20%,所以张辉能获得奖励. (4分)(3)因为200×873125+++=152,所以该校八年级男同学成绩合格的人数约为152人. (7分)4 .(2015·湖南永州·三模)(8分)为了解2015年祁阳县体育达标情况,县教育局从全县九年级学生中随机抽取了部分学生进行了一次体育测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题: (1)本次抽样测试的学生人数是 ;(2)扇形图中∠α的度数是 ,并把条形统计图补充完整;(3)我县九年级有学生7200名,如果全部参加这次体育测试,请估计不及格的人数为 . (4)测试老师想从4位同学(分别记为E 、F 、G 、H ,其中E 为小明)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中小明的概率.答案:解:(1)(1分)本次抽样测试的学生人数是:%3012=40(人),故答案为:40; (2)(3分)根据题意得:360°×406=54°;C 级的人数是:40﹣6﹣12﹣8=14(人),如图(3)(1分)根据题意得:7200×408=1440(人);(4)(3分)根据题意画树形图如下:(1分)共有12种情况,选中小明的有6种,则P (选中小明)=126=21(2分).5.(2015·江苏江阴·3月月考)某中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A .3元,B .4元,C .5元,D .6元.为了解学社对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:A B C D 甲 6 22 16 6 乙?13253(1(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数均为4.44元,从平均数和众数的角度分析,哪个班购买的 餐价格较高;(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C 种午餐的学生的概率是多少? 答案:解:(1)13÷26%=50(人);(2)乙班购买A 种午餐的人数为50×18%=9(人),中位数是5元(3)甲、乙两班购买午餐费用的平均数相同,甲班购买午餐费用的众数是4元,乙班购买午餐费用的众数是5元,从平均数与众数可以看出乙班购买的午餐的价格较高; (4)16+2550+50=41100. 所以,恰好是购买C 种午餐的学生的概率是41100. 2.(2015·江苏江阴长泾片·期中)小明为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).班别品种人数 乙班购买午餐情况扇形统计图A18% B 26% C 50%D 6%请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.答案:解:(1)32÷64%=50(天);……………………2分(2)如图所示:………………4分表示优的圆心角度数是360°=57.6°,………………6分(3)一年(365天)达到优和良的总天数为:×365=292(天)……………8分6.(2015·江苏江阴青阳片·期中)某校有三个年级,各年级的人数分别为七年级600人,八年级540 人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图.....; (2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例最大,你认为小丽的判断正确吗?说明理由 答案:(1)每图2分,共4分 (2)七年级:300÷600=50%…………5分 八年级:444÷540=82.2%…………6分九年级:456÷565=80.7%…………7分 ∵50%<80.7%<82.2%∴小丽的判断是错误的,八年级最大。
2015年江苏省扬州市宝应县中考数学一模试卷

2015年江苏省扬州市宝应县中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分.每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.(3分)若m与﹣3互为倒数,则m等于()A.﹣3B.﹣C.D.32.(3分)下列计算中,正确的是()A.2x+5y=7xy B.(x﹣3)2=x2﹣9C.(xy)2=xy2D.(x2)3=x63.(3分)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.(3分)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为()A.19和20B.20和19C.20和20D.20和21 5.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.6.(3分)如果一个多边形的内角和等于360度,那么这个多边形的边数为()A.4B.5C.6D.77.(3分)已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m 的取值范围是()A.m>﹣1B.m<﹣2C.m≥0D.m<08.(3分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)宝应县2015年3月的一天最高气温为21℃,最低气温为﹣1℃,则这天的最高气温比最低气温高℃.10.(3分)新建的北京奥运会体育场﹣﹣“鸟巢”能容纳91 000位观众,将91 000用科学记数法表示为.11.(3分)分解因式:3a2﹣12=.12.(3分)已知10m=3,10n=2,则102m﹣n的值为.13.(3分)甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏.(填“公平”或“不公平”)14.(3分)如图,已知AB=AC,DE垂直平分AB分别交AB、AC于D、E两点,若∠A=40°,则∠EBC=°.15.(3分)已知菱形ABCD的对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为cm.16.(3分)如图,小正方形的边长均为1,扇形OAB是某圆锥的侧面展开图,则这个圆锥的底面周长为.(结果保留π)17.(3分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.18.(3分)如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为.三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤)19.(8分)计算:﹣2﹣2+sin45°+|1﹣|+(3.14﹣π)0.20.(8分)若a2﹣a﹣6=0,求分式的值.21.(8分)解不等式组:.22.(8分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?23.(10分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.24.(10分)甲、乙两公司各为“见义勇为基金会”捐款30 000元,已知乙公司比甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?25.(10分)已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.26.(10分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,(1)求山坡高度;(2)为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?27.(12分)如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D 是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为,PC=,设OC=x,PD2=y.①求y关于x的函数关系式;②当时,求tan B的值.28.(12分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.2015年江苏省扬州市宝应县中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.(3分)若m与﹣3互为倒数,则m等于()A.﹣3B.﹣C.D.3【解答】解:∵m与﹣3互为倒数,∴﹣3m=1,∴m=﹣.故选:B.2.(3分)下列计算中,正确的是()A.2x+5y=7xy B.(x﹣3)2=x2﹣9C.(xy)2=xy2D.(x2)3=x6【解答】解:A、2x与5y不是同类项,不能合并,错误;B、(x﹣3)2=x2﹣6xy+9,错误;C、(xy)2=x2y2,错误;D、(x2)3=x6,正确;故选:D.3.(3分)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个【解答】解:,0.343343334…是无理数,故选:B.4.(3分)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为()A.19和20B.20和19C.20和20D.20和21【解答】解:根据平均数定义可知:平均数=(18+20+21+22+19)=20;根据中位数的概念可知,排序后第3个数为中位数,即20.故选:C.5.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.6.(3分)如果一个多边形的内角和等于360度,那么这个多边形的边数为()A.4B.5C.6D.7【解答】解:∵(n﹣2)•180°=360°,解得n=4,∴这个多边形为四边形.故选:A.7.(3分)已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m 的取值范围是()A.m>﹣1B.m<﹣2C.m≥0D.m<0【解答】解:∵关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,∴△=4+4m>0,即m>﹣1.故选:A.8.(3分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.B.C.D.【解答】解:根据题意,BE=AE.设CE=x,则BE=AE=8﹣x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8﹣x)2=62+x2解得x=,∴tan∠CBE===.故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)宝应县2015年3月的一天最高气温为21℃,最低气温为﹣1℃,则这天的最高气温比最低气温高22℃.【解答】解:∵21﹣(﹣1)=22,∴最高气温比最低气温高22℃,故答案为:22.10.(3分)新建的北京奥运会体育场﹣﹣“鸟巢”能容纳91 000位观众,将91 000用科学记数法表示为9.1×104.【解答】解:91 000=9.1×104.11.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【解答】解:3a2﹣12=3(a+2)(a﹣2).12.(3分)已知10m=3,10n=2,则102m﹣n的值为.【解答】解:102m=32=9,102m﹣n=102m÷10n=,故答案为:.13.(3分)甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏不公平.(填“公平”或“不公平”)【解答】解:从5、6、7中任意找两个数,积有35、30、42、25、36、49,其中30、35、42都是两次,即共9种情况,其中奇数的有4种,偶数的有5种,显然是不公平的.故答案为:不公平14.(3分)如图,已知AB=AC,DE垂直平分AB分别交AB、AC于D、E两点,若∠A=40°,则∠EBC=30°.【解答】解:∵DE垂直平分AB分别交AB、AC于D、E两点,∴AE=BE,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠C=70°,∴∠EBC=∠ABC﹣∠ABE=30°.故答案为:30.15.(3分)已知菱形ABCD的对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为 4.8cm.【解答】解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AC⊥BD,OC=AC=3cm,OB=BD=4cm,∴BC==5(cm),=AC•BD=BC•AE,∵S菱形ABCD∴×6×8=5×AE,∴AE=4.8(cm).故答案为:4.8.16.(3分)如图,小正方形的边长均为1,扇形OAB是某圆锥的侧面展开图,则这个圆锥的底面周长为π.(结果保留π)【解答】解:∵小正方形的边长均为1,∵AB=4,OA=OB=2,∴∠AOB=90°,∴弧AB的长==π,∴这个圆锥的底面周长为π.故答案为:π.17.(3分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n.【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是nx(n+2)=n2+2n故答案为:n2+2n.18.(3分)如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为2.【解答】解:∵点A在双曲线上,点B在双曲线上,且AB∥x轴,∴设A(,m),则B(,m),∴AB==,∴S▱ABCD=•m=2,故答案为:2.三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤)19.(8分)计算:﹣2﹣2+sin45°+|1﹣|+(3.14﹣π)0.【解答】解:原式=﹣+×+﹣1+1=+.20.(8分)若a2﹣a﹣6=0,求分式的值.【解答】解:∵a2﹣a﹣6=0,∴a2=a+6.∴原式===.21.(8分)解不等式组:.【解答】解:由不等式组:解不等式①,得x>﹣2(3分)解不等式②,得5(x﹣1)≤2(2x﹣1)即5x﹣5≤4x﹣2∴x≤3,∴不等式组的解集为:﹣2<x≤3.22.(8分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?【解答】解:(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.支持“警示戒烟”这种方式的人有10000•35%=3500(人).23.(10分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.【解答】解:(Ⅰ)方法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种;方法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种.(Ⅱ)设两个球号码之和等于5为事件A,摸出的两个球号码之和等于5的结果有2种,它们是:(2,3)(3,2),∴P(A)=.24.(10分)甲、乙两公司各为“见义勇为基金会”捐款30 000元,已知乙公司比甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?【解答】解:设甲公司有x人,乙公司有y人.依题意有:,解得:,经检验:是原方程组的解.答:甲公司300人,乙公司250人.25.(10分)已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.【解答】解:(1)AE∥BD,且AE=BD;(2)四边形ABDE的面积是:4×4=16;(3)AC=BC.理由是:∵AC=CD,BC=CE,∴四边形ABDE是平行四边形.∵AC=BC,∴平行四边形ABDE是矩形.26.(10分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,(1)求山坡高度;(2)为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?【解答】解:(1)作BG⊥AD于G.∵Rt△ABG中,∠BAD=60°,AB=40,∴BG=AB•sin60°=20,∴山坡的高度为20米;(2)作EF⊥AD于F.AG=AB•cos60°=20.同理在Rt△AEF中,∠EAD=45°,∴AF=EF=BG=20,∴BE=FG=AF﹣AG=20(﹣1)米∴BE至少20(﹣1)米.27.(12分)如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D 是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为,PC=,设OC=x,PD2=y.①求y关于x的函数关系式;②当时,求tan B的值.【解答】(1)证明:连接OD.∵OB=OD,∴∠OBD=∠ODB.∵PD=PE,∴∠PDE=∠PED.∠PDO=∠PDE+∠ODE=∠PED+∠OBD=∠BEC+∠OBD=90°,∴PD⊥OD.∴PD是⊙O的切线.(2)解:①连接OP.在Rt△POC中,OP2=OC2+PC2=x2+192.在Rt△PDO中,PD2=OP2﹣OD2=x2+144.∴y=x2+144(0≤x≤).(x取值范围不写不扣分)②当x=时,y=147,∴PD=,(8分)∴EC=,∵CB=,∴在Rt△ECB中,tan B===.28.(12分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【解答】方法一:解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解得,∴抛物线的解析式为y=﹣x2+3x+4;(2)∵点D(m,m+1)在抛物线上,∴m+1=﹣m2+3m+4,即m2﹣2m﹣3=0∴m=﹣1或m=3∵点D在第一象限∴点D的坐标为(3,4)由(1)知OC=OB∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);(3)方法一:作PF⊥AB于F,DE⊥BC于E,由(1)有:OB=OC=4∴∠OBC=45°∵∠DBP=45°∴∠CBD=∠PBA∵C(0,4),D(3,4)∴CD∥OB且CD=3∴∠DCE=∠CBO=45°∴DE=CE=∵OB=OC=4∴BC=4∴BE=BC﹣CE=∴tan∠PBF=tan∠CBD=设PF=3t,则BF=5t,OF=5t﹣4∴P(﹣5t+4,3t)∵P点在抛物线上∴3t=﹣(﹣5t+4)2+3(﹣5t+4)+4∴t=0(舍去)或t=∴P(,);方法二:过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H,过Q点作QG⊥DH于G,∵∠PBD=45°,∴QD=DB,∴∠QDG+∠BDH=90°,又∵∠DQG+∠QDG=90°,∴∠DQG=∠BDH,∴△QDG≌△DBH,∴QG=DH=4,DG=BH=1由(2)知D(3,4),∴DH=4,OH=3∴HG=OH=3,QG=DH=4,∴QF=QG﹣GF=4﹣3=1∴Q(﹣1,3)∵B(4,0)∴直线BQ的解析式为y=﹣x+解方程组得,∴点P的坐标为(,).方法二:(1)略.(2)∵点D(m,m+1)在抛物线上,∴m+1=﹣m2+3m+4,即m2﹣2m﹣3=0∴m=﹣1或m=3∵点D在第一象限∴点D的坐标为(3,4)∵B(4,0),C(0,4),∴l BC:y=﹣x+4,D,E关于BC对称,∴DE⊥BC,DE与BC的交点F为DE的中点,K DE×K BC=﹣1,∵K BC=1,∴K DE=﹣1,l DE:y=x+1,l BC:y=﹣x+4,∴l DE与l BC的交点F(,),∵F X=,F Y=,∴E(0,1).(3)过点D作直线BF的垂线,垂足为H,设点H(a,b),∵∠DBP=45°,∴△DHB为等腰三角形,点B可视为点D绕点H顺时针旋转90°而成,将点H平移至原点得点H′,则点D(3,4)平移后为D′(3﹣a,4﹣b),将点D′顺时针旋转90°,则点B′(4﹣b,a﹣3),将H′平移至H,则B′平移后即为点B(4+a﹣b,a+b﹣3),∵B(4,0),∴4+a﹣b=4,a+b﹣3=0,∴a=b=,H(,),∵P在直线BH上,K BH=,∴l BH:y=﹣x,∴⇒,∴点P的坐标为(,).。
2015年中考第一次模拟考试数学试卷附答案

九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。
江苏省扬州市重点中学2015届中考数学一模试卷及答案解析

江苏省扬州市重点中学2015届中考数学一模试卷及答案解析一、选择题(本大题共有8小题,每小题3分,共24分)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×1053.下列函数中,自变量的取值范围是x>3的是()A.y=x﹣3 B.C.D.4.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的众数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,35.下列四个几何体中,主视图与其它三个不同的是()A.B.C. D.6.如图,直线a∥b,EF⊥CD于点F,∠2=25°,则∠1的度数是()A.155°B.135°C.125°D.115°7.若A(x1,y1)、B(x2,y2)是一次函数y=ax+x﹣2图象上的不同的两点,记m=(x1﹣x2)(y1﹣y2),则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<﹣1 D.a>﹣18.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是弧AB的中点.若扇形的半径是2,则图中阴影部分的面积等于()A.2π﹣4 B.2π﹣2 C.π+4 D.π﹣1二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.分解因式:a3﹣9a=.10.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m=.11.请给出一元二次方程x2﹣4x+=0的一个常数项,使这个方程有两个不相等的实数根(填在横线上,填一个答案即可).12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.13.如图,二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),当x=2时,y的值为.14.如图,已知AB=AC,DE垂直平分AB分别交AB、AC于D、E两点,若∠A=40°,则∠EBC=°.15.正多边形的一个内角的度数恰好等于它的相邻外角的度数的3倍,则这个正多边形的边数为.16.如图,⊙O的半径是4,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG﹦1,则EF为.17.已知等式+(x﹣3)2=0,则x=.18.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点C,经AB反射后,又照到竖立在y轴位置的镜面上的D点,最后经y轴再反射的光线恰好经过点A,则点C的坐标为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:(2)解不等式:.20.先化简再求值:,其中x是方程x2=2x的根.21.据报道,历经一年半的调查研究,北京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0.035千克污染物.如图是相关的统计图表:2014年北京市全年空气质量等级天数统计表空气质量等级优良轻度污中度污重度污严重污染染染染天数(天)41 135 84 47 45 13(1)请根据所给信息补全扇形统计图;(2)请你根据“2014年北京市全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少?(精确到0.01)(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知北京市2014年机动车保有量已突破520万辆,请你通过计算,估计2014年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?22.为了备战初三物理、化学实验操作考试.某校对初三学生进行了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.小张同学对物理的①、②和化学的b、c实验准备得较好,请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率.23.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.24.列方程或方程组解应用题:某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).26.如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为的中点,连结CE交AB于点F,且BF=BC.(1)判断直线BC与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为2,cosB=,求CE的长.27.已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,连结AC,BC,D是线段OB上一动点,以CD为一边向右作正方形CDEF,连结BF.若S△OBC=8,AC=BC.(1)求抛物线的解析式;(2)试判断线段BF与AB的位置关系,并说明理由;(3)当D点沿x轴正方向由点O移动到点B时,点E也随着运动,求点E所走过的路线长.28.设p、q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由.(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此一次函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=x2﹣2x是闭区间[c,d]上的“闭函数”时,求c,d的值.江苏省扬州市XX中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.【考点】倒数.【分析】根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选C.【点评】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×105【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,因为350万共有7位,所以n=7﹣1=6.【解答】解:350万=3 500 000=3.5×106.故选C.【点评】本题考查了科学记数法表示较大的数,准确确定n是解题的关键.3.下列函数中,自变量的取值范围是x>3的是()A.y=x﹣3 B.C.D.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0对各选项分析判断利用排除法求解.【解答】解:A、自变量的取值范围是全体实数,故本选项错误;B、自变量的取值范围是x≠3,故本选项错误;C、自变量的取值范围是x≥3,故本选项错误;D、自变量的取值范围是x>3,故本选项正确.故选D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的众数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:因为3出现的次数最多,所以众数是:3元;因为第十和第十一个数是3和4,所以中位数是:3.5元.故选B.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错5.下列四个几何体中,主视图与其它三个不同的是()A.B.C. D.【考点】简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:A、的主视图是第一层两个小正方形,第二层左边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左两个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.如图,直线a∥b,EF⊥CD于点F,∠2=25°,则∠1的度数是()A.155°B.135°C.125°D.115°【考点】平行线的性质.【分析】求出∠EFD=90°,根据三角形内角和定理求出∠CDE,根据平行线的性质得出∠1+∠CDE=180°,求出即可.【解答】解:∵EF⊥CD,∴∠EFD=90°,∵∠2=25°,∴∠CDE=180°﹣90°﹣25°=65°,∵直线a∥b,∴∠1+∠CDE=180°,∴∠1=115°,故选D.【点评】本题考查了三角形的内角和定理,垂直定义,平行线的性质的应用,注意:两直线平行,同旁内角互补.7.若A(x1,y1)、B(x2,y2)是一次函数y=ax+x﹣2图象上的不同的两点,记m=(x1﹣x2)(y1﹣y2),则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<﹣1 D.a>﹣1【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的性质知,当k<0时,判断出y随x的增大而减小.【解答】解:∵A(x1,y1)、B(x2,y2)是一次函数y=ax+x﹣2=(a+1)x﹣2图象上的不同的两点,m=(x1﹣x2)(y1﹣y2)<0,∴该函数图象是y随x的增大而减小,∴a+1<0,解得a<﹣1.故选:C.【点评】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.8.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是弧AB的中点.若扇形的半径是2,则图中阴影部分的面积等于()A.2π﹣4 B.2π﹣2 C.π+4 D.π﹣1【考点】扇形面积的计算.【分析】根据扇形的面积公式求出面积,再过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,然后证明△CMG与△CNH全等,从而得到中间空白区域的面积等于以2为对角线的正方形的面积,从而得出阴影部分的面积.【解答】解:两扇形的面积和为:=2π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCB,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为:×2×2=2,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=2π﹣4.故选:A.【点评】此题主要考查了扇形的面积求法以及三角形的面积等知识,得出四边形EGCH的面积是解决问题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.分解因式:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,﹣3)代入即可得出m的值.【解答】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.请给出一元二次方程x2﹣4x+3=0的一个常数项,使这个方程有两个不相等的实数根(填在横线上,填一个答案即可).【考点】根的判别式.【专题】开放型.【分析】设这个常数项为a,则这个一元二次方程为程x2﹣4x+a=0,根据方程有两个不相等的根,求出a的取值范围即可.【解答】解:设这个常数项为a,则这个一元二次方程为程x2﹣4x+a=0,∵此方程有两个不相等的实数根,∴△>0,∴42﹣4a>0,即a<4,所以这个常数项为小于4的任意一个数即可,可为3,故答案为:3.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个不相等根,则△>0,此题难度不大.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是0.3.【考点】概率公式.【专题】压轴题.【分析】让1减去摸出红球和白球的概率即为所求的概率.【解答】解:根据概率公式摸出黑球的概率是1﹣0.2﹣0.5=0.3.【点评】用到的知识点为:各个部分的概率之和为1.13.如图,二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),当x=2时,y的值为2.【考点】待定系数法求二次函数解析式.【分析】把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式,然后把x=2代入解析式即可求得.【解答】解:∵二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),∴,解得:,则这个二次函数的表达式为y=﹣x2+x+2.把x=2代入得,y=﹣×4+×2+2=2.故答案为2.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.14.如图,已知AB=AC,DE垂直平分AB分别交AB、AC于D、E两点,若∠A=40°,则∠EBC= 30°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由DE垂直平分AB分别交AB、AC于D、E两点,利用线段垂直平分线的性质,可得AE=BE,即可求得∠ABE的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案.【解答】解:∵DE垂直平分AB分别交AB、AC于D、E两点,∴AE=BE,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠C=70°,∴∠EBC=∠ABC﹣∠ABE=30°.故答案为:30.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.15.正多边形的一个内角的度数恰好等于它的相邻外角的度数的3倍,则这个正多边形的边数为8.【考点】多边形内角与外角.【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数的3倍,即可得方程:x+3x=180,解此方程即可求得答案.【解答】解:设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数的3倍,∴这个正多边形的一个内角为:3x°,∴x+3x=180,解得:x=45,∴这个多边形的边数是:360°÷45°=8.故答案为:8.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.16.如图,⊙O的半径是4,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG﹦1,则EF为.【考点】垂径定理;勾股定理;三角形中位线定理.【专题】计算题.【分析】连结OC,由OG⊥AC,根据垂径定理得CG=AG,在Rt△OCG中,利用勾股定理可计算出CG=,则AC=2CG=2,再由OE⊥AB,OF⊥BC得到AE=BE,BF=CF,则EF为△BAC 的中位线,然后根据三角形中位线性质得到EF=AC=.【解答】解:连结OC,如图,∵OG⊥AC,∴CG=AG,在Rt△OCG中,CG===,∴AC=2CG=2,∵OE⊥AB,OF⊥BC,∴AE=BE,BF=CF,∴EF为△BAC的中位线,∴EF=AC=.故答案为.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和三角形中位线性质.17.已知等式+(x﹣3)2=0,则x=2.【考点】二次根式的性质与化简;解一元二次方程-直接开平方法.【分析】由等式可知x﹣3≠0,按照x﹣3>0,x﹣3<0分类,将等式化简,解一元二次方程即可.【解答】解:∵x﹣3≠0,①当x﹣3>0时,原等式整理得1+(x﹣3)2=0,一个正数加一个非负数不可能为0,这种情况不存在.②当x﹣3<0,即x<3时,原等式整理得:﹣1+(x﹣3)2=0,则x﹣3=1或x﹣3=﹣1,解得x=4或x=2,而x<3,所以,只有x=2符合条件.故答案为:2.【点评】本题的难点在于判断第一项为1,还是﹣1,分情况讨论后,所得结果还应适合给定的范围.18.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点C,经AB反射后,又照到竖立在y轴位置的镜面上的D点,最后经y轴再反射的光线恰好经过点A,则点C的坐标为(,).【考点】相似三角形的判定与性质;坐标与图形性质.【专题】跨学科.【分析】应先作出点O及点A的像,过两个像的直线与直线AB的交点即为所求点.【解答】解:如图所示,∵点O关于AB的对称点是O′(1,1),点A关于y轴的对称点是A′(﹣1,0)设AB的解析式为y=kx+b,∵(1,0),(0,1)在直线上,∴,解得k=﹣1,∴AB的表达式是y=1﹣x,同理可得O′A′的表达式是y=+,两个表达式联立,解得x=,y=.故答案为:(,).【点评】考查镜面对称的知识;根据作相关点的像得到点D的位置是解决本题的关键.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:(2)解不等式:.【考点】解一元一次不等式;实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)根据二次根式的化简,30°角的余弦值等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,绝对值的性质进行计算即可得解;(2)根据一元一次不等式的解法,去分母,移项、合并同类项,系数化为1即可得解.【解答】解:(1)﹣2cos30°+()﹣2﹣|1﹣|,=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5;(2)去分母得:3﹣6x﹣6≥2x+4,移项、合并同类项得:﹣8x≥7,化系数为1得:x≤﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.20.先化简再求值:,其中x是方程x2=2x的根.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=•=•=•=(﹣x﹣2)•(x﹣1),∵解方程x2=2x得x1=0,x2=2(舍去),∴当x=0时,原式=(﹣0﹣2)•(0﹣1)=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.据报道,历经一年半的调查研究,北京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0.035千克污染物.如图是相关的统计图表:2014年北京市全年空气质量等级天数统计表空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)41 135 84 47 45 13(1)请根据所给信息补全扇形统计图;(2)请你根据“2014年北京市全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少?(精确到0.01)(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知北京市2014年机动车保有量已突破520万辆,请你通过计算,估计2014年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?【考点】扇形统计图;用样本估计总体.【专题】探究型.【分析】(1)根据扇形统计图中的数据可以得到机动车所占的百分比,本题得以解决;(2)根据表格可以得到该年度重度污染和严重污染出现的频率共是多少;(3)根据题意可得估计2014年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物.【解答】解:(1)由扇形统计图可得,机动车为:1﹣22.4%﹣18.1%﹣14.3%﹣14.1%=31.1%,故补全扇形统计图如右图所示,(2)由表格可得,该年度重度污染和严重污染出现的频率共是:≈0.16,即该年度重度污染和严重污染出现的频率共是0.16;(3)由题意可得,5200000××0.035=72800(千克)即估计2014年北京市一天中出行超过20千米的机动车至少要向大气里排放72800千克污染物.【点评】本题考查扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.22.为了备战初三物理、化学实验操作考试.某校对初三学生进行了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.小张同学对物理的①、②和化学的b、c实验准备得较好,请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他两科都抽到准备得较好的实验题目的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,他两科都抽到准备得较好的实验题目的有4种情况,∴他两科都抽到准备得较好的实验题目的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【考点】平行四边形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【点评】此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.24.列方程或方程组解应用题:某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?【考点】分式方程的应用.【专题】应用题.【分析】设原来报名参加的学生有x人,根据如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元,可列方程求解.【解答】解:设原来报名参加的学生有x人,依题意,得.解这个方程,得x=20.经检验,x=20是原方程的解且符合题意.答:原来报名参加的学生有20人.【点评】本题考查理解题意的能力,关键是找到享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元这个等量关系列方程求解.25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)过点B作BE⊥AD于点E,然后根据AB=40m,∠A=30°,可求得点B到AD的距离;(2)先求出∠EBD的度数,然后求出AD的长度,然后根据∠A=30°即可求出CD的高度.【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.【点评】本题考查了解直角三角形的应用,难度适中,解答本题的关键是根据仰角构造直角三角形并解直角三角形.26.如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为的中点,连结CE交AB于点F,且BF=BC.(1)判断直线BC与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为2,cosB=,求CE的长.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)连接AE,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC,∠EAD=∠ACE,求出∠BCE+∠ACE=90°,根据切线的判定推出即可.(2)根据AC=4,cosB==求出BC=3,AB=5,BF=3,AF=2,根据∠EAD=∠ACE,∠E=∠E 证△AEF∽△CEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出x2+4x2=16,求出即可.【解答】(1)BC与⊙O相切证明:连接AE,∵AC是⊙O的直径∴∠E=90°,∴∠EAD+∠AFE=90°,∵BF=BC,∴∠BCE=∠BFC,∵E为弧AD中点,∴∠EAD=∠ACE,∴∠BCE+∠ACE=90°,∴AC⊥BC,∵AC为直径,∴BC是⊙O的切线.。
中考数学模拟试卷精选汇编:整式与因式分解附答案

整式与因式分解一.选择题1. (2015·湖南永州·三模)下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(-ab )2=a 2b 2D .a 6÷a 3=a 2答案: C 解析:A .a 3+a 3=2a 3,故选项错误;B .2(a +1)=2a +2≠2a +1,故选项错误;C .(-ab )2=a 2b 2,故选项正确;D .a 6÷a 3=a 3≠a 2,故选项错误.故选:C .2.(2015·江苏江阴长泾片·期中)分解因式269ab ab a −+的最终结果是 ( )A .a(b -3)B .a(b 2-6b+9)C .a(b -3)2D .(ab -3)2 答案:C3.(2015·江苏江阴青阳片·期中)下列等式正确的是( ▲ )A .(-a 2)3=-a 5B .a 8÷a 2=a 4C .a 3+a 3=2a 3D .(ab )4=a 4b 答案:C4.(2015·江苏江阴夏港中学·期中)下列计算正确的是( ) A .x +x =x 2 B .x·x =2x C .(x 2)3=x 5 D .x 3÷x =x 2答案:D5.(2015·江苏江阴要塞片·一模)下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x −=⋅−−C .23x x x +=D .222=x y x y ++() 答案:B6.(2015·江苏江阴要塞片·一模)分解因式29a a −的结果是( ▲ )A .a (a − 9)B .(a − 3)(a +3)C .(a − 3a )(a +3a )D .2)3(−a 答案:A7. (2015·北京市朝阳区·一模)下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7答案:C8. (2015·安徽省蚌埠市经济开发·二摸)计算 (m 3)2÷m 3的结果等于【 】 A .2m B .3m C .4m D .6m 答案:B9. (2015·安徽省蚌埠市经济开发·二摸)下列整式中能直接运用完全平方公式分解因式的为【 】A .21x −B .221x x ++C .232x x ++D .22x y +10. (2015·安庆·一摸)下面是某次数学测验同学们的计算摘录,其中正确的是( ) A.2a +3b =5ab B.(-2a 2)3=-6a 6 C.a 3·a 2=a 6 D.-a 5÷(-a )=a 4 答案: D ;11. (2015·合肥市蜀山区调研试卷)下列计算中,正确的是: A.224235a a a += B.222()a b a b −=− C.336()a a =D.23(2)a −=68a −答案:D12.(2015·福建漳州·一模)下列运算正确的是A.623a a a =•B.()532a a = C.39= D.5252=+答案:C13.(2015·福建漳州·二模)若3−=b a ,则a b −的值是A .3−B .3C .0D .6 答案:B14.(2015·广东广州·一模)下列计算正确的是( )A .3x +3y =6xyB .a 2·a 3=a 6C .b 6÷b 3=b 2D .(m 2)3=m 6 答案:D15.(2015·广东广州·一模)已知a +b =4,a -b =3,则a 2-b 2=( )A .4B .3C .12D .1答案:C16.(2015·广东广州·一模)按如图M1-3所示的程序计算,若开始输入n 的值为1,则最后输出的结果是( )A .3B .15C .42D .63答案:C17.(2015·广东高要市·一模)下列运算正确的是( ▲ )A .3232+=+ B .32)(a =5a C . 2)3(=3D .33=−a a答案:C18.(2015•山东滕州东沙河中学•二模)下列计算正确的是A .6428)2(a a = B .43a a a =+ C .a a a =÷2 D .222)(b a b a −=−19.(2015•山东滕州东沙河中学•二模)下列命题是真命题的是A .-32πx 2y 3z 的系数为-32 B .若分式方程12−x a=3的解为正数,则a 的取值范围是a >-23C .两组对角分别相等的四边形是平行四边形D .同位角相等答案:C20.(2015•山东滕州羊庄中学•4月模拟)下列运算正确的是 A .(3xy 2)2=6xy 4B .2x -2=241xC .(-x )7÷(-x )2=-x 5D .(6xy 2)2÷3xy =2y答案:C ;21.(2015•山东滕州张汪中学•质量检测二)下列运算正确的是( )A .a 2•a 3=a 6B .(﹣a )4=a 4C .a 2+a 3=a 5D .(a 2)3=a 5答案:B ;22.(2015•山东潍坊•第二学期期中)下列各式计算正确的是( )A .3x -2x=1B .a 2+a 2=a 4C .a 5÷a 5=aD . a 3•a 2=a 5 答案:D ;23.(2015•山东潍坊广文中学、文华国际学校•一模)下列运算正确的是 ( ) A .3a 2-a 2=3 B .(a 2)3=a 5 C .a 3·a 6=a 9 D .(2a 2)2=4a 2答案:C ;24.(2015·邗江区·初三适应性训练)下列运算中,结果正确的是( ▲ )A .844a a a =+B .523a a a =⋅C .xy y x 532=+D .6326)2(a a −=− 答案:B25.(2015·网上阅卷适应性测试)下列运算正确的是( ▲ )A .532a a a =⋅B .22()ab ab = C .329()a a =D .632a a a ÷=答案:A26.(2015·江西省·中等学校招生考试数学模拟)下列运算正确的是( ) A .222()a b a b −=− B .2(1)(1)1a a a −+−−=− C .21()12−−= D .2224(2)4ab a b −−=答案:选B .27.(2015·山东省枣庄市齐村中学二模) 下列运算正确的是( ) A .a 2+a 3=a 5B .(-2a 2) 3=-6a 6C .(2a +1)(2a -1)=2a 2-1D .(2a 3-a 2)÷a 2=2a -1答案:D28.(2015·辽宁东港市黑沟学校一模) 下列运算正确的是( ) A . a 3•a 2=a 6B . 2a (3a ﹣1)=6a 3﹣1C .(3a 2)2=6a 4D .2a +3a =5a答案:D29. ( 2015·呼和浩特市初三年级质量普查调研)下列运算正确的是( )A.22122a a −= B.936()a a a −÷= 5a = D.2111()(21)424a a a a −+÷−=−答案:.D30.(2015·山东省济南市商河县一模)下列各式计算正确的是 A .53232a a a =+ B .532)(a a =C .326a a a =÷D .43a a a =⋅答案:B31.(2015·山东省东营区实验学校一模) 下列计算正确的是( )A .a ·a =a 2B .(-a )3=a 3C .(a 2)3=a 5D .a 0=1答案:A32.(2015.河北博野中考模拟).分解因式:2a 2-8b 2 =______________________.答案:2(a +2b ) (a -2b );33.(2015·广东中山·4月调研)计算23(2)a 的结果是( )A .2a 5B .6a 6C .8a 6D .8a 5 答案:C34.(2015·山东枣庄·二模)已知x y −=7,xy =2,则22x y +的值为( )A .53B .45C .47D .51答案:A35.(2015·山东枣庄·二模)如图,某同学在沙滩上用石子摆小房子,观察图形的变化规律,写出第⑨个小房子用的石子总数为( )① ② ③ ④A .155B .147C .145D .146答案:C36.(2015•山东东营•一模)下列计算正确的是( )A .a ·a =a 2B .(-a )3=a 3C .(a 2)3=a 5D .a 0=1 答案:A37.(2015•山东济南•模拟)计算23)(a 的结果是( )38.(2015•山东济南•网评培训)下列计算正确的是A .325a a a +=B .32a a a −=C .326a a a ⋅=D .32a a a ÷= 答案:D39.(2015•山东济南•一模)下列计算正确的是( )A. 633a a a ÷=B. 238()a a = C. 222()a b a b −=− D. 224a a a += 答案:A40.(2015•山东济南•一模)把代数式ax 2﹣4ax +4a 分解因式,下列结果中正确的是( ) A . a (x ﹣2)2 B . a (x +2)2 C . a (x ﹣4)2 D . a (x +2)(x ﹣2)答案:A41.(2015•山东青岛•一模)下列四个式子中,字母a 的取值可以是一切实数的是 A .1aB .a 0C .a 2D . a答案:C42.(2015·江苏无锡北塘区·一模)下列计算正确的是( ▲ )A .(2a 2)3=8a 5B .(3)2=9C .32-2=3D .-a 8÷a 4=-a 4 答案: D43.(2015·江苏南菁中学·期中)下列计算正确的是----------------( ▲ )A.222)2(a a =− B.632a a a ÷= C.a a 22)1(2−=−− D.22a a a ⋅=答案: C44.(2015·江苏南京溧水区·一模)计算231⎪⎭⎫⎝⎛−•a a 的结果是( ▲ )A .aB .5aC .6aD .4a答案: A45.(2015·江苏无锡崇安区·一模)下列四个多项式,能因式分解的是…………………………………………………( ▲ )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +9 答案: D46.(2015·江苏扬州宝应县·一模)下列计算中,正确的是 A.257x y xy += B.22(3)9x x −=− C.22)(xy xy = D.632)(x x = 答案: D47.(2015·无锡市南长区·一模)下列计算正确的是 ( ) A .2a -a =1 B .a 2+a 2=2a 4 C .a 2· a 3=a 5 D .(a -b )2=a 2-b 2答案:C48.(2015·无锡市宜兴市洑东中学·一模)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x = D 、422x x x =+ 答案:C49.(2015·无锡市宜兴市洑东中学·一模)下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x −=⋅−−C .23x x x +=D .222=x y x y ++() 答案:B50.(2015·无锡市宜兴市洑东中学·一模)分解因式29a a −的结果是( ▲ )A .a (a − 9)B .(a − 3)(a +3)C .(a − 3a )(a +3a )D .2)3(−a 答案:A51.(2015·锡山区·期中)下列运算正确的是(▲) A .632x x x =+ B .()623x x = C .xy y x 532=+ D .236x x x =÷答案:B 二.填空题1. (2015·湖南岳阳·调研)分解因式:24xy x −= ; 答案:(2)(2)x y y +−2. (2015·江苏常州·一模)分解因式:=+−22344xy y x x ▲ . 答案:2)2(y x x −3. (2015·吉林长春·二模)答案:8a 3b 64.(2015·湖南永州·三模)因式分解:x 3-x = .答案:x (x +1)(x -1)5.(2015·江苏江阴·3月月考)分解因式x 3-9x = . 答案:x (x +3)( x -3)6.(2015·江苏江阴青阳片·期中)因式分解:12−a = ▲ . 答案:(a +1)(a -1)7.(2015·江苏江阴夏港中学·期中)因式分解:82−x = . 答案:()()2222−+x x8. (2015·北京市朝阳区·一模)分解因式:2236+3m mn n −= . 答案:2)(3n m −9. (2015·安庆·一摸)因式分解:-2x 3+8x = 答案:-2x (x +2)(x -2);10.(2015·福建漳州·一模)分解因式: 2244y xy x +−= .答案:2(2)x y −11.(2015·广东广州·一模)把多项式3m 2-6mn +3n 2分解因式的结果是________. 答案:3(m -n)212.(2015·广东潮州·期中) 化简代数式2(1)2x x +−所得的结果是 . 答案:21x +13.(2015·广东潮州·期中)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需 根火柴棒,……,则第n 个图形需 根火柴棒。
江苏省扬州市宝应县中考数学一模试卷(含解析)
2017年江苏省扬州市宝应县中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2017的绝对值是()A.2017 B.C.﹣2017 D.﹣2.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a3D.a6+a3=a93.如图所示几何体的俯视图是()A. B.C. D.4.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆5.已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A.60° B.45° C.40° D.30°6.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm7.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,以O为圆心的半圆分别与AB、AC边相切于D、E两点,且O点在BC边上,则图中阴影部分面积S阴=()A.B.C.5﹣πD.﹣8.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.28二、填空题(本大题共10小题,每小题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.使分式有意义的x的取值范围是.11.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是.12.将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为.13.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.14.矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE 的长为.15.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是矩形,顶点A、B、C、D的坐标分别为(﹣1,0),(5,0),(5,2),(﹣1,2),点E(3,0)在x轴上,点P 在CD边上运动,使△OPE为等腰三角形,则满足条件的P点有个.16.如图,已知函数和y=kx的图象交于点P(﹣4,﹣2),则根据图象可得关于x的不等式>kx的解集为.17.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为.18.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO= 度.三、解答题(本大题共10小题,共96分)19.(8分)计算: +()﹣1﹣4cos45°﹣()0.20.(8分)先化简,再求值:(﹣x﹣1)÷,其中﹣1≤x≤2,且x是整数.21.(8分)解不等式组:,并写出符合不等式组的整数解.22.(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班 8.5 8.5乙班 8.5 10 1.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.23.(10分)某学校要举办一次演讲比赛,每班只能选一人参加比赛.但八年级一班共有甲、乙两人的演讲水平相不相上下,现要在他们两人中选一人去参加全校的演讲比赛,经班主任与全班同学协商决定用摸小球的游戏来确定谁去参赛(胜者参赛).游戏规则如下:在两个不透明的盒子中,一个盒子里放着两个红球,一个白球;另一个盒子里放着三个白球,一个红球,从两个盒子中各摸一个球,若摸得的两个球都是红球,甲胜;摸得的两个球都是白球,乙胜,否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.根据上述规则回答下列问题:(1)从两个盒子各摸出一个球,一个球为白球,一个球为红球的概率是多少?(2)该游戏公平吗?请用列表或树状图等方法说明理由.24.(10分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.25.(10分)我国《道路交通安全法》第四十七条规定“机动车行经人行横道时,应当减速行驶;遇行人通过人行横道,应当停车让行”.如图:一辆汽车在一个十字路口遇到行人时刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?26.(10分)某省为推广新能源汽车,计划连续五年给予财政补贴.补贴开始时间为2017年度,截止时间为2021年度.补贴期间后一年度的补贴额均在前一年度补贴额基础上递增.计划前三年,每年度按固定额度a亿元递增;后两年均在上一年的基础上按相同增长率递增.已知2018年度计划补贴额为19.8亿元.(1)若2019年度计划补贴额比2018年度至少增加15%,求a的取值范围;(2)若预计2017﹣2021这五年补贴总额比2018年度补贴额的5.31倍还多2.31a亿元,求后两年财政补贴的增长率.27.(12分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.28.(12分)如图①所示,在平面直角坐标系xoy中,Rt△AOB的直角边OB,OA分别在x 轴上和y轴上,其中OA=2,OB=4,现将Rt△AOB绕着直角顶点O按顺时针方向旋转90°得到△COD,已知一抛物线经过C,D,B三点,直线EF为抛物线的对称轴,E为顶点.(1)求这条抛物线的解析式和E点坐标;(2)在(1)的条件下,如图②,点P是CE上一个动点,P′是P关于EF的对称点,连接PF,过P′作P′G∥PF交x轴于G,设S四边形FPP′G=y,FG=x,求y关于x的函数关系式,并求y的最大值;(3)如图③在(1)中的抛物线上是否存在点Q,使△BDQ成为以BD为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.2017年江苏省扬州市宝应县中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2017的绝对值是()A.2017 B.C.﹣2017 D.﹣【考点】15:绝对值.【分析】根据绝对值的性质解答即可.【解答】解:﹣2017的绝对值等于2017.故选:A.【点评】此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a3D.a6+a3=a9【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据合并同类项、同底数幂相乘、积的乘方法则计算后判断即可.【解答】解:A、2a 与5b不是同类项不能合并,故本项错误;B、a2•a3=a5,正确;C、(2a)3=8a3,故本项错误;D、a6与a3不是同类项不能合并,故本项错误.故选:B.【点评】本题考查了合并同类项、同底数幂相乘、积的乘方,熟练掌握运算法则是解题的关键.3.如图所示几何体的俯视图是()A. B.C. D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,得一个长方形,由3个小正方形组成.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆【考点】W2:加权平均数.【分析】根据加权平均数的求法可以求得这30天在该时段通过该路口的汽车平均辆数,本题得以解决.【解答】解:由题意可得,这30天在该时段通过该路口的汽车平均辆数是:=770,故选C.【点评】本题考查加权平均数,解题的关键是明确题意,会计算加权平均数.5.已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A.60° B.45° C.40° D.30°【考点】KK:等边三角形的性质;J8:平行公理及推论;JA:平行线的性质.【分析】过C作CE∥直线m,由l∥m,推出l∥m∥CE,根据平行线的性质得到∠ACE=∠α,∠BCE=∠CBF=20°,即∠α+∠CBF=∠ACB=60°,即可求出答案.【解答】解:过C作CE∥直线m∵l∥m,∴l∥m∥CE,∴∠ACE=∠α,∠BCE=∠CBF=20°,∵等边△ABC,∴∠ACB=60°,∴∠α+∠CBF=∠ACB=60°,∴∠α=40°.故选C.【点评】本题主要考查对平行线的性质,等边三角形的性质,平行公理及推论等知识点的理解和掌握,此题是一个比较典型的题目,题型较好.6.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm【考点】L5:平行四边形的性质.【分析】由▱ABCD的周长为26cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD﹣AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.【解答】解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.【点评】此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.7.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,以O为圆心的半圆分别与AB、AC边相切于D、E两点,且O点在BC边上,则图中阴影部分面积S阴=()A.B.C.5﹣πD.﹣【考点】MC:切线的性质;MO:扇形面积的计算.【分析】首先连接OD,OE,设⊙O与BC交于M、N两点,易得四边形ADOE是正方形,即可得∠DOM+∠EON=90°,然后设OE=x,由△COE∽△CBA,根据相似三角形的对应边成比例,即可求得x的值,继而由S阴影=S△ABC﹣S正方形ADOE﹣(S扇形DOM+S扇形EON)求得答案.【解答】解:连接OD,OE,设⊙O与BC交于M、N两点,∵以O为圆心的半圆分别与AB、AC边相切于D、E两点,∴OD⊥AB,OE⊥AC,即∠ADO=∠AEO=90°,∵在Rt△ABC中,∠A=90°,∴四边形ADOE是矩形,∵OD=OE,∴四边形ADOE是正方形,∴∠DOE=90°,∴∠DOM+∠EON=90°,设OE=x,则AE=AD=OD=x,EC=AC﹣AE=4﹣x,∵△COE∽△CBA,∴,即,解得:x=,∴S阴影=S△ABC﹣S正方形ADOE﹣(S扇形DOM+S扇形EON)=×3×4﹣()2﹣=﹣.故选D.【点评】此题考查了相似三角形的判定与性质、切线的性质、正方形的判定与性质以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.8.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.28【考点】G5:反比例函数系数k的几何意义;S9:相似三角形的判定与性质.【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.【解答】解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴=,即BC×OE=BO×AB.又∵S△BEC=8,即BC×OE=2×8=16=BO×AB=|k|.又由于反比例函数图象在第一象限,k>0.所以k等于16.故选B.【点评】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.二、填空题(本大题共10小题,每小题3分,共30分)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104,故答案为:1.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.使分式有意义的x的取值范围是x≠1 .【考点】62:分式有意义的条件.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的是分式有意义的条件,即分式的分母不为0.11.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是.【考点】X4:概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是.故答案为.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为y=﹣2x﹣1 .【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的平移规律求解即可.【解答】解:将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为y=﹣2x+3﹣4,即y=﹣2x﹣1.故答案为y=﹣2x﹣1.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.13.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是120 °.【考点】MP:圆锥的计算.【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为120.【点评】本题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE 的长为 2.5 .【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据翻转前后,图形的对应边和对应角相等,可知EF=BF,AB=AE,故可求出DE的长,然后设出FC的长,则EF=4﹣FC,再根据勾股定理的知识,即可求出BF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=∠D=90°,∵将矩形折叠,使得点B落在线段CD的点F处,∴AE=AB=5,AD=BC=4,EF=BF,在Rt△ADE中,由勾股定理,得DE=3.在矩形ABCD中,DC=AB=5.∴CE=DC﹣DE=2.设FC=x,则EF=4﹣x.在Rt△CEF中,x2+22=(4﹣x)2.解得x=1.5.∴BF=BC﹣CF=4﹣1.5=2.5,故答案为:2.5.【点评】本题考查了矩形的性质、勾股定理的运用以及翻转变换的知识,属于基础题,注意掌握图形翻转前后对应边和对应角相等是解题关键.15.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是矩形,顶点A、B、C、D的坐标分别为(﹣1,0),(5,0),(5,2),(﹣1,2),点E(3,0)在x轴上,点P 在CD边上运动,使△OPE为等腰三角形,则满足条件的P点有 3 个.【考点】LB:矩形的性质;D5:坐标与图形性质;KI:等腰三角形的判定.【分析】分别以O、E为圆心,以OE的长为半径作圆与CD相交,再作OE的垂直平分线与CD相交,交点即为所求的点P.【解答】解:如图,满足条件的P点有3个.故答案为:3.【点评】本题考查了矩形的性质,坐标与图形性质,等腰三角形的判定,熟练掌握等腰三角形的性质是解题的关键.16.如图,已知函数和y=kx的图象交于点P(﹣4,﹣2),则根据图象可得关于x的不等式>kx的解集为x<﹣4 .【考点】FD:一次函数与一元一次不等式.【分析】观察函数图象得到当x<﹣4时,的图象都在y=kx的图象上方,即>kx.【解答】解:当x<﹣4时,的图象都在y=kx的图象上方,所以关于x的不等式>kx的解集为x<﹣4.故答案为:x<﹣4.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为12 .【考点】KX:三角形中位线定理;KQ:勾股定理.【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.【解答】解:∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.故答案为:12.【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.18.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO= 30 度.【考点】MF:弦切角定理;K8:三角形的外角性质.【分析】在Rt△AOB中,已知了直径AB和OA的长,即可求得∠OAB、∠OBA的度数;而由弦切角定理知∠OAB=∠BOC,进而可由三角形的外角性质求出∠ACO的度数.【解答】解:∵AB=2,OA=,∴cos∠BAO==,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA﹣∠BOC=30°.故答案为:30.【点评】此题主要考查了直角三角形的性质、弦切角定理以及三角形的外角性质,难度不大.三、解答题(本大题共10小题,共96分)19.计算: +()﹣1﹣4cos45°﹣()0.【考点】T5:特殊角的三角函数值;6E:零指数幂;6F:负整数指数幂.【分析】先根据二次根式的化简、负整数指数幂、特殊角的三角函数值及0指数幂把原式化简,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+2﹣4×﹣1,=2+2﹣2﹣1,=1.故答案为:1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂及二次根式等考点的运算.20.先化简,再求值:(﹣x﹣1)÷,其中﹣1≤x≤2,且x是整数.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后根据x的取值范围选出合适的x的值代入进行计算即可.【解答】解:原式=[﹣(x+1)]•=[﹣(x+1)]•=•=1﹣(x﹣1)=2﹣x.当x=0时,原式=2.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.解不等式组:,并写出符合不等式组的整数解.【考点】CC:一元一次不等式组的整数解;CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出整数解.【解答】解:解不等式3﹣2(x﹣1)>0,得:x<,解不等式﹣1≤x,得:x≥1,∴不等式组的解集为1≤x<,则整数解为1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班 8.5 8.5 8.5 ,0.7乙班 8.5 8 10 1.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.【考点】W7:方差;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)利用条形统计图,结合众数、方差、中位数的定义分别求出答案;(2)利用平均数、众数、方差、中位数的定义分析得出答案.【解答】解:(1)甲的众数为:8.5,方差为: [(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2] =0.7,乙的中位数是:8;故答案为:8.5,0.7,8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.【点评】此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键23.(10分)(2017•宝应县一模)某学校要举办一次演讲比赛,每班只能选一人参加比赛.但八年级一班共有甲、乙两人的演讲水平相不相上下,现要在他们两人中选一人去参加全校的演讲比赛,经班主任与全班同学协商决定用摸小球的游戏来确定谁去参赛(胜者参赛).游戏规则如下:在两个不透明的盒子中,一个盒子里放着两个红球,一个白球;另一个盒子里放着三个白球,一个红球,从两个盒子中各摸一个球,若摸得的两个球都是红球,甲胜;摸得的两个球都是白球,乙胜,否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.根据上述规则回答下列问题:(1)从两个盒子各摸出一个球,一个球为白球,一个球为红球的概率是多少?(2)该游戏公平吗?请用列表或树状图等方法说明理由.【考点】X7:游戏公平性;X6:列表法与树状图法.【分析】(1)画树状图列出所有等可能结果数,再根据概率公式计算即可得;(2)分别求出甲获胜和乙获胜的概率,比较后即可得.【解答】解:(1)画树状图如下:由树状图可知,共有12种等可能情形,其中一个球为白球,一个球为红球的有7种,∴一个球为白球,一个球为红球的概率是;(2)由(1)中树状图可知,P(甲获胜)==,P(乙获胜)==,∵,∴该游戏规则不公平.【点评】本题考查列表法与树状图法及游戏公平性的判断.解题的关键是列出所有等可能结果,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(10分)(2016•百色)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠BCE,∵AF∥CE,∴∠BCE=∠AFB,∴∠1=∠AFB,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:∵CE平分∠BCD,∴∠DCE=∠BCE=∠1=65°,∴∠B=∠D=180°﹣2×65°=50°.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25.(10分)(2017•宝应县一模)我国《道路交通安全法》第四十七条规定“机动车行经人行横道时,应当减速行驶;遇行人通过人行横道,应当停车让行”.如图:一辆汽车在一个十字路口遇到行人时刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?【考点】U7:视点、视角和盲区;KO:含30度角的直角三角形.【分析】直接利用已知得出∠BAC=∠BCA,则BC=AB,再得出BF的长,求出x的值即可.【解答】解:如图所示:延长AB,∵CD∥AB,∴∠CAB=30°,∠CBF=60°,∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA,∴BC=AB=3m,在Rt△BCF中,BC=3m,∠CBF=60°,∴BF=BC=1.5m,故x=BF﹣EF=1.5﹣0.8=0.7(m),答:这时汽车车头与斑马线的距离x是0.7m.【点评】此题主要考查了含30度角的直角三角形,正确得出BF的长是解题关键.26.(10分)(2017•宝应县一模)某省为推广新能源汽车,计划连续五年给予财政补贴.补贴开始时间为2017年度,截止时间为2021年度.补贴期间后一年度的补贴额均在前一年度补贴额基础上递增.计划前三年,每年度按固定额度a亿元递增;后两年均在上一年的基础上按相同增长率递增.已知2018年度计划补贴额为19.8亿元.(1)若2019年度计划补贴额比2018年度至少增加15%,求a的取值范围;(2)若预计2017﹣2021这五年补贴总额比2018年度补贴额的5.31倍还多2.31a亿元,求后两年财政补贴的增长率.【考点】AD:一元二次方程的应用.【分析】1)根据2019年度计划补贴额比2018年度至少增加15%列式:2018年度计划补贴额×15%≤a;(2)根据题意列一元二次方程求解即可,注意利用整体的方法求解.【解答】解:(1)根据已知得:19.8×15%≤a,解得:2.97≤a,答:a的取值范围为a≥2.97.(2)设后两年财政补贴的增长率为x,根据题意得:19.8﹣a+19.8+19.8+a+(19.8+a)×(1+x)+(19.8+a)×(1+x)2=19.8×5.31+2.31a,(19.8+a)m2+3(19.8+a)m﹣0.31(19.8+a)=0,m2+3m﹣0.31=0,(m﹣0.1)(m+3.1)=0,m1=0.1=10%,x2=﹣3.1(舍),答:后两年财政补贴的增长率为10%.。
江苏省扬州市2015年中考数学试题(WORD版,含答案)
2015年江苏扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分) 1、实数0是 ( )A 、有理数B 、无理数C 、正数D 、负数2、2015年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( ) A 、71049.7⨯ B 、61049.7⨯ C 、6109.74⨯ D 、710749.0⨯ 3、如图是某校学生参加课外兴趣小组的人数占总人数比例的 统计图,则参加人数最多的课外兴趣小组是 ( )A 、音乐组B 、美术组C 、体育组D 、科技组 4、下列二次根式中的最简二次根式是 ( ) A 、30 B 、12 C 、8 D 、21 5、如图所示的物体的左视图为( )6、如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,Rt △ABC 经过变换得到Rt △ODE ,若点C 的坐标为(0,1),AC=2,则这种 变换可以是 ( )A 、△ABC 绕点C 顺时针旋转90°,再向下平移3B 、△ABC 绕点C 顺时针旋转90°,再向下平移1 C 、△ABC 绕点C 逆时针旋转90°,再向下平移1D 、△ABC 绕点C 逆时针旋转90°,再向下平移37、如图,若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ;③D C ∠>∠tan tan 中,正确的结论为( )A 、①②B 、②③C 、①②③D 、①③ 8、已知x=2是不等式)23)(5(+--a ax x ≤0的解,且x=1不是这 个不等式的解,则实数a 的取值范围是 ( )A 、1>aB 、a ≤2C 、a <1≤2D 、1≤a ≤2二、填空题(本大题共有10小题,每小题3分,工30分) 9、-3的相反数是10、因式分解:x x 93-=11、已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是12、色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随 机抽取体检表,统计结果如下表: 抽取的体检表数n 50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m 37132937556985105138色盲患者的频率m/n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据上表,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 13、若532=-b a ,则=+-2015262a b14、已知一个圆锥的侧面积是π22cm ,它的侧面展开图是一个半圆,则这个圆锥的高为 cm (结果保留根号)15、如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的 三个点A 、B 、C 都在横格线上,若线段AB=4 cm ,则线段BC= cm16、如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边 与直角三角形的两条直角边相交成∠1、∠2,则∠2-∠1=17、如图,已知Rt △ABC 中,∠ABC=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF=18、如图,已知△ABC 的三边长为a 、b 、c ,且c b a <<,若平行于三角形一边的直线l将△ABC 的周长分成相等的两部分,设图中的小三角形①、②、③的面积分别为1s 、2s 、3s 则1s 、2s 、3s 的大小关系是 (用“<”号连接)三、解答题(本大题共有10小题,共96分,解答时应写出必要的文字说明、证明过程或演算步骤) 19、(本题满分8分)(1)计算:︒--+-30tan 2731)41(1(2)化简:)1111(12---+÷-a a a a a20、(本题满分8分)解不等式组⎪⎩⎪⎨⎧->--≥2215143x x x x ,并把它的解集在数轴上表示出来21、(本题满分8分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图。
2015年江苏省扬州市江都区八校联考中考数学一模试卷和解析答案
2015年江苏省扬州市江都区八校联考中考数学模拟试卷一、选择题:(本大题共有8小题,每小题3分,共24分.在每小题所给地四个选项中,恰有一项是符合要求地)1.(3分)﹣3地倒数是()A.3 B.C.﹣ D.﹣32.(3分)下列图形中,既是中心对称图形又是轴对称图形地是()A.B.C.D.3.(3分)下列运算正确地是()A.3a2﹣a2=3 B.(a2)3=a5C.a3•a6=a9 D.a6÷a3=a24.(3分)下列命题中,是真命题地是()A.两条对角线互相平分地四边形是平行四边形B.两条对角线相等地四边形是矩形C.两条对角线互相垂直地四边形是菱形D.两条对角线互相垂直且相等地四边形是正方形5.(3分)某小组在“用频率估计概率”地实验中,统计了某种结果出现地频率,绘制了如图地折线图,那么符合这一结果地实验最有可能地是()A.在“石头、剪刀、布”地游戏中,小明随机出地是“剪刀”B.袋子中有1个红球和2个黄球,它们只有颜色上地区别,从中随机地取出一个球是黄球C.掷一枚质地均匀地硬币,落地时结果是“正面向上”D.掷一个质地均匀地正六面体骰子,落地时面朝上地点数是66.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°7.(3分)已知P(x1,1),Q(x2,2)是一个函数图象上地两个点,其中x1<x2<0,则这个函数图象可能是()A.B.C.D.8.(3分)如图,在正方形ABCD中,E是AD地中点,F是AB边上一点,BF=3AF,则下列四个结论:①△AEF∽△DCE;②CE平分∠DCF;③点B、C、E、F四个点在同一个圆上;④直线EF是△DCE地外接圆地切线;其中,正确地个数是()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)在百度中,搜索“数学改革”关键词,约有40600条结果,把数字40600写成科学记数法是.10.(3分)若二次根式有意义,则x地取值范围是.11.(3分)若a+b=5,ab=3,则a2+b2=.12.(3分)如图,O为跷跷板AB地中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板地一端B着地时,另一端A离地面地高度为cm.13.(3分)关于x地一元二次方程x2+2x+m=0有两个相等地实数根,则m地值是.14.(3分)如图是某几何体地三视图及相关数据,则该几何体地侧面积是.15.(3分)某中学随机调查了15名学生,了解他们一周在校地体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼地时间地众数是小时.16.(3分)如图,四边形ABCD内接于⊙O,AD、BC地延长线相交于点E,AB、DC地延长线相交于点F.若∠E+∠F=80°,则∠A=°.17.(3分)如图,已知菱形ABCD地对角线AC、BD地长分别为6cm、8cm,AE ⊥BC于点E,则AE地长是.18.(3分)如图,抛物线l:y=2x2﹣2x,将该抛物线向左并向上平移,使顶点Q 地对应点是Q′,抛物线l与x轴地右交点P地对应点是P′,点P′、Q′都在坐标轴上,则在这个平移地过程中,抛物线l上曲线段PQ扫过地面积(即图中阴影部分地面积)为.三、解答题(本大题共10题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:()﹣1+|﹣|﹣(π﹣3)0+3tan30°(2)解不等式组:.20.(8分)化简分式:,并选择一个你喜欢地x地值求分式地值.21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天地空气质量检测结果,并整理绘制成如图两幅不完整地统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天地空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应地圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前地统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)22.(8分)不透明地口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字为3地球地概率是;(2)小明和小亮进行摸球游戏,游戏规则如下:先由小明从袋中任意摸出一个球,记下球地数字后放回袋中搅匀,再由小亮从袋中任意摸出一个球,记下球地数字.谁摸出地球地数字大,谁获胜.这个游戏规则对双方公平吗?请说明理由.23.(8分)某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离地人数是指导前地3倍,这45名同学全部撤离地时间比指导前快3秒.求指导前平均每秒撤离地人数.24.(10分)如图,在▱ABCD中,点E是DC地中点,连接AE,并延长交BC地延长线于点F.(1)求证:△ADE和△CEF地面积相等;(2)若AB=2AD,试说明AF恰好是∠BAD地平分线.25.(10分)阅读下面材料:小红遇到这样一个问题:如图1,在四边形ABCD中,∠A=∠C=90°,∠D=60°,AB=4,BC=,求AD地长.小红发现,延长AB与DC相交于点E,通过构造Rt△ADE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:AD地长为.(2)参考小红思考问题地方法,解决问题:如图3,在四边形ABCD中,tanA=,∠B=∠C=135°,AB=9,CD=3,求BC和AD地长.26.(10分)如图,一次函数y=分别交y轴、x 轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线地解析式;(2)作垂直x轴地直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN有最大值?最大值是多少?27.(12分)水池中有水20m3,12:00时同时打开两个每分钟出水量相等且不变地出水口,12:06时王师傅打开一个每分钟进水量不变地进水口,同时关闭一个出水口,12:14时再关闭里另一个出水口,12:20时水池中有水56cm3,王师傅地具体记录如表,设从12:00开始经过tmin池中有水ym3,如图中折线ABCD表示y关于t地函数图象.(1)每个出水口每分钟出水m3,表格中a=;(2)求进水口每分钟地进水量和b地值;(3)在整个过程中t为何值时,水池有水16m328.(12分)已知,在平面直角坐标系中,点P(0,2),以P为圆心,OP为半径地半圆与y轴地另一个交点是C,一次函数y=﹣x+m(m为实数)地图象为直线l,l分别交x轴,y轴于A,B两点,如图1.(1)B点坐标是(用含m地代数式表示),∠ABO=°;(2)若点N是直线AB与半圆CO地一个公共点(两个公共点时,N为右侧一点),过点N作⊙P地切线交x轴于点E,如图2.①是否存在这样地m地值,使得△EBN是直角三角形?若存在,求出m地值;若不存在,请说明理由.②当=时,求m地值.2015年江苏省扬州市江都区八校联考中考数学模拟试卷参考答案与试题解析一、选择题:(本大题共有8小题,每小题3分,共24分.在每小题所给地四个选项中,恰有一项是符合要求地)1.(3分)﹣3地倒数是()A.3 B.C.﹣ D.﹣3【分析】利用倒数地定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3地倒数是﹣.故选:C.2.(3分)下列图形中,既是中心对称图形又是轴对称图形地是()A.B.C.D.【分析】根据轴对称图形与中心对称图形地概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.3.(3分)下列运算正确地是()A.3a2﹣a2=3 B.(a2)3=a5C.a3•a6=a9 D.a6÷a3=a2【分析】根据合并同类项法则、积地乘方、同底数幂地乘法和除法,对各项计算后即可判断.【解答】解:A、3a2﹣a2=2a2,错误;B、(a2)3=a6,错误;C、a3•a6=a9,正确;D、a6÷a3=a3,错误;故选:C.4.(3分)下列命题中,是真命题地是()A.两条对角线互相平分地四边形是平行四边形B.两条对角线相等地四边形是矩形C.两条对角线互相垂直地四边形是菱形D.两条对角线互相垂直且相等地四边形是正方形【分析】真命题就是判断事情正确地语句.两条对角线互相平分地四边形是平行四边形;两条对角线相等且平分地四边形是矩形;对角线互相垂直平分地四边形是菱形;两条对角线互相垂直相等且平分地四边形是正方形.【解答】解:A、两条对角线互相平分地四边形是平行四边形,故本选项正确.B、两条对角线相等且平分地四边形是矩形;故本选项错误.C、对角线互相垂直平分地四边形是菱形;故本选项错误.D、两条对角线互相垂直相等且平分地四边形是正方形.故本选项错误.故选:A.5.(3分)某小组在“用频率估计概率”地实验中,统计了某种结果出现地频率,绘制了如图地折线图,那么符合这一结果地实验最有可能地是()A.在“石头、剪刀、布”地游戏中,小明随机出地是“剪刀”B.袋子中有1个红球和2个黄球,它们只有颜色上地区别,从中随机地取出一个球是黄球C.掷一枚质地均匀地硬币,落地时结果是“正面向上”D.掷一个质地均匀地正六面体骰子,落地时面朝上地点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项地概率,约为0.16者即为正确答案.【解答】解:A、在“石头、剪刀、布”地游戏中,小明随机出地是“剪刀”地概率为,故本选项错误;B、袋子中有1个红球和2个黄球,它们只有颜色上地区别,从中随机地取出一个球是黄球地概率为,故本选项错误;C、掷一枚质地均匀地硬币,落地时结果是“正面向上”地概率是,故本选项错误;D、掷一个质地均匀地正六面体骰子,落地时面朝上地点数是6地概率为≈0.17,故本选项正确.故选:D.6.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°【分析】先根据弦AB∥CD得出∠ABC=∠BCD,再根据∠ABC=40°即可得出∠BOD 地度数.【解答】解:∵弦AB∥CD,∴∠ABC=∠BCD,∴∠BOD=2∠ABC=2×40°=80°.故选:D.7.(3分)已知P(x1,1),Q(x2,2)是一个函数图象上地两个点,其中x1<x2<0,则这个函数图象可能是()A.B.C.D.【分析】根据反比例函数地性质,可判断A、B,根据二次函数地性质,可判断C、D.【解答】解:A、在第二象限y随x地增大而增大,故A正确;B、函数图象不在第二象限,故B错误;C、函数图象不在第二象限,故C错误;D、在第二象限y随x地增大而减小,故D错误;故选:A.8.(3分)如图,在正方形ABCD中,E是AD地中点,F是AB边上一点,BF=3AF,则下列四个结论:①△AEF∽△DCE;②CE平分∠DCF;③点B、C、E、F四个点在同一个圆上;④直线EF是△DCE地外接圆地切线;其中,正确地个数是()A.1个 B.2个 C.3个 D.4个【分析】由正方形地性质得出AB=BC=CD=AD,∠A=∠B=∠D=90°,设AF=a,则BF=3a,AB=BC=CD=AD=4a,证出AE:DE=AE:CD,即可得出①正确;先证出∠CEF=90°,由勾股定理求出EF=a,CE=2a,得出EF:CE=DE:CD,证出△CEF∽△CDE,得出∠FCE=∠DCE,得出CE平分∠DCF,②正确;由∠B+∠CEF=180°,得出B、C、E、F四个点在同一个圆上,③正确;由△DCE是直角三角形,得出外接圆地圆心是斜边CE地中点,CE是直径,由EF ⊥CE,得出直线EF是△DCE地外接圆地切线,④正确.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠D=90°,∵E是AD地中点,∴AE=DE,∵BF=3AF,设AF=a,则BF=3a,AB=BC=CD=AD=4a,∵AF:DE=1:2,AE:CD=1:2,∴AE:DE=AE:CD,∴△AEF∽△DCE,∴①正确;∠AEF=∠DCE,∵∠DEC+∠DCE=90°,∴∠AEF+∠DEC=90°,∴∠CEF=90°,∵EF==a,CE==2a,∴EF:CE=1:2=DE:CD,∴△CEF∽△CDE,∴∠FCE=∠DCE,∴CE平分∠DCF,∴②正确;∵∠B=90°,∠CEF=90°,∴∠B+∠CEF=180°,∴B、C、E、F四个点在同一个圆上,∴③正确;∵△DCE是直角三角形,∴外接圆地圆心是斜边CE地中点,CE是直径,∵∠CEF=90°,∴EF⊥CE,∴直线EF是△DCE地外接圆地切线,∴④正确,正确地结论有4个.故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)在百度中,搜索“数学改革”关键词,约有40600条结果,把数字40600写成科学记数法是 4.06×104.【分析】科学记数法地表示形式为a×10n地形式,其中1≤|a|<10,n为整数.确定n地值时,要看把原数变成a时,小数点移动了多少位,n地绝对值与小数点移动地位数相同.当原数绝对值>1时,n是正数;当原数地绝对值<1时,n 是负数.【解答】解:将40600用科学记数法表示为:4.06×104.故答案为:4.06×104.10.(3分)若二次根式有意义,则x地取值范围是x≥2.【分析】根据二次根式有意义地条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.11.(3分)若a+b=5,ab=3,则a2+b2=19.【分析】首先把等式a+b=5地等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.【解答】解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=19.故答案为19.12.(3分)如图,O为跷跷板AB地中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板地一端B着地时,另一端A离地面地高度为100cm.【分析】判断出OC是△ABD地中位线,再根据三角形地中位线平行于第三边并且等于第三边地一半可得AD=2OC.【解答】解:如图,过点A作AD⊥MN于点D,则AD∥OC.∵O是AB地中点,∴OC是△ABD地中位线,∴AD=2OC=2×50=100(cm).故答案是:100.13.(3分)关于x地一元二次方程x2+2x+m=0有两个相等地实数根,则m地值是1.【分析】由于关于x地一元二次方程x2+2x+m=0有两个相等地实数根,可知其判别式为0,据此列出关于m地方程,解答即可.【解答】解:∵关于x地一元二次方程x2+2x+m=0有两个相等地实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.(3分)如图是某几何体地三视图及相关数据,则该几何体地侧面积是15π.【分析】根据三视图易得此几何体为圆锥,再根据圆锥侧面积公式=底面周长×母线长×可计算出结果.【解答】解:根据图形可知圆锥地高为4,则母线长为5,圆锥侧面积公式=底面周长×母线长×,圆锥侧面积=×6π×5=15π,故答案为15π.15.(3分)某中学随机调查了15名学生,了解他们一周在校地体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼地时间地众数是 7 小时.【分析】根据众数地概念求解.【解答】解:这15名学生中,一周在校地体育锻炼7小时地人数最多,即众数为7.故答案为:7.16.(3分)如图,四边形ABCD 内接于⊙O ,AD 、BC 地延长线相交于点E ,AB 、DC 地延长线相交于点F .若∠E +∠F=80°,则∠A= 50 °.【分析】连结EF,如图,根据圆内接四边形地性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.【解答】解:连结EF,如图,∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.故答案为:50.17.(3分)如图,已知菱形ABCD地对角线AC、BD地长分别为6cm、8cm,AE⊥BC于点E,则AE地长是cm.【分析】根据菱形地性质得出BO、CO地长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积地一半,也等于BC×AE,可得出AE地长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD∵S=BC×AE,菱形ABCD∴BC×AE=24,∴AE==cm.故答案为:cm.18.(3分)如图,抛物线l:y=2x2﹣2x,将该抛物线向左并向上平移,使顶点Q 地对应点是Q′,抛物线l与x轴地右交点P地对应点是P′,点P′、Q′都在坐标轴上,则在这个平移地过程中,抛物线l上曲线段PQ扫过地面积(即图中阴影部分地面积)为.【分析】先利用配方法得到Q(,﹣),再求出P(,0),于是可判断Q点向上平移个单位得到点Q′,P点向左平移1个单位得到点P′,则可求出P′点和Q′点地坐标,连结P′Q′和PQ,如图,然后根据图中阴影部分地面积=S平行四边形PQQ′P 进行计算.【解答】解:∵y=2x2﹣2x=2(x﹣)2﹣,∴Q(,﹣),当2x2﹣2x=0时,解得x1=0,x2=1,则P(1,0),∵Q点向上平移个单位得到点Q′,P点向左平移1个单位得到点P′,∴抛物线l:y=2x2﹣2x先向上平移个单位,再向左平移1个单位得到新抛物线,∴P′(0,),Q′(﹣,0),连结P′Q′和PQ,如图,=2×××(1+)=.∴图中阴影部分地面积=S平行四边形PQQ′P故答案为.三、解答题(本大题共10题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:()﹣1+|﹣|﹣(π﹣3)0+3tan30°(2)解不等式组:.【分析】(1)本题涉及零指数幂、负整数指数幂、特殊角地三角函数值、绝对值四个考点.针对每个考点分别进行计算,然后根据实数地运算法则求得计算结果.(2)首先分别计算出两个不等式地解集,再根据大小小大中间找可得不等式组地解集.【解答】解:(1)原式=4+﹣1+3×,=;(2)解不等式组:由①得:x≤2,由②得:x>﹣3,∴原不等式组地解集是﹣3<x≤2.20.(8分)化简分式:,并选择一个你喜欢地x地值求分式地值.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内地减法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解地先分解,然后约分.x 取不为±1、0地任何数.【解答】解:=×=2x+4,取x=2,原式=8.21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天地空气质量检测结果,并整理绘制成如图两幅不完整地统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天地空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应地圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前地统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【分析】(1)根据4级地天数数除以4级所占地百分比,可得答案;(2)根据有理数地减法,可得5级地天数,根据5级地天数,可得答案;(3)根据圆周角乘以3级所占地百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取地天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.22.(8分)不透明地口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字为3地球地概率是;(2)小明和小亮进行摸球游戏,游戏规则如下:先由小明从袋中任意摸出一个球,记下球地数字后放回袋中搅匀,再由小亮从袋中任意摸出一个球,记下球地数字.谁摸出地球地数字大,谁获胜.这个游戏规则对双方公平吗?请说明理由.【分析】(1)根据球地个数和概率公式即可得出答案;(2)游戏是否公平,关键要看游戏双方赢地机会是否相等,即判断双方取胜地概率是否相等,或转化为在总情况明确地情况下,判断双方取胜所包含地情况数目是否相等.【解答】解:(1)∵共有3个数字,∴摸到标有数字为3地球地概率是;故答案为:;(2)公平,理由如下:由树状图可知,P(小明获胜)=,P(小亮获胜)=,∵P(小明获胜)=P(小亮获胜),∴游戏规则对双方公平.23.(8分)某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离地人数是指导前地3倍,这45名同学全部撤离地时间比指导前快3秒.求指导前平均每秒撤离地人数.【分析】设指导前平均每秒撤离地人数为x人,根据这45名同学全部撤离地时间比指导前快3秒,列出方程,再求解即可.【解答】解:设指导前平均每秒撤离地人数为x人,由题意得:﹣=3,解得:x=10,经检验:x=10是原方程地解,答:指导前平均每秒撤离地人数为10人.24.(10分)如图,在▱ABCD中,点E是DC地中点,连接AE,并延长交BC地延长线于点F.(1)求证:△ADE和△CEF地面积相等;(2)若AB=2AD,试说明AF恰好是∠BAD地平分线.【分析】(1)首先根据平行四边形地性质可得AD∥BC,根据平行线地性质可得∠DAE=∠F,然后再证明△AED≌△FEC可得结论;(2)首先根据平行四边形地性质可得AD=BC,根据全等三角形地性质可得AD=CF,然后再证明AB=BF,进而可得∠BAF=∠F,再由∠DAE=∠F,可得∠BAF=∠DAE,进而可得AF恰好是∠BAD地平分线.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∵点E是DC地中点,∴CE=DE,在△AED和△FEC中,∴△AED≌△FEC(AAS),∴△ADE和△CEF地面积相等;(2)∵四边形ABCD是平行四边形,∴AD=BC,∵△AED≌△FEC,∴AD=CF,∴AD=BC=CF,∵AB=2AD,∴AB=2BC=BF,∴∠BAF=∠F,又∵∠DAE=∠F,∴∠BAF=∠DAE,即AF是∠BAD地平分线.25.(10分)阅读下面材料:小红遇到这样一个问题:如图1,在四边形ABCD中,∠A=∠C=90°,∠D=60°,AB=4,BC=,求AD地长.小红发现,延长AB与DC相交于点E,通过构造Rt△ADE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:AD地长为6.(2)参考小红思考问题地方法,解决问题:如图3,在四边形ABCD中,tanA=,∠B=∠C=135°,AB=9,CD=3,求BC和AD地长.【分析】(1)延长AB与DC相交于点E,解直角三角形BEC,得出BE地长,那么AE=AB+BE,再解直角三角形ADE,即可求出AD;(2)延长AB与DC相交于点E.由∠ABC=∠BCD=135°,得出∠EBC=∠ECB=45°,那么BE=CE,∠E=90°.设BE=CE=x,则BC=x,AE=9+x,DE=3+x.在Rt△ADE中,由tanA=,得出=,求出x=3,那么BC=3,AE=12,DE=6,再利用勾股定理即可求出AD.【解答】解:(1)延长AB与DC相交于点E,在△ADE中,∵∠A=90°,∠D=60°,∴∠E=30°.在Rt△BEC中,∵∠BCE=90°,∠E=30°,BC=,∴BE=2BC=2,∴AE=AB+BE=4+2=6.在Rt△ADE中,∵∠A=90°,∠E=30°,AE=6,∴AD=AE•tan∠E=6×=6.故答案为6;(2)如图,延长AB与DC相交于点E.∵∠ABC=∠BCD=135°,∴∠EBC=∠ECB=45°,∴BE=CE,∠E=90°.设BE=CE=x,则BC=x,AE=9+x,DE=3+x.在Rt△ADE中,∠E=90°,∵tanA=,∴=,即=,∴x=3.经检验x=3是所列方程地解,且符合题意,∴BC=3,AE=12,DE=6,∴AD===6.26.(10分)如图,一次函数y=分别交y轴、x 轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线地解析式;(2)作垂直x轴地直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN有最大值?最大值是多少?【分析】(1)首先求出一次函数与坐标轴交点坐标,进而代入二次函数解析式得出b,c地值即可;(2)根据作垂直x轴地直线x=t,得出M,N地坐标,进而根据坐标性质得出即可.【解答】解:(1)∵一次函数y=分别交y轴、x 轴于A、B两点,∴x=0时,y=2,y=0时,x=4,∴A(0,2),B(4,0),将x=0,y=2代入y=﹣x2+bx+c得c=2将x=4,y=0,c=2代入y=﹣x2+bx+c,得到b=,∴y=﹣x2+x+2;(2)∵作垂直x轴地直线x=t,在第一象限交直线AB于M,∴由题意,易得M(t,﹣t+2),N(t,﹣t2+t+2),从而得到MN=﹣t2+t+2﹣(﹣t+2)=﹣t2+4t (0<t<4),当t=﹣=2时,MN有最大值为:=4.27.(12分)水池中有水20m3,12:00时同时打开两个每分钟出水量相等且不变地出水口,12:06时王师傅打开一个每分钟进水量不变地进水口,同时关闭一个出水口,12:14时再关闭里另一个出水口,12:20时水池中有水56cm3,王师傅地具体记录如表,设从12:00开始经过tmin池中有水ym3,如图中折线ABCD表示y关于t地函数图象.(1)每个出水口每分钟出水1m3,表格中a=8;(2)求进水口每分钟地进水量和b地值;(3)在整个过程中t为何值时,水池有水16m3【分析】(1)根据直线AB地解析式图象得出每个出水口每分钟出水速度为(20﹣12)÷4÷2,进而得出a地值即可;(2)根据直线BC地解析式地图象得出进水口每分钟地进水量,进而得出b地值;(3)把t=16代入两个解析式中解答即可.【解答】解:(1)由直线AB图象可得:每个出水口每分钟出水速度为(20﹣12)÷4÷2=1m3/分钟;图中a地值等于20﹣6×2=8;故答案为:1;8;(2)设进水口每分钟地进水量为m,可得:,解得:,答:进水口每分钟地进水量是4,b地值是32;(3)直线AB地解析式为y=kx+b,可得:,解得:,所以直线AB地解析式为:y=﹣2x+20,把y=16代入y=﹣2x+20,解得:x=2;直线BC地解析式为y1=k1x+b1,可得:,解得:,所以直线BC地解析式为:y1=3x﹣10,把y=16代入y1=3x﹣10,解得:x=,综上所述,在整个过程中t为2或时,水池有水16m328.(12分)已知,在平面直角坐标系中,点P(0,2),以P为圆心,OP为半径地半圆与y轴地另一个交点是C,一次函数y=﹣x+m(m为实数)地图象为直线l,l分别交x轴,y轴于A,B两点,如图1.(1)B点坐标是(m,0)(用含m地代数式表示),∠ABO=30°;(2)若点N是直线AB与半圆CO地一个公共点(两个公共点时,N为右侧一点),过点N作⊙P地切线交x轴于点E,如图2.①是否存在这样地m地值,使得△EBN是直角三角形?若存在,求出m地值;若不存在,请说明理由.②当=时,求m地值.【分析】(1)首先求出直线与x轴交点坐标,进而得出答案,再利用锐角三角函数关系得出∠ABO地度数;(2)①分别利用∠NEB=90°和∠ENB=90°,结合切线地性质得出m地值;②首先求出NG:EN=,再得出△PHN∽△NGE,再利用相似三角形地性质,进而得出m地值.【解答】解:(1)当y=0,则0=﹣x+m,解得:x=m,故B点坐标是(用含m地代数式表示),∵一次函数y=﹣x+m与y轴交于点(0,m),∴tan∠ABO==,∴∠ABO=30°;故答案为:(m,0),30;(2)①如图①,假设存在这样地m地值,使得△EBN是直角三角形.连接NP 若∠NEB=90°,∵NE是⊙P地切线,∴∠PNE=90°,∵∠POE=90°,∴四边形OPNE是矩形,∴PN=2,∠APN=90°,在Rt△APN中,PN=2,∠BAO=60°,∴PA=,∴m=2+,若∠ENB=90°,∵NE是⊙P地切线,∴∠PNE=90°,∴点P、N、B三点共线,即点P与点A重合,∴m=2,综上可知,m=2或2+;②如图②,连接PN,过点E作,EG⊥AB于G,过点P作,PH⊥AB于H,则PA=m﹣2,PH=,∵=,∴EB=,EN=EO=,EG=,∴EG:EN=1:4,∴NG:EN=,∵∠PNE=90°,∴∠PNH+∠ENG=90°,∵∠GNE+∠NEG=90°,∴∠NEG=∠PNH,∵∠PHN=∠EGN=90°,∴△PHN∽△NGE,∴=,∴=,解得:m=.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2015年扬州市中考数学试题及答案
扬州市2015年初中毕业、升学统_考试数学试餐iftW:I•本试卷共G応包含送择題F 1題~鄭8&共8题).廿选开範(69盘-第2汕* 2° 題吶部分•桶満分⑼分小试时间为血分仲•讥痕耐杠试巻和井交问•2. 袴帥•考生务必将色巳的姓名,准号莎号城砒毎題卡相应的位衣上•加务少任试忌的裟订线内将木人的惟名•浪畑号坤”左ift耳好/试卷納-向的右下耐好金位"•3. 所行的试匕都必幼金Q用的"奋竝卡”卜杵齐.选择題用2B铅它作衿.&透祥总庄M定位置用0.5丞木的浪色笔作答.在试注或审稿墩.匕答题无效.4•如有作图需宴•请用2B铅笔作林•并讷加处加祖•捕写祸楚.-■选«a(^ K3共令8小地出小世3分•共24分•在毎小題所蛉出的pqfB«中•恰彳i-琐址符合題||整垠的•请将止檢邊妙劇的?盼代甘填冷@孑~卡帕应位录上)△实数0垦"r八•玄理数B无理数CiEtt D•负歆必2. 2015普找3大学生华业人数将达到7・3)皿£1人•这个数鹏IU科孚记数法盘示为I ) A. 7.49X1O1K 7. 49X10e CX 74. 9X10" D・0.749X10’3.如图足篥校学生多JM课外兴&小组的人敷占总人數比的的ttitffl.JMS加人敢■多的课件兴趣小组是C•体育姐.下列二次根式中的吓二灿式乂R貝术组D.科綾组\ m/\ *««m J•3<)C.V8D」•A.音乐纽A.7305.亦所示的硏號視图为P.406』曲•呼询f (血仆叽点R *庄y 轴上・的坠你为《0N 》・ACn2 •歸这种奁挽可议足A ・ZkABC 屋点C 散叫M 收杆!>0•■再向*甲书3B ・△ABC 拔点C ■时卅M •■冉罔下甲毎I C ・△ABCRfAC 逆町针竣饕go •■纓向卩平@ 1 IX ZsABCSt^C ®84ltJfcH 90••冉向下平咨 3 7■如图•若饮他内摆『(•)(》•点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省扬州市宝应县中片2015届九年级数学3月月考试题一、选择题(本大题共8小题,每小题3分,共24分。
每题所给的四个选项,只有一个符合题意,请将正确答案的序号填入答题纸的相应表格中) 1.如果a 与2-互为倒数,则a 等于( )A .2-B .12-C .12D .2 2.下列计算中,正确的是( )A .235x y xy +=B .22(5)25x x -=-C .43a a a -=D .2335()xy x y =3.首都北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为( )A .39110⨯ B .291010⨯ C .39.110⨯ D .49.110⨯ 4.从1-9这九个自然数中任取一个,是2的倍数的概率是( )A .92 B .94 C .95 D .32 5.如图,将Rt ABC ∆绕直角边AB 旋转一周,所得的几何体的主视图是( ).B .C .D .6.数轴上A 、B 两点表示的数分别是1点A 关于点B 的对称点是点C ,则点C 所表示的数是( )A.1 B.1C.2 D.1 7.已知反比例函数ky x=的图象经过点(3)m m ,,则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 8.对于非零的两个实数a 、b ,规定11a b b a⊗=-,若1(1)1x ⊗+=,则x 的值为( )A .32B .13C .12D .12-CBA二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题纸相应位置上)9.函数y =x 的取值范围是 .10.在Rt ABC ∆中,90C ∠=,5AB =,3AC =,则sin A = . 11.已知2a b +=,则224a b b -+的值是 .12.小军的期末总评成绩由平时、期中、期末成绩按权重比1:1:8 组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x 满足的条件是 .13.如图,⊙O 为锐角ABC ∆的外接圆,已知18BAO ∠=,那么C ∠的度数为 °.14.如图,将APB ∆绕点B 按逆时针方向旋转90后得到11A PB ∆.若2BP =,则线段1PP 的长为 .15.如图,在平行四边形ABDC 中,点M 是CD 的中点,AM 与BC 相交于点N ,那么ACN BDMN S S ∆四边形:等于 .16.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为 cm 2.(结果保留π)17.关于x 的分式方程3111m x x+=--的解是正数,则m 的取值范围是 . 18.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则a 的取值范围是 .三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤) 19.(本题满分8分)计算:201321(1)()cos 602---+.20.(本题满分8分)先化简,再求值:22(1)(1)1a a a -+÷++,其中1a =.P 1A 1PBA NMDCAC第13题 第14题 第15题21.(本题满分8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (2)求摸出的两个球号码之和等于5的概率.22.(本题满分8分)某旅游商店有单价分别为10元、30元和50元的三种绢扇出售,该商店统计了2013年3月份这三种绢扇的销售情况,并绘制统计图如下:请解决下列问题:(1)计算3月份销售了多少把单价为50元的绢扇,并在图②中补全条形统计图;(2)该商店所销售的这些绢扇的平均价格是多少呢?小亮计算这个平均价格为:1(103050)303⨯++= (元),你认为小亮的计算方法正确吗?如不正确,请你计算出这个平均价格. 23.(本题满分10分)如图,在△ABD 和△ACE 中,AB=AD ,AC=AE ,∠BAD =∠CAE ,连接BC 、DE 相交于点F ,BC 与AD 相交于点G . (1)求证:BC=DE ;(2)如果∠ABC=∠CBD ,那么线段FD 是线段FG 和FB 的比例中项吗?为什么?E 1②24.(本题满分10分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC ∥AD ,斜坡AB =40米,坡角∠BAD =600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)? 25.(本题满分10分)抛物线c bx x y ++-=2与x 轴交与(1,0)A ,(3,0)B -两点, (1)求该抛物线的解析式; (2)设(1)中的抛物线与y 轴交于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.26.(本题满分10分)如图,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD 、AD .(1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长.27.(本题满分12分)某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y (只)与生产时间x (分)的函数关系的图象如图所示。
根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只; (2)若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y (只)与生产时间x (分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.28.(本题满分12分)如图,点C 是半圆O 的半径OB 上的动点,作PC AB ⊥于C .点D 是半圆上位于PC 左侧的点,连结BD 交线段PC 于E ,且PD PE =.(1)求证:PD 是⊙O 的切线. (2)若⊙O的半径为PC =,设2OC x PD y ==,.①求y 关于x 的函数关系式. ②当x =tan B 的值.数学试题试卷答案一、选择题1、B2、C3、D4、B5、D6、D7、B8、D 二、填空题9、x ≤1 10、5411、4 12、80 13、72°14、22 15、2:516、60π 17、m >2且m ≠318、-2≧a >-3三、解答题 19、(-1)2013-(21)-2+16-cos60° =-1-4+4-21……………………………………………………………………………A…4分=-121………………………………………………………………………………8分 20、(a-1+1a 2+)÷(a 2+1)=1a 21-a 2++.1a 12+ (2)分 =1a 1+ ………………………………………………………………………………4分 =11-21+=22………………………………………………………………………………8分 21、 开始第一次 1 2 3第二次 2 3 1 3 1 2 …………………………………………3分∴结果有:(1,2)(1,3)(2,1)(2,3)(3,1)(3,2) ………………5分 P (两个号码之和等于5)=62=31………………………………………………8分 22、(1)180÷30%=600,600×15%=90; …………………………………………………………3分 补全条形统计图(图略) …………………………………………………………5分 (2)小亮的计算方法不正确. …………………………………………………………6分 正确计算为:10×30%+30×55%+50×15%=27(元). ……………………8分23、(1)证明: ∵∠BAD=∠CAE∴∠BAC=∠DAE ……………………………………………………1分 在△ABC 和 △ADE 中AB=AC∠BAC=∠DAE AC=AE∴△BAC ≌△DAE ……………………………………………………4分∴BC=DE ……………………………………………………5分(2)、FD是FG和FB的比例中项………………………………………………6分理由,由(1)知∠ABC=∠ADE∵∠ABC =∠CBD∴∠CBD=∠ADE又∵∠DFG=∠BFD∴△ DFG∽△BFD ………………………………………………9分∴FG:FD=FD:BF∴FD2=FG·FB ………………………………………………10分24、解:过点E作EF⊥AD,BG⊥AD,垂点分别为F、G …………………1分由题意知:Rt△ABG中∠BAG=60° AB=40m∴AG=20m BG=203m ………………………………………………4分Rt△EFA中∠1=90°∴EF=FA∴AF=EF=BG=203m ………………………………………………8分∴FG=BE=AF-AG=203-20 (m) ………………………………………………10分25、解(1)把A(1,0)B(-3,0)代入到0=-1+b+c ∴ b=-20=-9-3b+c c=3 ………………………………3分∴抛物线的解析式为y=-x2-2x+3………………………………………………5分(2)存在。
………………………………………………6分过B、C作直线BC与对称轴x=-1的焦点就是Q点,设直线BC解析式为y=kx+b,把B(-3,0)C(0,3)代入到0=-3k+b ∴ k=1 ∴y=x+3 ………………8分3=0+b b=3令XQ=-1 得YQ=2 ∴Q(-1,2) …………………………10分26、(1)证明:∵AB=BC︵︵∴AB=BC∴∠ADB=∠BDC ……………………………………………2分∴BD平分∠ADC ……………………………………………4分(2) 证明:∵AB=BC︵︵∴AB=BC∴∠CDB =∠BCA ∵∠CBE=∠DBC∴△ CBE ∽△DBC ………………………………………………7分 ∴BC BE =DB BC∵BE=3 ED=6 ∴BC 3=9BC ∴BC 2=27 BC=33∴AB=33 ………………………………………………10分 27、(1)甲:25只/分 ……………………………………………1分乙:150只 ……………………………………………2分(2)甲:y 甲=25x (0≤x ≤20) ………………………………3分乙:y 乙=15x (0≤x ≤10) ………………………………4分 设y 乙=kx+b ,把(10,150)(17,500)代入到 150=10k+b ∴ k=50 500=17k+b b=-350∴y 乙=50x-350(10≤x ≤17) ………………………………8分 (3)令y 甲= y 乙得 25x=50x-350 350=25xx=14 ………………………………10分 此时y 甲= y 乙=350只,还有150只未生产 …………12分 28、(1)证明:连DO ……………………………………………1分 ∵PC ⊥BA ∴∠PCB=90°∴∠3+∠4=90° ……………………………………………2分 又∵PD=PE OD=OB ∴∠1=∠2 ∠5=∠4 又∵∠2=∠3∴∠1+∠5=90° ……………………………………………3分 ∴∠PDO=90° ∴PD ⊥OD∴PD 是QO 切线 ……………………………………………4分 (2)①连接PO在Rt △PDO 中PD 2=y DC=43∴PO 2=y+(43)2=y+48 …………………………5分在Rt △PCO 中OC=x PC=83∴PO2=x2+(83)2=x2+192 …………………………6分∴y+48=x2+192∴y=x2+144 …………………………8分②当x=3时,y=147∴PD=147=73…………………………9分∴PE=PD=73…………………………10分∵PC=83∴EC=83-73=3。