《控制工程基础》考试知识点
控制工程基础-总复习

状态空间的建立
➢由微分方程建立 ➢由传递函数建立
微分方程不含有输入项的导数项
能控标准 型
能观标准型
0 0
.
x
1
0
y 0
a0 b0
a1
x
u
1
an1
0
1 x
状态空间的建立 微分方程含有输入项的导数项
1
bn b0
an1 a0
能控标准 型
n
an1
1
0
0 1
➢ 线性系统的稳定性取决于系统自身的固有特征
(结构、参数),与系统的输入信号无关。
线性定常系统
x Ax bu
y
cx
du
平衡状态 x e 0 渐近稳定的充要条件是矩阵
A的所有特征值均具有负实部。
系统输出稳定:如果系统对于有界输入u 所引起的输 出y是有界的,则称系统为输出稳定。
线性定常系统 (A,b,c) 输出稳定的充要条件是传函
交点 (2)由劳斯阵列求得(及kg相应的值);
8 走向 当 nm2,kg时 , 一些轨迹向右,则另一些将向左。
根轨迹上任一点处的kg:
9 kg计算
k g G 1 (s 1 ) 1 H 1 (s 1 )= 开 开 环 环 极 零 点 点 至 至 向 向 量 量 s s 长 长 度 度 的 的 乘 乘 积 积
控制工程基础总复习(1)
1 控制系统的基本结构 2 闭环控制与开环控制的区别 3 控制系统的时域模型(微分方程、状态方程) 4 传递函数与微分方程的关系 5 R-L-C电路的模型建立(微分方程、传递函数) 6 方框图、信号流图、梅森公式应用 7 状态空间的基本概念 8 状态空间表达式建立方法
控制工程基础总复习(2)
控制工程基础总复习课件

05 控制系统性能评 估与优化
控制系统性能评估方法
阶跃响应法
脉冲响应法
通过分析系统的阶跃响应曲线,评估系统 的稳定性和性能。阶跃响应曲线可以反映 系统的动态特性和稳态误差。
通过分析系统的脉冲响应曲线,评估系统 的动态特性和稳态误差。脉冲响应曲线可 以反映系统对单位脉冲输入的响应过程。
根据系统性能指标和控制器要求,对校正装置的参数进行设计,以 达到最优的控制效果。
校正装置稳定性分析
对校正装置进行稳定性分析,确保校正装置在各种工况下都能保持 稳定。
04 控制系统稳定性 分析
李雅普诺夫稳定性理论
定义
如果一个动态系统在初始条 件扰动下,其状态变量或输 出变量在无限时间范围内趋 于零或保持有限值,则称该
02 根据系统性能指标和被控对象特性,对控制器的参数
进行整定,以达到最优的控制效果。
控制器稳定性分析
03
对控制器进行稳定性分析,确保控制器在各种工况下
都能保持稳定。
校正装置设计
确定校正装置类型
根据系统性能指标和控制器要求,选择合适的校正装置类型,如 反馈控制器、超前校正器、滞后校正器等。
设计校正装置参数
系统是稳定的。
类型
根据初始条件扰动的大小, 李雅普诺夫将稳定性分为小
扰动稳定和大扰动稳定。
方法
李雅普诺夫第一方法和第二 方法,分别通过构造李雅普 诺夫函数来证明系统的稳定 性。
线性系统的稳定性分析
定义
线性控制系统是指系统的动态方程可表示为线性微分 方程或差分方程的形式。
类型
根据线性控制系统的特点,系统的稳定性可以分为平 凡稳定、指数稳定和非平凡稳定。
控制工程基础-第一章复习课

思考题
论述题
论述开环控制系统和闭环控制系统的优缺点,并举例 说明。
设计题
设计一个简单的温度控制系统,要求采用闭环控制方 式,并简要说明设计思路。
分析题
分析一个实际生产过程中控制系统存在的问题,并提 出改进方案。
THANKS
感谢观看
稳定性判据
劳斯判据
通过计算系统特征多项式的劳斯 表,判断特征根实部是否小于零, 从而判断系统的稳定性。
赫尔维茨判据
通过判断系统特征多项式的符号 变化,判断特征根实部是否小于 零,从而判断系统的稳定性。
乃奎斯特判据
通过绘制系统的乃奎斯特图,观 察曲线是否全部位于坐标轴的左 侧,从而判断系统的稳定性。
抗干扰性
系统对外部干扰的抑制能力。
控制系统优化方法
解析法
通过数学解析方法求解最优解,适用于简单 线性系统。
遗传算法
模拟生物进化过程的优化算法,适用于复杂 非线性系统。
梯度法
利用目标函数的梯度信息,迭代寻找最优解, 适用于多变量非线性系统。
模拟退火算法
模拟固体退火过程的优化算法,适用于解决 大规模优化问题。
控制系统的基本概念
01
控制系统是由控制器、受控对象 和反馈回路组成的闭环系统,用 于实现特定的控制目标。
02
控制系统的核心是反馈回路,它 通过比较实际输出与期望输出之 间的偏差,调整控制信号,以减 小偏差并实现稳定输出。
控制系统的分类
01
根据控制方式,控制系统可分为开环控制系统和闭环控制系统。
02
根据控制对象的特性,控制系统可分为线性控制系统和非线性
控制系统。
根据控制目标,控制系统可分为恒值控制系统、随动控制系统
控制工程基础应掌握的重要知识点

控制系统。
自动控制系统按系统线性特性分为线性系统与非线性系统。
自动控制系统按系统信号类型分为连续控制系统与离散控制系统。
对控制系统的根本要稳定性、准确性、快速性。
求机械系统与电路的微分程与传递函数
拉普拉斯变换:
拉普1 拉S1斯反t变换S12
1 2
t2
1 S3
sin
t
s2
2Hale Waihona Puke 拉普拉e斯atf变(t换) 解F微(s分 程a) f (t T) eTSF(s)
1
TS 积1 分环节
微1分环节 S
S
一阶微分环节 S 1
振荡环节
(
T2S2
1 2TS
1
一
S2
n2 2nS
n2
)
二阶微分环节 2S2 2S 1
传递函数框图的化简
.
v
.
.
.
控制工程根底应掌握的重要知识点 控制以测量反响为根底,控制的本质是检测偏差,纠正偏差。
自动控制系统的重要信号有输入信号、输出信号、反响信号、偏差信号等。
输入信号又称为输入量、给定量、控制量等。
自动控制按有无反响作用分为开环控制与闭环控制。
自动控制系统按给定量的运动规律分为恒值调节系统、程序控制系统与随动
cos
t
s2
s
2
传递函一一一数一一一是一 在零初始条, f件(n下) (t将) 微S分n程F(S作)拉普拉斯变换,进而运算而来,
传递函一一数一一一一与一 微分程是等f价(n的)(t, )传递FS函(Sn 数) 适合线性定常系统。 典型lti环m f节(t传) 递lsim函0 S数F(S:)
比例环节 K 惯性环节
控制工程基础课程考核知识点.

《控制工程基础》课程考核知识点:第1章绪论考核知识点:(一)机械工程控制的基本含义1.控制论与机械工程控制的关系;2.机械工程控制的研究对象。
(二)系统中信息、信息传递、反馈及反馈控制的概念1.系统信息的传递、反馈及反馈控制的概念;2.系统的含义及控制系统的分类。
第2章控制系统的数学模型考核点:(一)数学模型的概念1.数学模型的含义;2.线性系统含义及其最重要的特征——可以运用叠加原理;3.线性定常系统和线性时变系统的定义;4.非线性系统的定义及其线性化方法。
(二)系统微分方程的建立1.对于机械系统,运用达朗贝尔原理建立运动微分方程式;2对于电气系统运用克希霍夫电流定律和克希霍夫电压定律,建立微分方程式;3.简单液压系统微分方程式的建立。
(三)传递函数1.传递函数的定义;2.传递函数的主要特点:(1)传递函数反映系统本身的动态特性,只与本身参数和结构有关,与输入无关;(2)对于物理可实现系统,传递函数分母中S的阶数必不少于分子中S的阶次;(3)传递函数不说明系统的物理结构,不同的物理系统只要它们的动态特性相同,其传递函数相同;3.传递函数零点和极点的概念。
(四)方块图及系统的构成1.方块图的表示方法及其构成;2.系统的构成(1)串联环节的构成及计算;(2)并联环节的构成及计算;(3)反馈环节的构成及计算;3.方块图的简化法则(1)前向通道的传递函数保持不变;(2)各反馈回路的传递函数保持不变;4.画系统方块图及求传递函数步骤。
(五)机、电系统的传递函数1.各种典型机械网络传递函数的计算及表示方法;2.各种典型电网络及电气系统传递函数的计算及表示方法;3.加速度计传递函数计算;4.直流伺服电机驱动进给系统传递函数计算。
.第3章控制系统的时域分析考核知识点:(一)时间响应1.时间响应的概念;2.瞬态响应和稳态响应的定义。
(二)脉冲响应函数1.脉冲响应函数的定义;2.脉冲响应函数与传递函数的关系;3.如何利用脉冲响应函数求系统在任意输入下的响应。
控制工程基础应掌握的重要知识点

控制工程基础应掌握的重要知识点控制工程基础应掌握的重要知识点包括控制的本质、自动控制系统的重要信号、自动控制的分类、控制系统的基本要求等。
其中,控制的本质是检测偏差并纠正,自动控制系统的重要信号包括输入信号、输出信号、反馈信号、偏差信号等。
自动控制按有无反馈作用分为开环控制与闭环控制,按给定量的运动规律分为恒值调节系统、程序控制系统与随动控制系统,按系统线性特性分为线性系统与非线性系统,按系统信号类型分为连续控制系统与离散控制系统。
对控制系统的基本要求是稳定性、准确性、快速性。
求机械系统与电路的微分方程与传递函数可以使用拉普拉斯变换。
拉普拉斯变换可以将时域信号转换为复频域信号,常见的拉普拉斯变换公式包括单位阶跃信号、单位冲激信号、正弦信号、指数信号等。
在零初始条件下,可以使用拉普拉斯变换求解微分方程。
传递函数是在零初始条件下将微分方程作拉普拉斯变换,进而运算而来。
传递函数与微分方程是等价的,适合线性定常系统。
典型环节传递函数包括比例环节、惯性环节、积分环节、微分环节、一阶微分环节、二阶微分环节、振荡环节等。
传递函数框图的化简可以使用闭环传递函数、开环传递函数、误差传递函数等进行计算。
闭环传递函数是输出信号与输入信号间的传递函数,误差传递函数又称偏差传递函数,是偏差信号与输入信号间的传递函数。
系统的特征方程是令系统闭环传递函数分母等于零而得。
特征方程的根就是系统的极点。
最后一段文字中出现了格式错误和明显问题的段落,应该删除。
剩下的内容已经进行了小幅度改写,使其更加易读。
t)指系统在稳定状态下输出与期望输入之间的差值。
常用的稳态误差求法有以下两种:1.通过系统传递函数G(S)求出开环传递函数A(S),利用稳态误差公式e(t) = lim s→0 sE(S)/A(S)求出稳态误差。
其中E(S)为期望输入的拉氏变换,A(S)为开环传递函数的拉氏变换。
2.利用系统的单位阶跃响应c(t)求出系统的稳态误差。
控制工程基础应掌握的重要知识点

控制工程基础应掌握的重要知识点控制工程是一门研究控制系统及其应用的理论和方法的学科。
其核心任务是通过对被控对象以及环境的监测和测量,对系统进行控制和调节,以达到预期的控制效果。
以下是控制工程基础中应掌握的重要知识点:1.连续系统与离散系统:控制系统可以分为连续系统和离散系统。
连续系统是指系统变量是连续变化的,通常使用微分方程描述。
离散系统是指系统变量是离散变化的,通常使用差分方程描述。
掌握连续系统与离散系统的建模与分析方法是控制工程的基础。
2.传递函数与状态空间模型:传递函数描述了系统输入与输出之间的关系,是一个复频域函数。
状态空间模型则是通过描述系统的状态量对时间的导数来建模。
掌握传递函数的提取与描述以及状态空间模型的建立与分析方法是进行系统分析与控制设计的基础。
3.控制系统的基本性能指标:控制系统的基本性能指标包括稳定性、快速性、精确性和抗干扰性。
稳定性是系统在受到干扰或参数变化时保持状态有界的能力;快速性是系统输出快速收敛到期望值的能力;精确性是系统输出与期望值之间的偏差大小;抗干扰性是系统对干扰的敏感性。
掌握这些性能指标的衡量方法是控制系统设计的基础。
4.反馈控制原理:反馈控制是一种常用的控制方式,通过对系统输出进行测量并与期望输出进行比较,根据差值来修正输入以调节系统行为。
掌握反馈控制的原理,包括比例控制、积分控制和微分控制的组合应用是进行控制系统设计和分析的关键。
5.PID控制器:PID控制器是一种基于比例、积分和微分操作的控制器。
它能够通过调整三个参数来适应不同的系统需要,并具有较好的稳定性和快速性能。
掌握PID控制器的设计和调节方法是控制工程的重要内容。
6.控制系统的稳定性分析与设计:稳定性是控制系统的基本要求。
控制系统的稳定性分析包括对开环传递函数的极点位置、稳定裕量、相角裕量等指标的评估。
稳定性设计则是通过修改系统参数或者设计合适的控制器来保证系统的稳定性。
掌握稳定性分析与设计的方法是进行控制系统设计的重要基础。
控制工程基础知识点总结

控制工程基础知识点总结
嗨呀,今儿个咱就来好好唠唠这控制工程基础的知识点!
先来说说控制系统吧,就好比一辆汽车,发动机就是控制系统的核心呀。
比如说你开车的时候,踩油门让车速变快,这就是你给系统输入了一个信号,然后车子根据这个信号做出反应。
这不就跟控制系统一个道理嘛!
反馈控制也是超重要的呢!想象一下,你在射箭,你得不断根据箭的落点来调整自己的姿势和力度,这就是反馈呀。
就像在一个大工厂里,通过各种传感器收集信息,然后根据这些反馈来调整生产过程,让一切都在掌控之中!
还有开环控制,哎,这就像你闭着眼睛扔飞镖,可不知道扔得准不准。
在一些简单的情况下,开环控制就能搞定,但要是要求高一点,那还是得靠反馈控制呀。
稳定性呢,就跟盖房子一样,要是根基不稳,那房子不就摇摇欲坠啦?控制系统也得稳定,不然一会儿好一会儿坏的,可不得乱套嘛。
咱再聊聊系统的模型。
这可是个很关键的东西,就像给系统画了一幅画像。
通过模型,咱能更好地理解系统的行为。
比如说,研究一个电路系统,建立模型之后就能清楚知道电流电压咋变化的啦。
控制工程基础知识点那可真是多了去了,每一个都很重要嘞!咱可得好好掌握呀,这对咱以后搞工程、搞设计那可都是宝贝呀!哥们儿,你说是不是这么个理儿?咱可得把这些知识点都装进脑袋里,让咱在这控制工程的道路上越走越顺,越走越远呀!
我的观点结论就是:控制工程基础知识点无比重要,掌握了它们,我们才能在相关领域游刃有余!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《控制工程基础》考试知识点
一、控制工程基础考试的总体要求:
控制工程基础是以控制理论为基础,密切结合工程实际的—门专业基础课。
本课程主要内容包含相关的数学模型的建立、时域分析、频域分析、综合校正的基本理论及基本分析计算方法。
二、需掌握的课程基本内容和具体要求
(一)控制系统的基本概念
(1)控制的任务,被控制对象、输入量、输出量、扰动量的概念。
(2)开环控制系统、闭环控制系统及反馈的概念。
(3)控制系统的组成、分类、基本环节及对控制系统的基本要求。
(4)三种基本控制方式及特点。
(二)控制系统的数学模型
(1)数学模型概念。
简单机、电元件及系统列写微分方程式的方法。
(2)控制系统开环传递函数、闭环传递函数、误差传递函数的含义,控制系统的微分方程建立传递函数计算。
(3)传递函数的定义、性质、求法,典型环节的传递函数及瞬态(动态)特性。
(4)系统方框图描述及闭环传递函数推导。
系统结构图绘制方法及简化原则,串联、并联、反馈连接时传递函数的求法。
用结构图简化方法及梅逊公式,求系统的传递函数。
(三)控制系统时域分析
(1)定常系统时域性能分析的基本内容,典型输入信号和时域性能指标。
(2)时间响应概念
(3)—阶系统的瞬态响应。
(4)二阶系统的瞬态响应与性能指标。
(5)稳定性的概念,判别系统闭环稳定性的主要条件:劳斯稳定判据:稳态误差分析计算(误差定义、静态误差系数、动态误差系数):扰动误差:减小稳态误差方法。
(6)系统零、极点与系统瞬态响应的关系:
(7)系统的稳态误差:典型输入下的稳态误差、扰动输入下的稳态误差。
(四)控制系统的频域分析
(1)频率特性基本概念。
(2)频率特性的表示方法:极坐标图、对数频率特性图。
(3)典型环节(放大、积分、微分、惯性、—阶微分、二阶振荡环节)频率特性,系统开环频率特性曲线绘制方法。
(4)奈魁斯特稳定判据与对数频率稳定判据。
(5)开环系统与闭环系统的频率响应;控制系统的相对稳定性:相角裕量、幅值裕量定义及计算方法。
(6)时域性能指标与频域性能指标关系。
(五)用频率法综合控制系统
(1)校正的基本概念。
(2)系统综合的基本概念:超前校正,滞后校正,滞后—超前校正的特点及其对系统阶跃响应的影响。
参考书目:《机械工程控制基础》华中科技大学出版社杨叔子。