焊接结构的疲劳断裂
焊接结构疲劳性能

③应力集中达到一定程度高强钢≈低碳钢
4.2.5金属疲劳的分类
按载荷工况 工作环境
按研究对象
按失效周次
按受力状态
按载荷特征
材料疲劳
高周疲劳
单轴疲劳
恒幅疲劳
常规疲劳 高低温疲劳
பைடு நூலகம்
结构疲劳
低周疲劳
多轴疲劳
变幅疲劳
热疲劳 随机疲劳 热-机械疲劳 腐蚀疲劳 接触疲劳
材料疲劳:主要研究材料的失效机理,化学成分、微观组织、 环境和工况等对疲劳强度的影响,研究疲劳断口的宏观和微观 形貌等。 结构疲劳:以部件、接头以致整个结构为研究对象,研究它们 的疲劳性能、抗疲劳设计方法、寿命估算方法和疲劳试验方法, 形状、尺寸和工艺因素的影响以及提高疲劳强度的方。 高周疲劳:材料在低于其屈服强度的循环应力作用下,经 104~105以上循环产生的失效。(弹簧、传动轴等)
飞机疲劳事故
2010年11月29日,阿根廷 举行飞机表演现场,金属 疲劳造成机翼断裂,如图 中左机翼。
疲劳断裂安全隐患
铁道部大举召回动车原因:轮 对发现裂纹 轮对是机车与钢轨相接触 的部分,由左右两个车轮压装 在同一根车轴上组成,其作用 是保证机车车辆在钢轨上的运 行和转向,承受来自机车车辆 的全部静、动载荷,把它传递 给钢轨,并将因线路不平顺产 生的载荷传递给机车车辆各零 部件,使容易发生机械疲劳, 存在安全隐患。
焊接结构疲劳性能
4.1.1 焊接结构疲劳断裂事故多发的原因
①承受动载的焊接结构越来越多,承受的载荷越来越大 ,而焊接结构并没有严格按照疲劳设计规范进行设计; ②虽然焊接接头静载承受能力一般与母材相当,但承受 疲劳载荷能力与母材相比较差,没有引起设计者、制造 者、使用者的足够认识。
焊接结构的疲劳断裂

劳极限”,
钢材旳疲劳强度与抗拉强度之间旳关系: σ-1 = (0.45~0.55)σb 条件疲劳极限:
钢材旳循环次数一般取 N = 107 有色金属旳循环次数一般取 N = 108
陶瓷、高分子材料-疲劳抗力很低; 金属材料-疲劳强度较高; 纤维增强复合材料-很好旳抗疲劳性能。
四、疲劳断裂旳类型
最大应力 σmax 最小应力 σmin 幅应力 σa 平均应力 σm 应力比 r
a
max
min 2
m
max
min 2
r min max
1、变动载荷 大小、方向或者大小和方向均随时间而变化。
变化分为周期性,无规则性。相相应旳应力,称为变动
应力。
2、循环应力 循环应力旳波形一般近似为正弦波、矩形波和三角形波
等。
(1)循环应力旳描叙 平均应力 σm=1/2(σmax+σmin) 应力幅 σa=1/2(σmax-σmin) 应力比 γ=σmin/σmax (2)循环应力旳种类(See Fig 5-2/P108)
对称交变;脉动;波动;不对称交变应力。
反复作用旳荷载值不随时间变化,则 在全部应力循环内旳应力幅将保持常量, 称为常幅疲劳。
疲劳断裂是损伤旳积累,它旳早期现象 是在零件表面或表层形成微裂纹,这种微 裂纹伴随应力循环次数旳增长而逐渐扩展, 直至余下旳未裂开旳截面积不足以承受外 荷载时,零件就忽然断裂。
疲劳断口旳特征
疲劳断口
疲劳源
(a)
图8-8 疲劳断口
(b)
(a)疲劳断口宏观形貌 (b)疲劳条纹旳微观图象
1、疲劳源 裂纹旳萌生地;裂纹处于亚稳扩展过程中。 因为应力交变,断面摩擦而光亮。 加工硬化。 随应力状态及其大小旳不同,可有一种或几种疲劳源。
焊接结构的疲劳破坏

焊接结构
材料:LD7铝合金 工艺情况:工作温度为 50~270℃(进口低,出口高) 组织说明:疲劳条带形貌,条 带间距细密,应为高周疲劳断 裂特征
5.1.3 疲劳破坏的分类
• 1) 应力疲劳(高周疲劳) 在低应力、高循环、低扩展速率下产生的疲劳称
为应力疲劳或弹性疲劳。 其特点是:在应力循环条件下,裂纹在弹性区内
OC线与横轴的夹角α=45°, tgα= 1. • 相应于应力循环特性为r的情况,只需作一条与横坐标轴
夹角为α的射线,其交于曲线ACB上的交点D 的 坐标之和:
σa(D)+σm (D) = σr(D)
焊接结构
用σmax—σmin表示的疲劳图
焊接结构
σmax—σmin 疲劳图的解释
• 由原点0发出的每条射线代表一种循环特性: • 如原点向左与横坐标成45°的直线
扩展,且裂纹扩展速率低;循环寿命长,达106~7次. 2) 应变疲劳(低周疲劳) 在高应力、低循环、高扩展速率下产生的疲劳称为应变疲劳或塑性 疲劳。 其特点是:应变幅值很高,最大应变接近屈服应变,故疲劳裂纹扩展 速率高(10-2mm/次,循环寿命短(N<104次)。
焊接结构
6.1.4 疲劳强度和疲劳极限
40%、49%、51%和100%。 可见,正确选择正面焊缝的焊角比例至关重要!
焊接结构
• 特别指出: 采用所谓“加强盖板”的对接接头绝对是不合理的接
头形式。 试验结果表明: 加盖板后的对接接头,疲劳强度只达到原对接接头疲
劳强度的一半!
原则上,应避免采用搭接接头! 若必须采用正搭接接头时,要保证焊缝比例大于1:2, 最好对焊缝表面的焊趾处进行机械加工,使其母材平滑过 渡。
=2σmax/(σmax+σmin) =2/ (1+r) 已知r,求出α,作过原点的射线与曲线NN’C 的交点的纵坐标,即为σr!
焊接结构疲劳失效的原因及改善工艺措施总结

焊接结构疲劳失效的原因及改善工艺措施总结1焊接结构疲劳失效的原因焊接结构疲劳失效的原因主要有以下几个方面:①客观上讲,焊接接头的静载承受能力一般并不低于母材,而承受交变动载荷时,其承受能力却远低于母材,而且与焊接接头类型和焊接结构形式有密切的关系。
这是引起一些结构因焊接接头的疲劳而过早失效的一个主要的因素;②早期的焊接结构设计以静载强度设计为主,没有考虑抗疲劳设计,或者是焊接结构疲劳设计规范并不完善,以至于出现了许多现在看来设计不合理的焊接接头;③工程设计技术人员对焊接结构抗疲劳性能的特点了解不够,所设计的焊接结构往往照搬其它金属结构的疲劳设计准那么与结构形式;④焊接结构日益广泛,而在设计和制造过程中人为盲目追求结构的低本钱、轻量化,导致焊接结构的设计载荷越来越大;⑤焊接结构有往高速重载方向开展的趋势,对焊接结构承受动载能力的要求越来越高,而对焊接结构疲劳强度方面的科研水平相对滞后。
2焊接结构疲劳失效的要素2.1静载强度对焊接结构疲劳强度的影响在钢铁材料的研究中,人们总是希望材料具有较高的比强度,即以较轻的自身重量去承当较大的负载重量,因为相同重量的结构可以具有极大的承载能力;或是同样的承载能力可以减轻自身的重量。
所以高强钢应运而生,也具有较高的疲劳强度,基本金属的疲劳强度总是随着静载强度的增加而提高。
但是对于焊接结构来说,情况就不一样了,因为焊接接头的疲劳强度与母材静强度、焊缝金属静强度、热影响区的组织性能以及焊缝金属强度匹配没有多大的关系,也就是说只要焊接接头的细节一样,高强钢和低碳钢的疲劳强度是一样的,具有同样的S-N曲线,这个规律适合对接接头、角接接头和焊接梁等各种接头型式。
Maddox研究了屈服点在386-636MPa之间的碳锦钢和用6种焊条施焊的焊缝金属和热影响区的疲劳裂纹扩展情况,结果说明:材料的力学性能对裂纹扩展速率有一定影响,但影响并不大。
在设计承受交变载荷的焊接结构时,试图通过选用较高强度的钢种来满足工程需要是没有意义的。
疲劳断裂的断口特征

疲劳断裂的断口特征疲劳断裂是指材料在反复加载下发生的断裂现象,通常发生在金属材料中。
与静态加载下的断裂不同,疲劳断裂的断口特征具有一些独特的特点。
本文将详细介绍疲劳断裂的断口特征。
1.断口形态:疲劳断裂的断口通常呈现出平面状的特点。
与静态断裂相比,疲劳断裂的断口形态更为平整,几乎没有韧突。
这是因为在疲劳断裂发生时,材料受到反复加载,导致断裂表面的塑性变形局部消失,使断口面显得平滑。
2.断口特征:疲劳断裂的断口通常呈现出沿着材料加载方向的特征。
即在金属材料的拉伸方向上会出现沿着材料加载方向延展的沟槽状断裂面。
这是因为在疲劳断裂过程中,裂纹的扩展方向通常与应力主轴方向(加载方向)垂直。
断口上也常见到横向的细小裂纹。
3.层状纹理:疲劳断裂的断口表面常常呈现出层状纹理。
这是由于疲劳断裂过程中,材料内部的裂纹扩展速度会与外部加载频率一致,导致断口形成沿裂纹扩展方向的“疲劳纹”或称为“疲劳条纹”。
这些纹理一般与材料的晶粒方向垂直,并且逐渐扩展进入材料内部。
4.波纹状断口:疲劳断裂的断口表面通常呈现出波纹状的特征。
这是由于裂纹在扩展过程中会遇到不同的晶粒,在晶粒界面处会发生细小的局部塑性形变,导致断口表面呈现出波浪状。
5. 轭型断口:在一些情况下,疲劳断裂的断口会呈现出轭型(chevron)的特征。
轭型断口是指裂纹扩展迅速并呈现出V字形的形状,类似于牛轭。
这种断口形态通常出现在晶粒细小且均匀的材料中,例如高强度钢。
6.焊缝位置:在焊接结构中,疲劳断裂通常在焊缝附近发生。
这是由于焊接过程中引入了应力集中、晶界腐蚀等因素,导致焊缝附近的材料更容易发生疲劳断裂。
总之,疲劳断裂的断口特征包括平面状的断口形态、沿加载方向的断口特征、层状纹理、波纹状断口、轭型断口等。
这些断口特征能够帮助工程师分析疲劳断裂的原因,并采取相应的措施预防疲劳断裂的发生。
疲劳断裂-总结..

第三部分疲劳断裂疲劳断裂是金属结构失效的一种主要型式,典型焊接结构疲劳破坏事例表明疲劳断裂几率高,具有广泛研究意义。
疲劳破坏发生在承受交变或波动应变的构件中,一般说来,其最大应力低于材料抗拉强度,甚至低于材料的屈服点,因此断裂往往是无明显塑性变形的低应力断裂。
疲劳断裂过程的研究表明,疲劳寿命不是决定于裂纹产生,而是决定于裂纹增大和扩展。
因此,本章将在介绍疲劳断裂的基本特征和基本概念基础上,利用断裂力学原理着重分析疲劳裂纹的扩展机理、规律、影响因素及疲劳寿命估算。
§3-1疲劳的基本概念在交变载荷作用下,金属结构产生的破坏现象称为疲劳破坏。
为防止结构在工作时发生疲劳破坏传统疲劳设计采用σ―N曲线法确定疲劳强度。
一、应力疲劳和应变疲劳1、应力疲劳在低应力、高循环、低扩展速率的疲劳称为应力疲劳,也叫弹性疲劳。
七特点是在应力循环条件下,裂纹在弹性区内扩展,且裂纹扩展速率低。
2、应变疲劳在高应力、低循环、高扩展速率下的疲劳称为应变疲劳,也叫塑性疲劳。
其特点是应变幅值很高,最大应变接近屈服应变,故疲劳裂纹扩展速率高(达每次循环10-2mm),寿命短(小于104周)。
二、疲劳强度和疲劳极限1、乌勒(Wöhler)疲劳曲线(1)结构在多次循环载荷作用下,在工作应力σ(σmax)小于强度极限σb时即破坏,在不同载荷下使结构破坏所需的加载次数N也不同,表达结构破坏载荷σ和所需加载次数N之间的关系(σ―N)即为乌勒(Wöhler)疲劳曲线。
(2)疲劳曲线在加载次数N很大时趋于水平,若以σ―lgN表示则为两段直线关系(3)图示(略)2、疲劳强度(条件疲劳极限)(1)疲劳曲线上对应于某一循环次数N的强度极限σ即为该循环下的疲劳强度(σr)(2)σr =f(N)σr对应σmax,一般N<1073、疲劳极限(1)结构对应于无限次应力循环而不破坏的强度极限即疲劳极限(2)为σ―lgN疲劳图中的水平渐近线三、应力循环特性1、应力循环中各参数及应力循环特性系数① σmax ―应力循环中最大应力值,σmax=σm+σa ② σmin ―应力循环中最小应力值,σmin=σm-σa ③ σm=(σmax+σmin )/2--应力循环中平均应力值 ④ σa=(σmax-σmin )/2―应力循环中应力振幅 ⑤ r=σmin/σmax ―应力循环中应力循环特性系数 2、特殊循环特性(1) 对称交变载荷,r=-1,疲劳强度σ-1 (2) 脉动载荷,r=0,疲劳强度σ0(3) 拉伸变载荷,0<r<1,疲劳强度σr拉伸变载荷σmin 和σmax 均为拉应力,但大小不等,0<γ<1,其疲劳强度用σr ,脚标γ用相应的特性系数表示。
焊接容易疲劳断裂分析

焊接容易疲劳断裂分析悬臂梁焊接件从底部断裂,从外观看,断裂位于底板的中间位置,靠近焊缝,断口呈纤维状,暗灰色,没有塑性变形,属于脆性断裂。
初步分析1、从零件结构看,断裂位置位于零件的几何受力中心,此处受到的力矩最大,容易产生开裂。
2、断裂位置靠近焊缝,属于过热区(宽度约1~3mm);焊接时,它的温度在固相线至1100℃之间,该区域内奥氏体晶粒严重长大,冷却后得到晶粒粗大的过热组织,塑性和韧度明显下降,容易产生开裂。
3、零件在使用过程中,长期受到变化的外力作用,容易产生疲劳断裂。
<1>疲劳断裂是指金属件在变动应力和应变长期作用下,由于累积损伤而引起的断裂。
<2>疲劳断裂起源于引起应力集中的微裂纹,并沿特定的晶面扩展、劈开,最终形成宏观上的裂纹。
这些特定的晶面称为解理面。
<3>Q235属于金属,微观上,晶胞与晶胞之间都会有,间距较大、键结合较弱而易于开裂的低指数面(解理面)。
<4>当外力作用下,晶粒内的位错沿滑移面运动,滑移面不平行时,在交叉位置会形成位错塞积,造成应力集中,如不能通过其他方式松弛,就会在易于开裂的低指数面形成初裂纹。
<5>初裂纹很容易在晶粒内部扩展至晶界,造成晶界附近产生很大的应力集中,使相邻晶粒形成新的裂纹源。
<6>当应力足够大的时候,裂纹突破晶界的阻碍,迅速扩展,形成宏观上的金属裂纹。
<7>当合金(Q235也属于合金,铁碳合金)沿晶界析出连续或不连续的脆性相时,或者是当偏析或杂质弱化晶界时,裂纹可能沿晶界扩展,造成沿晶界断裂。
<8>疲劳断裂,断裂前既无宏观塑性变形,又没有其他征兆,并且一断裂后,裂纹扩展迅速,造成整体断裂或很大的裂口。
焊接结构疲劳强度

焊接结构疲劳强度焊接是一种常见的金属连接方法,但焊接接头在使用过程中容易受到疲劳破坏。
焊接结构的疲劳强度是指焊接接头在受到交变载荷作用下能够承受的最大循环载荷次数。
疲劳强度的评估对于焊接结构的设计和使用至关重要。
本文将介绍焊接结构的疲劳破坏机制、影响疲劳强度的因素以及提高焊接接头疲劳强度的方法。
焊接结构的疲劳破坏机制主要包括以下几种:1.脆性断裂:焊接接头容易出现脆性断裂,主要是由于焊接过程中,焊缝和周边热影响区的组织发生变化,使其变得脆性,降低了焊接接头的疲劳强度。
2.裂纹扩展:焊接接头中存在的焊接缺陷(如气孔、夹杂等)是裂纹扩展的起始点。
在交替加载下,焊接接头中的裂纹会逐渐扩展,最终导致疲劳破坏。
影响焊接结构疲劳强度的因素主要包括以下几个方面:1.焊接材料选择:焊接材料的强度和塑性对焊接接头的疲劳强度有着重要影响。
通常情况下,焊接接头的强度应大于被焊接材料的强度,以保证焊接接头的疲劳寿命。
2.焊接工艺参数:焊接过程中的工艺参数(如焊接电流、焊接速度等)会对焊接接头的组织结构和性能产生影响,进而影响焊接接头的疲劳强度。
3.焊接接头形状和几何尺寸:焊接接头的形状和几何尺寸也会影响其疲劳强度。
一般来说,焊接接头的强度随着接头厚度的增加而增加,但是当厚度过大时,会导致应力集中,从而降低疲劳强度。
提高焊接接头疲劳强度的方法主要包括以下几个方面:1.选择合适的焊接方法:不同的焊接方法对焊接接头的疲劳强度有着重要影响。
例如,自动化焊接方法相对于手工焊接方法具有更高的焊接质量和疲劳强度。
2.进行焊接前的准备工作:在焊接前,需要对焊接接头进行彻底的清洁和表面处理,以减少焊接缺陷的产生。
3.优化焊接工艺参数:通过调整焊接的工艺参数,可以改善焊接接头的疲劳强度。
例如,适当增大焊接电流和焊接速度,可以减少焊缝内的局部熔化区,从而提高焊接接头的强度。
4.对焊接接头进行后处理:通过对焊接接头进行热处理或应力释放,可以改善焊接接头的组织结构和性能,提高其疲劳强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、、接触疲劳 1、基本概念 对偶件(如轴承、齿轮等)在交变接触压应力 长期作用下,而在材料表面产生的疲劳损伤。 形貌:点蚀,浅层剥落和深层剥落。 (轴承、齿轮表面、钢轨等) 接触疲劳曲线两种 σ接~N,σ接~1/N。 2、接触应力(赫兹应力) 两物体接触,表面上产生局部的压应力,称为 接触应力。 接触处的接触应力为三向压应力。
2、热应力的产生 外部约束 不让材料自由膨胀; 内部约束 温度梯度,相互约束,产生热应力。 热应变 导致裂纹的萌生,扩展。 3、衡量标准 一定温度幅,产生一定尺寸疲劳裂纹的循环次 数。 4、提高热疲劳寿命的途径 材料 减小热膨胀系数,提高λ,均匀性, 高温强度。 工件状况 减小应力集中。 使用 减小热冲击。
t
a
T
m 0
2.脉动循环:
r
min 0 max
m a
t
a m max
2
min 1 max
3.静循环:
t
r
a 0
五、稳定交变应力:循环特征及周期不变。
交变载荷:载荷大小和方向 随时间发生周期变化的载 荷。 疲劳断裂:零件在交变载荷 下经过长时间工作而发生 断裂的现象成为疲劳断裂。 最大应力 σmax 最小应力 σmin 幅应力 σa 平均应力 σm 应力比 r
Chapter 5 焊接结构的疲劳断裂
本章内容:1.焊接结构疲劳失效的分类及危害 2.焊接疲劳断裂的特征 3.焊接结构疲劳的原因及影响因素 4.焊接结构疲劳的防治措施
疲劳断裂是金属结构失效的一种主要形式。 大量统计资料表明,由于疲劳而失效的金属结构, 约占失效结构的90%。 疲劳断裂和脆性断裂从性质到形式都不一样。 两者比较,断裂时的变形都很小,但疲劳需要多 次加载,而脆性断裂一般不需要多次加载;结构 脆断是瞬时完成的,而疲劳裂纹的扩展则是缓慢 的,有时需要长达数年时间。 此外,脆断受温度的影响特别显著,随着温 度的降低,脆断的危险性迅速增加,但疲劳强度 却受温度的影响比较小。
max
= 0
max
=
min
=1
min
图2 常幅应力循环的谱
(a)完全对称循环
(b)脉冲循环
(c)不完全对称循环
(d)不完全对称循环
图3 变幅应力循环的谱
反复荷载引起的应力循环形式有同号应 力循环和异号应力循环两种类型。 循环中绝对值最小的峰值应力与绝对值 最大的峰值之比称为应力循环特征值,当 为拉应力时,或取正号;当为压应力时, 或取负号。
3、接触疲劳破坏方式 (1)麻点剥落 局部塑性变形,产生裂纹、扩展(滑移带开裂) 润滑剂气蚀(高压冲击波) 剥落下一块金属而形成一凹坑 (2)浅层剥落 最大切应力处,塑化变形最剧烈,非金属夹杂 物附近萌生裂纹。 表层、次表层产生了加工硬化。 (3)深层剥落 过渡区是薄弱区,萌生裂纹,先平行于表面扩 展,后垂直于表面扩展,最后形成大的剥落坑。
4.疲劳断裂的类型 1、低周疲劳。由反复塑性变形所造成的破坏称为 低周疲劳。低周疲劳的循环应力很高,接近或超 过材料的屈服点,在每次循环中,材料都产生一 定的塑性变形,在这种情况下,加载时的频率不 可能很高,一般为0.2-0.5HZ,断裂周次很低,在 104-105次以下。 例如,锅炉及压力容器的每一次升压“降压便产 生了一次塑性变形循环,在使用期间这种反复塑 性变形循环的积累,就可能造就其低周疲劳破坏。
五、载荷的概念
所谓静荷载是指由零缓慢地增加到某一定值后保持不 变或变动很小的荷载。构件受静荷载作用时,体内各点没 有加速度,或加速度很小可忽略不计,此时构件处于静止 或匀速直线运动的平衡状态。 在静荷载作用下,构件中产生的应力称为静应力。 相反,若构件在荷载作用下,体内各点有明显的加速度, 或者荷载随时间有显著的变化,这类荷载称为动荷载。 交变应力 工程中的某些构件工作时,其力往往随时间作周期性变化, 这种应力称为交变应力。
min r 1 max m 0
火车轴(弯曲) 曲轴(扭转)
r
0
m
max max
2
0
r
min
0 2
0
r0
0 r 1
m
min
m m 0 m0
连杆 连杆 缸盖螺钉
齿轮齿根
(弯曲)
球轴承
(压缩) (小拉大压) (小拉大压) (大拉小拉)
一、疲劳断裂示例
1、疲劳断裂的示例: 疲劳事故最早发生在 19 世纪初期。疲劳一般 从应力集中开始,而焊接结构的疲劳又往往是从 焊接接头处产生,下图 是几个典型的焊接结构疲 劳断裂事例。
下图为直升飞机起落架的疲劳断裂图, 裂纹是从应力集中很高的角接板尖端开始, 该机飞行着陆2118次后发生破坏,属于低 周疲劳。
反复作用的荷载值不随时间变化,则 在所有应力循环内的应力幅将保持常量, 称为常幅疲劳。 若反复荷载作用下,应力循环内的应 力随时间随机变化,则称为变幅疲劳。其 循环应力谱如图2和图3所示。
min
= -1
max
min
<0
max
max
< 0
max
>0
min
min
结构在交变应力作用下的破坏,称为疲劳破坏。
六、疲劳破坏的特点及特征
疲劳破坏的特点 (1) 交变应力下材料发生破坏时的最大应力,一般低于 静荷载作用的强度极限,有时甚至低于屈服极限(低应力 破坏 (2) 无论是脆性材料还是塑性材料,在交变应力作用下, 均表现为脆性断裂,没有明显的塑性变形 (3) 材料发生破坏时,交变应力的循环次数与应力的大 小有关,应力越大,循环次数越少 (4) 断裂面上有裂纹的起源点和两个明显不同的区域, 即光滑区域和粗糙区域,如图所示。
下图水压机疲劳断裂事例,很明显,疲 劳裂纹是从设计不良的焊接接头的应力集 中点产生的。
焊接结构较其它结构(如铆接结构)更 容易产生疲劳断裂,这是因为: 1)铆接结构的疲劳裂纹发展遇到钉孔或板 层间隔会受阻,焊接结构由于其整体性, 一旦产生裂纹,裂纹扩展不受阻止,直至 整个构件断裂。 2)焊接连接不可避免地存在着产生应力集 中的夹渣、气孔、咬边等缺陷。 3)焊缝区存在着很大的残余拉应力。
钢材的疲劳强度与抗拉强度之间的关系: σ-1 = (0.45~0.55)σb 条件疲劳极限:
钢材的循环次数一般取 N = 107 有色金属的循环次数一般取 N = 108
陶瓷、高分子材料-疲劳抗力很低; 金属材料-疲劳强度较高; 纤维增强复合材料-较好的抗疲劳性能。
四、疲劳断裂的类型
低周疲劳的特点 1、局部产生宏观变形,应力与应变之间 呈非线性。 2、裂纹成核期短,有多个裂纹源。 3、断口呈韧窝状、轮胎花样状。 4、疲劳寿命取决于塑性应变幅。
多数零件按疲劳极限进行设计; 有些零件承受的交变应力远高于疲劳 极限,用过载持久值进行设计。 低周疲劳 N<105; 高周疲劳 N>105
3.疲劳极限 金属材料可经无限次应力循环而不破坏的最大应力
值称为材料的疲劳极限(强度)。它反映材料抗疲劳断裂 的能力,在一定条件下,当应力的最大值低于某一定值时, 材料可能经受无限次循环仍然不会发生疲劳断裂。这个最 大应力值,就叫金属材料的疲劳强度。 循环应力只要不超过某个“最大限度”,构件就可以 经历无数次循环而不发生疲劳破坏,这个限度值称为“疲 劳极限”,
最后断裂区
随着裂纹的扩展,有效承载面积减小, 应力增加,当应力超过材料的断裂强度时, 即发生快速断裂。 此区同静载脆断断口,呈放射状。
疲劳源区和疲劳裂纹扩展区的微观形貌
一个疲 劳源 疲 劳 源 区
疲劳 条纹
疲 劳 裂 纹 扩 展 区 微裂纹
两个疲 劳源
断口特征
七、疲劳断裂的过程及机理
疲劳破坏的过程及机理 构件的疲劳破坏,实质上是裂纹的产生、 扩展和最后断裂的全过程。 三个阶段组成:1)在应力集中处产生初始 疲劳裂纹; 2)裂纹稳定扩展; 3)结构断裂。 疲劳破坏是积累损伤的结果。缺陷→微观 裂纹→宏观裂纹。
二、疲劳断裂概念
2.疲劳破坏的概念 钢材在连续反复荷载作用下,其应力虽 然没有达到抗拉强度,甚至还低于屈服强 度时,也可能发生突然破坏,这种现象称 为疲劳破坏。钢材在疲劳破坏之前,没有 明显的变形,是一种突然发生的脆性断裂, 所以疲劳破坏属于反复荷载作用下的脆性 破坏。
P P
PP
折铁丝
三、疲劳极限
最大应力和最小应力符号相反而其绝对值 相等,即p=-1(图1a),称为对称循环。 当最大应力为拉应力而最小应力为零时, (图19-5c),称为脉冲循环。
例如齿轮上任一齿的齿根处A点的应力(图 (a)),在传动过程中,轴每转一周该齿啮 合一次,A点的弯曲正应力就由零变到最大 值,然后再回到零。齿轮不停地转动,应 力就不断地作周期性变化,如图(b)所示。
( 疲劳过程:裂纹萌生、亚稳护展、失稳 扩展、断裂。) 一、裂纹萌生及机理 常将0.05~0.1mm的裂纹定为疲劳裂纹核。 引起裂纹萌生的原因:应力集中、不均 匀塑性形变。 方式为:表面滑移带开裂;晶界或其他 界面开裂。
疲劳断裂是损伤的积累,它的初期现象 是在零件表面或表层形成微裂纹,这种微 裂纹随着应力循环次数的增加而逐渐扩展, 直至余下的未裂开的截面积不足以承受外 荷载时,零件就突然断裂。
疲劳断口的特征
疲劳断口
疲劳源
Байду номын сангаас( a)
(b)
图8-8 疲劳断口
(a)疲劳断口宏观形貌 (b)疲劳条纹的微观图象
1、疲劳源 裂纹的萌生地;裂纹处在亚稳扩展过程中。 由于应力交变,断面摩擦而光亮。 加工硬化。 随应力状态及其大小的不同,可有一个或几个疲劳源。 2、疲劳区(贝纹区) 断面比较光滑,并分布有贝纹线。 循环应力低,材料韧性好,疲劳区大,贝纹线细、明显。 有时在疲劳区的后部,还可看到沿扩展方向的疲劳台阶 (高应力作用)。 3、瞬断区 一般在疲劳源的对侧。 脆性材料为结晶状断口;韧性材料有放射状纹理;边缘 为剪切唇。 返回