初中数学八年级下册期中测试(第二套)题

合集下载

(某某市县区中学)初中八年级数学下册第二学期期中阶段性考试试题卷(含答案详解)

(某某市县区中学)初中八年级数学下册第二学期期中阶段性考试试题卷(含答案详解)

(某某市县区中学)初中八年级数学下册第二学期期中阶段性考试试题卷(含答案详解)满分:150分 时间:120分钟一、单选题。

(每小题4分,共40分)1.不等式x -1≤1的解集在数轴上表示正确的是( )A. B.C. D.2.下列等式从左边到右边的变形中,属于因式分解的是( )A.(a+b )(a -b )=a 2-b 2B.4m 2+4m+1=(2m+1)2C.x 2+3x -1=x (x+3)-1D.a 2+1=a (a+1a )3.观察下列图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.若m >n ,则下列结论错误的是( )A.m+2>n+2B.m -2>n -2C.2m >2nD.m﹣2>n﹣25.将点P (1,4)先向上平移2个单位,再向左平移3个单位,得到点P 的对应点P’的坐标是( )A.(﹣2,6)B.(4,6)C.(﹣2,2)D.(4,2) 6.化简4x 2-4+1x+2的结果是( )A.1x -2B.x -2C.2x+2 D.2x -27.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB ∥CD ,AB=CDB.AB ∥CD ,AD=BCC.AB ∥CD ,AD ∥BCD.AB ∥CD ,∠A=∠C 8.如图,若一次函数y=kx+b 的图象经过点A (0,﹣1),B (1,1),则不等式kx+b <1的解集是( )A.x>1B.x<1C.x>0D.x<09.如图,在平行四边形ABCD中,∠BCD的平分线交BA的延长线于点E,若AB=5,AD=8,则AE的长为()A.5B.4C.3D.2(第8题图)(第9题图)(第10题图)10.如图,平行四边形ABCD中,AB=8,AD=6,∠A=60°,E是边AD上且AE=2DE,F是边AB上的一个动点,将线段EF绕点E逆时针旋转60°,得到EG,连接BG、CG,则BG+CG的最小值是()A.2√21B.2√14C.2√7D.10二.填空题。

八年级下学期数学期中考试试卷含答案(共5套,人教版)

八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。

人教版数学八年级下学期期中测试卷二(含答案及解析)

人教版数学八年级下学期期中测试卷二(含答案及解析)

人教版数学八年级下学期期中测试卷二一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.22.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥23.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =24.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=255.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2B.C.2D.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.58.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=.12.(3 分)若a=2+,b=2﹣,则ab 的值为.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为.15.(3 分)如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD 的面积为.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA=CB,CE=CD,△ABC 的顶点A 在△ECD 的斜边上,若AE=,AD=,则AC 的长为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.(8 分)计算:(I)(+ )+(﹣);(II)2 ×÷5 .18.(8 分)已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.19.(10 分)已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.20.(12 分)如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.21.(10 分)如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.22.(12 分)在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.23.(12 分)如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).人教版数学八年级下学期期中测试卷二参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:=5.故选:B.2.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x 的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.3.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =2【分析】先把各个二次根式化成最简二次根式再合并判断即可.【解答】解:A、,错误,不符合题意;B、,错误,不符合题意;C、,正确,符合题意;D、,错误,不符合题意;故选:C.4.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=25【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、12+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.5.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【分析】根据特殊四边形的判定定理进行判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线互相垂直的四边形是菱形,还可能是梯形,错误;D、对角线互相垂直平分的四边形是菱形,错误;故选:A.6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2 B.C.2 D.【分析】根据题意,可以得到AC 和BC 的长,然后利用勾股定理,即可得到AB 的长,本题得以解决.【解答】解:作BC∥x 轴,作AC∥y 轴交BC 于点C,∵点A(﹣4,4),点B(﹣3,1),∴AC=3,BC=1,∵∠ACB=90°,∴AB==,故选:B.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.5【分析】正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短,根据勾股定理可求出路径长,【解答】解:如图,它运动的最短路程AB==,故选:C.8.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形【分析】根据勾股定理得出a2+b2=c2(设 c 为最长边),再逐个判断即可.【解答】解:∴a,b,c 为直角三角形的三边,设c 为最长边,∴a2+b2=c2,A.∵a2+b2=c2,∴4a2+4b2=4c2,即(2a)2+(2b)2=(2c)2,∴以2a,2b,2c 为边能组成直角三角形,故本选项不符合题意;B.∵a2+b2=c2,∴100a2+100b2=100c2,即(10a)2+(10b)2=(10c)2,∴以10a,10b,10c 为边能组成直角三角形,故本选项不符合题意;C.∵a2+b2=c2,∴a2+ b2=c2,即()2+()2=()2,∴以,,为边能组成直角三角形,故本选项不符合题意;D.∵()2+()2≠()2,∴以,,为边不能组成直角三角形,故本选项符合题意;故选:D.9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°【分析】作AE⊥BC 于点E.根据面积的关系可以得到AB=2AE,进而可得∠ABE=30°,再根据平行四边形的性质即可求解.【解答】解:如图,作AE⊥BC 于点E.∵矩形的面积=BC•CF=2S=2BC•AE,平行四边形ABCD∴CF=2AE,∴AB=2AE,∴∠ABE=30°,∵AB∥CD,∴∠BCD=180°﹣∠ABE=150°.故选:D.10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.【分析】连接HF,直线HF 与AD 交于点P,根据正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD 的面积为24x2,进而求出FM,最后求得结果.【解答】解:如图,连接HF,直线HF 与AD 交于点P,∵正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2 x,由折叠可知:正方形ABCD 的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2 x,∴FM=PH=(PM﹣HF)=(2 x﹣2 x)=(﹣)x,∴==.故选:A.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=10 .【分析】根据二次根式的性质计算.【解答】解:原式=5+5=10.12.(3 分)若a=2+,b=2﹣,则ab 的值为 1 .【分析】直接利用平方差公式计算得出答案.【解答】解:∵a=2+ ,b=2﹣,∴ab=(2+ )×(2﹣)=4﹣3=1.故答案为:1.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为60°.【分析】首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【解答】解:设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故答案为:60°.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为3﹣.【分析】由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.【解答】解:连接AB,AD,如图所示:∵AD=AB==2 ,∴DE==,∴CD=3﹣.故答案为:3﹣.15.(3 分)如图,有一四边形空地 ABCD ,AB ⊥AD ,AB =3,AD =4,BC =12,CD =13,则四边形ABCD 的面积为 36 .【分析】连接 BD ,先根据勾股定理求出 BD ,进而判断出△BCD 是直角三角形,最后用面积的和即可求出四边形 ABCD 的面积.【解答】解:如图,连接 BD ,∵在 Rt △ABD 中,AB ⊥AD ,AB =3,AD =4,根据勾股定理得,BD =5,在△BCD 中,BC =12,CD =13,BD =5,∴BC 2+BD 2=122+52=132=CD 2,∴△BCD 为直角三角形,∴S 四边形 ABCD =S △ABD +S △BCD= AB •AD + BC •BD= ×3×4+ ×12×5=36.故答案为:36.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ABC 的顶点 A 在△ ECD 的斜边上,若 AE = ,AD = ,则 AC 的长为 .【分析】连接 BD ,根据等腰直角三角形性质和全等三角形的性质可得 AE =BD =,根据勾股定理可求 BC 的长,即可求解.【解答】解:如图,连接 BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∠CED=∠EDC=45°,∴∠ACE=∠DCB,且CE=CD,AC=BC,∴△ACE≌△BCD(SAS),∴AE=BD=,∠CED=∠CDB=45°,∵∠ADB=∠EDC+∠CDB,∴∠ADB=90°,∴AB2=AD2+DB2=3+7=10,∴AB=,∵AC2+BC2=AB2,∴AC=BC=,故答案为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.计算:(I)(+ )+(﹣);(II)2 ×÷5 .【分析】(I)直接化简二次根式进而合并得出答案;(II)直接利用二次根式的乘除运算法则计算得出答案.【解答】解:(I)(+ )+(﹣)=2 +2 + ﹣=3 + ;(II)2 ×÷5=4 ×÷5=3×=.18.已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.【分析】首先计算x2的值,然后代入所求的式子利用平方差公式计算,最后合并同类二次根式即可.【解答】解:x2=(2﹣)2=7﹣4 ,则原式=(7+4 )(7﹣4 )+(2+ )(2﹣)+=49﹣48+1+=2+ .19.已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.【分析】证出∠A=∠B=∠C=∠D=90°,直接利用三个角是直角的四边形是矩形,进而得出即可.【解答】证明:∵四边形ABCD,∠A=∠B=∠C=∠D,∠A+∠B+∠C+∠D=360°,∴∠A=∠B=∠C=∠D=90°,∴四边形ABCD 是矩形.20.如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为9 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD 即可;(3)根据三角形的面积公式即可得到结论.【解答】解:(1)AC==,S△ABC=4×5﹣×2×4﹣×2×5﹣×1×4=9,故答案为,9;(2)如图所示,BD 即为所求,(3)∵S△ABC=AC•BD=BD=9,∴BD=.21.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.【分析】(I)先利用勾股定理求出AB,再根据直角三角形斜边上的中线等于斜边的一半的性质即可得到CM 的长;(Ⅱ)先求出∠BCD,再根据直角三角形两锐角互余求出∠B,根据直角三角形斜边上的中线等于斜边的一半可得AM=MC,根据等边对等角可得∠ACM=∠A,再求出∠MCD=45°.【解答】解:(Ⅰ)∵在△ABC 中,∠ACB=90°,BC=1,AC=3,∴AB==,∵M 是斜边的中点,∴CM=AB=;(Ⅱ)∵∠ACB=∠ACD+∠BCD=90°,∠ACD=3∠BCD,∴∠ACD=90°×=67.5°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=22.5°,∵CM=AB=AM,∴∠ACM=∠A=22.5°,∴∠MCD=∠ACD﹣∠ACM=67.5°﹣22.5°=45°.22.在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.【分析】(1)如图1,过A 作AD⊥BC 于D,根据等腰三角形的性质得到BD=CD=3,求得AD =4,根据折叠的性质得到AM=CM,AN=AC=,设AM=CM=x,根据勾股定理即可得到结论;(2)如图2,过A 作AE⊥BC 于E,根据等腰三角形的性质得到BE=CE=BC,设BC=2t,CD =3t,AE=h,得到BE=CE=t,根据勾股定理和勾股定理的逆定理即可得到结论.【解答】解:(1)如图1,过A 作AD⊥BC 于D,∵AB=AC=5,BC=6,∴BD=CD=3,∴AD=4,∵将△ABC 沿MN 折叠,使得点C 与点A 重合,∴AM=CM,AN=AC=,设AM=CM=x,∴MD=x﹣3,∵AD2+DM2=AM2,∴42+(x﹣3)2=x2,解得:x=,∴MN===;(2)如图2,过 A 作AE⊥BC 于E,∵AB=AC,∴BE=CE=BC,∵BC:CD=2:3,∴设BC=2t,CD=3t,AE=h,∴BE=CE=t,∵AB=5,AD=10,∴h2+t2=52,h2+(4t)2=102,联立方程组解得,t=(负值舍去),∴BD=5 ,∵AB2+AD2=52+102=125=(5 )2=BD2,∴△ABD 是直角三角形.23.如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).【分析】(I)根据正方形的性质可得AC⊥OA,CB⊥OB,结合A,B 两点坐标可求解;(II)根据中点的定义可得AM=3,设OE=x,则EM=OE=x,AE=6﹣x,利用勾股定理可求解x 值,进而求解E 点坐标;(III)设点E 的坐标为(0,a),由勾股定理可求解a 值,进而求解E 点坐标.【解答】解:(I)∵正方形AOBC,A(0,6),B(6,0),∴OA=AC=CB=OB=6,且每个内角都是90°,即AC⊥OA,CB⊥OB,∴C(6,6);(II)∵M 为AC 的中点,∴AM=AC=3,设OE=x,则EM=OE=x,AE=6﹣x,在Rt△AEM 中,EM2=AM2+AE2,∴(6﹣x)2+32=x2,解得x=,∴E(0,);(III)设点E 的坐标为(0,a),由题意得OE=EM=a,AE=6﹣a,AM=t,在Rt△EAM 中,EM2=AM2+AE2,∴a2=(6﹣a)2+t2,解得a=,∴点E 的坐标为(0,).。

冀教版数学八年级下学期期中测试卷二(含答案及解析)

冀教版数学八年级下学期期中测试卷二(含答案及解析)

冀教版数学八年级下学期期中测试卷二一、选择题:本大题共16 个小题,1-10 题每小题3 分,11-16 题,每小题2 分,共42 分1.(3分)下列调查方式合适的是()A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式B.了解炮弹的杀伤力,采用全面调查的方式C.对中央台“新闻联播”收视率的调查,采用全面调查的方式D.对石家庄市食品合格情况的调查,采用抽样调查的方式2.(3分)函数+中自变量x的取值范围是()A.2≤x≤3B.x<3 C.x<2 且x≠3D.x≤3 且x≠23.(3分)如果用总长为120m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为C (m),一边长为a(m),那么S,C,a中是变量的是()A.S 和C B.S 和a C.C 和a D.S,C,a4.(3分)下列平面直角坐标系中的图象,不能表示y是x的函数的是()A.B.C.D.5.(3分)如图是田媛同学画的一张脸,若用(2,5)表示左眼A的位置,则右眼B的位置可表示为()A.(5,6)B.(6,5)C.(5,5)D.(6,6)6.(3分)若|a|=4,|b|=3,且Q(a,b)在第二象限,则a+b的值为()A.1 B.7 C.﹣1 D.﹣77.(3分)如图,△ABC在网格图中,张晗同学在该网格图中建立直角坐标系,使得B为原点,若S△ACD=2S△ABC,则点D 的坐标不可能为()A.(﹣2,2)B.(4,2)C.(﹣2,0)D.(﹣4,2)8.(3分)如图,在平面直角坐标系中,把线段AB进行平移,使得点A到达点C(3,1),点B到点D,则点D 的坐标为()A.(3,2)B.(2,1)C.(1,3)D.(2,3)9.(3分)如图,△OAB和△OCB关于x轴对称,△OCD和△OED关于y轴对称,若点E的坐标为(4,﹣6),则点A的坐标为()A.(﹣6,6)B.(﹣4,6)C.(6,4)D.(﹣4,4)10.(3分)2015年1月19日沧州日报报道,盐山推广太阳能热水器加热饮用水,在利用太阳能热水器加热水的过程中,热水噐中水的温度随阳光所晒时间长短而变化,则下列说法正确的是()A.在这一变化过程中,只有一个变量B.水的温度是常量C.阳光所晒的时间长短是变量D.阳光所晒的时间长短是水的温度的函数11.(2分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限12.(2分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.13.(2分)以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A.4 月份三星手机销售额为65 万元B.4 月份三星手机销售额比3 月份有所上升C.4 月份三星手机销售额比3 月份有所下降D.3 月份与4 月份的三星手机销售额无法比较,只能比较该店销售总额14.(2分)如图,琪琪设计了如图程序框图,当她输入x=10时,则输出y的值为()A.6 B.4 C.2 D.115.(2分)郝萌同学早上从家跑步去超市,在超市买了一支笔后马上去早餐店吃早餐,吃完早餐后就散步回家了.郝萌离家的距离y(千米)与离家时间x(分钟)之间的函数关系如图所示,则下列说法不正确的是()A.郝萌吃早餐花了20 分钟B.郝萌买笔花了15 分钟C.超市距离早餐店1.5 千米D.超市距离郝萌家2.5 千米16.(2分)一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y 和x,则y 关于x 的函数图象大致是图中的()A.B.C.D.二、填空题:本大题共4 个小题,每小题3 分,共12 分,把答案写在题中横线上17.(3分)某次测验后,60﹣70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为.18.(3分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是.19.(3分)如图,一圆柱高4m,底面周长为6m,现需按如图方式缠绕一圈彩带进行装饰,则彩带最短要用m.20.(3分)已知,等边△ABC在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把等边△ABC 沿x 轴正半轴作无滑动的连续翻转,每次翻转120°,经过2016 次翻转之后,点C 的坐标是.三、解答题:本大题共6 个小题,共66 分,解答应写出文字说明、证明过程或演算步骤21.(10分)如图,铁路MN和铁路PQ在P点处交汇,点A处是重庆市第九十四中学,AP=160米,点A 到铁路MN 的距离为80 米,假使火车行驶时,周围100 米以内会受到噪音影响.(1)火车在铁路MN 上沿PN 方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180 千米/时那么学校受到影响的时间是多久?22.(10分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.(1)求5 张白纸粘合后的长度;(2)设x 张白纸粘合后总长为ycm.写出y 与x 之间的函数关系式;(3)求当x=20 时的y 值,并说明它在题目中的实际意义.23.(11分)阅读可以增进人们的知识也能陶冶人们的情操.我们要多阅读,多阅读有营养的书.因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A、B、C、D、E 五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).阅读时间分组统计表组别阅读时间x(h)人数A0≤x<10 aB10≤x<20 100C20≤x<30 bD30≤x<40 140E x≥40c请结合以上信息解答下列问题(1)求a,b,c 的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20h 以下(不含20h)的学生所占百分比.24.(11分)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后,卸完物品再另装货物共用45min,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60km/h,两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示.(1)求甲、乙两地之间的距离;(2)求点B 的坐标;(3)求快递车从乙地返回甲地时的速度.25.(11分)如图,△ABC在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2 个单位,再向左平移1 个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC 的面积.26.(13分)2015年7月1日亚心网报道,广东地区大力调整农业产业结构,减棉近1.8万亩,通过种植商品玉米等作物,既优化了该地区产业结构,又为农民增收致富提供空间,若调整农业产业结构后的利润如表:减棉种植商品玉米的亩数(亩)利润(元/亩)不超过20 亩1500超过20 亩不超过200 亩的部分2000超过200 亩的部分a(1)当该地减棉种植商品玉米150 亩时,求种植商品玉米的利润;(2)若该地减棉种植商品玉米300 亩时,种植商品玉米的利润为610000 元,求a 的值;(3)求该地减棉种植商品玉米的亩数y(亩)与种植商品玉米的利润x(元/亩)之间的函数关系式.冀教版数学八年级下学期期中测试卷二参考答案与试题解析一、选择题:本大题共16 个小题,1-10 题每小题3 分,11-16 题,每小题3 分,共42 分1.(3分)下列调查方式合适的是()A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式B.了解炮弹的杀伤力,采用全面调查的方式C.对中央台“新闻联播”收视率的调查,采用全面调查的方式D.对石家庄市食品合格情况的调查,采用抽样调查的方式【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:对空间实验室“天空二号”零部件的检查,采用全面调查的方式,A 错误;了解炮弹的杀伤力,采用抽样调查的方式,B 错误;对中央台“新闻联播”收视率的调查,采用抽样调查的方式,C 错误;对石家庄市食品合格情况的调查,采用抽样调查的方式,D 正确,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(3分)函数+中自变量x的取值范围是()A.2≤x≤3B.x<3 C.x<2 且x≠3D.x≤3 且x≠2【分析】根据被开方数大于等于0,分母不等于0 列式进行计算即可求解.【解答】解:根据题意得,3﹣x≥0 且x﹣2≠0,解得x≤3 且x≠2.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如果用总长为120m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为C (m),一边长为a(m),那么S,C,a中是变量的是()A.S 和C B.S 和a C.C 和a D.S,C,a【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:S(m2),周长为C(m),一边长为a(m),那么S,a是变量,故选:B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.4.(3分)下列平面直角坐标系中的图象,不能表示y是x的函数的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:由图象,得B 的图象不满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故选:B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.5.(3分)如图是田媛同学画的一张脸,若用(2,5)表示左眼A的位置,则右眼B的位置可表示为()A.(5,6)B.(6,5)C.(5,5)D.(6,6)【分析】由(2,5)表示左眼,可以确定平面直角坐标系中x 轴与y 轴的位置,从而可以确定右眼的位置.【解答】解:右眼B的位置可表示为(6,5),故选:B.6.(3分)若|a|=4,|b|=3,且Q(a,b)在第二象限,则a+b的值为()A.1 B.7 C.﹣1 D.﹣7【分析】根据绝对值的性质以及第二象限内点的横坐标是负数,纵坐标是正数求出a、b 的值,然后相加计算即可得解.【解答】解:∵|a|=4,|b|=3,∴a=±4,b=±3,∵Q(a,b)在第二象限,∴a=﹣4,b=3,∴a+b=﹣4+3=﹣1.故选:C.7.(3分)如图,△ABC在网格图中,张晗同学在该网格图中建立直角坐标系,使得B为原点,若S△ACD=2S△ABC,则点D 的坐标不可能为()A.(﹣2,2)B.(4,2)C.(﹣2,0)D.(﹣4,2)【分析】可先求得△ABC 的面积,则可求得△ACD 的面积,再对四个选项分别求△ACD 的面积进行判断即可.【解答】解:由题意可知B(0,0),A(0,2),C(2,0),∴AB=BC=2,AC=2 ,∴S△ABC=×2×2=2,∴S△ACD=2S△ABC=4,当D 点坐标为(﹣2,2)时,则AD=2,∴S△ACD=×2×2=2,当D 点坐标为(4,2)时,则AD=4,∴S△ACD=×4×2=4,当D 点坐标为(﹣2,0)时,则AD=4,∴S△ACD=×4×2=2,当D 点坐标为(﹣4,2)时,则AD=4,∴S△ACD=×4×2=4,∴D点坐标不可能是(﹣2,2),故选:A.8.(3分)如图,在平面直角坐标系中,把线段AB进行平移,使得点A到达点C(3,1),点B到点D,则点D 的坐标为()A.(3,2)B.(2,1)C.(1,3)D.(2,3)【分析】根据由A(﹣1,﹣1)到C(3,1)的坐标变化得出规律,再根据规律求出D 点坐标.【解答】解:∵把线段AB进行平移,使得点A(﹣1,﹣1)到达点C(3,1),∴平移规律是:横坐标+4,纵坐标+2,∴点B到点D也有同样的变化规律,即得:D(﹣2+4,1+2),为(2,3).故选:D.9.(3分)如图,△OAB和△OCB关于x轴对称,△OCD和△OED关于y轴对称,若点E的坐标为(4,﹣6),则点A的坐标为()A.(﹣6,6)B.(﹣4,6)C.(6,4)D.(﹣4,4)【分析】直接利用已知图形得出A,C 点坐标,进而得出答案.【解答】解:由题意可得:E,C点关于y轴对称,则C点坐标为:(﹣4,﹣6),由A,C点关于x轴对称,则点A的坐标为:(﹣4,6).故选:B.10.(3分)2015年1月19日沧州日报报道,盐山推广太阳能热水器加热饮用水,在利用太阳能热水器加热水的过程中,热水噐中水的温度随阳光所晒时间长短而变化,则下列说法正确的是()A.在这一变化过程中,只有一个变量B.水的温度是常量C.阳光所晒的时间长短是变量D.阳光所晒的时间长短是水的温度的函数【分析】在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,依此求解即可.【解答】解:根据题意可知,在这一变化过程中,有两个变量,水温是随着所晒时间的长短而变化,那么水温是阳光所晒时间的函数,所晒时间为自变量,所以A、B、D 错误,C 正确.故选:C.11.(2分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b 的不等式,再根据不等式的性质,可得B 点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B 点的坐标符号是解题关键.12.(2分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()A.B.C.D.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h 随时间t 变化而分三个阶段.【解答】解:最下面的容器较最粗,第二个容器较粗,那么每个阶段的函数图象水面高度h 随时间t 的增大而增长缓陡,用时较短,故选:C.【点评】本题考查了函数的图象,解决本题的关键是根据三个容器的高度相同,粗细不同得到用时的不同.13.(2分)以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A.4 月份三星手机销售额为65 万元B.4 月份三星手机销售额比3 月份有所上升C.4 月份三星手机销售额比3 月份有所下降D.3 月份与4 月份的三星手机销售额无法比较,只能比较该店销售总额【分析】根据销售总额乘以三星所占的百分比,可得三星的销售额,根据有理数的大小比较,可得答案.【解答】解:A、4 月份三星手机销售额为65×17%=11.05 万元,故A 错误;B、3 月份三星手机的销售额60×18%=10.8 万元,4 月份三星手机销售额为65×17%=11.05 万元,故B 正确;C、3 月份三星手机的销售额60×18%=10.8 万元,4 月份三星手机销售额为65×17%=11.05 万元,故C 错误;D、3 月份三星手机的销售额60×18%=10.8 万元,4 月份三星手机销售额为65×17%=11.05 万元,故D 错误;故选:B.【点评】本题考查了条形统计图,利用销售总额乘以三星所占的百分比得出三星的销售额是解题关键.14.(2分)如图,琪琪设计了如图程序框图,当她输入x=10时,则输出y的值为()A.6 B.4 C.2 D.1【分析】根据计算程序计算出y 的值,即可判断.【解答】解:当x=10 时,0.5×10﹣1=4,|10﹣4|>0,则当x=4 时,0.5×4﹣1=1,则|4﹣1|<4,则y=1.故选:D.【点评】本题考查了函数求值,正确读懂程序图,确定正确的算式是关键.15.(2分)郝萌同学早上从家跑步去超市,在超市买了一支笔后马上去早餐店吃早餐,吃完早餐后就散步回家了.郝萌离家的距离y(千米)与离家时间x(分钟)之间的函数关系如图所示,则下列说法不正确的是()A.郝萌吃早餐花了20 分钟B.郝萌买笔花了15 分钟C.超市距离早餐店1.5 千米D.超市距离郝萌家2.5 千米【分析】结合图象得出郝萌同学从家里去超市,故第一段函数图象所对应的y 轴的最高点即为郝萌家到超市的距离;进而得出跑步的时间以及整个过程所用时间.由图中可以看出,早餐店到郝萌家1.5 千米,郝萌买笔花了15 分钟,郝萌吃早餐花了20 分钟,超市家到新华书店1 千米.【解答】解:A、由图象可得出郝萌吃早餐花了65﹣45=20(分钟),故此选项正确,不合题意;B、由图象可得出郝萌买笔花了30﹣15=15(分钟),故此选项正确,不合题意;C、由函数图象可知,从早餐店到郝萌家的2.5﹣1.5=1(千米),故此选项错误,符合题意;D、由函数图象可知,从超市距离郝萌家2.5 千米,故此选项正确,不合题意.故选:C.16.(2分)一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y 和x,则y 关于x 的函数图象大致是图中的()A.B.C.D.【分析】通过求函数解析式的方法求解则可.【解答】解:A、根据题意小三角形的面积减小,梯形的面积增大,而且x 与y 满足一次函数关系.故选:A.【点评】本题考查通过写函数的解析式来判断图形的形状.二、填空题:本大题共4 个小题,每小题 3 分,共12 分,把答案写在题中横线上17.(3分)某次测验后,60﹣70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为9 .【分析】根据频率=即可求解.【解答】解:由题意得,频数=45×20%=9.故答案为:9.【点评】本题考查了频数和频率,解答本题的关键是掌握频率=.18.(3分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是(2,﹣1).【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以可得点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C 的关系解答.19.(3分)如图,一圆柱高4m,底面周长为6m,现需按如图方式缠绕一圈彩带进行装饰,则彩带最短要用10 m.【分析】根据题意,可以画出圆柱的展开图,从而可以得到彩带最短需要多少米,本题得以解决.【解答】解:将圆柱展开,如右图所示,彩带最短需要:2×=2×5=10m,故答案为:10.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,会画圆柱的展开图.20.(3分)已知,等边△ABC在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把等边△ABC 沿x 轴正半轴作无滑动的连续翻转,每次翻转120°,经过2016 次翻转之后,点C 的坐标是(4031,).【分析】先求出第一次至第六次的点C 坐标,探究规律后,利用规律解决问题.【解答】解:第一次点C坐标(2,0),第二次点C坐标(2,0),第三次点C坐标(5,),第四次点C坐标(8,0),第五次点C坐标(8,0),第六次点C坐标(11,),…根据这个规律2016=672×3,所以经过2016 次翻转之后,点C 的横坐标为2016×2﹣1=4031,纵坐标为,所以点C坐标(4031,).故答案为(4031,).【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共6 个小题,共66 分,解答应写出文字说明、证明过程或演算步骤21.(10分)如图,铁路MN和铁路PQ在P点处交汇,点A处是重庆市第九十四中学,AP=160米,点A 到铁路MN 的距离为80 米,假使火车行驶时,周围100 米以内会受到噪音影响.(1)火车在铁路MN 上沿PN 方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180 千米/时那么学校受到影响的时间是多久?【分析】(1)过点A 作AE⊥MN 于点E,由点A 到铁路MN 的距离为80 米可知AE=80m,再由火车行驶时,周围100 米以内会受到噪音影响即可直接得出结论;(2)以点A 为圆心,100 米为半径画圆,交直线MN 于BC 两点,连接AB、AC,则AB=AC=100m,在Rt△ABE 中利用勾股定理求出BE 的长,进而可得出BC 的长,根据火车的速度是180 千米/时求出火车经过BC 是所用的时间即可.【解答】解:(1)会受到影响.过点A 作AE⊥MN 于点E,∵点A 到铁路MN 的距离为80 米,∴AE=80m,∵周围100 米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A 为圆心,100 米为半径画圆,交直线MN 于BC 两点,连接AB、AC,则AB=AC=100m,在Rt△ABE 中,∵AB=100m,AE=80m,∴BE===60m,∴BC=2BE=120m,∵火车的速度是180 千米/时=50m/s,∴t===2.4s.答:学校受到影响的时间是 2.4 秒.【点评】本题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.22.(10分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.(1)求5 张白纸粘合后的长度;(2)设x 张白纸粘合后总长为ycm.写出y 与x 之间的函数关系式;(3)求当x=20 时的y 值,并说明它在题目中的实际意义.【分析】(1)根据图形可得 5 张白纸的长减去粘合部分的长度即可;(2)根据题意x 张白纸的长减去粘合部分的长度就是y 的值;(3)把x=20 代入(2)得到的函数解析式即可求解.【解答】解:(1)由题意得,20×5﹣3×(5﹣1)=88.则5 张白纸粘合后的长度是88cm;(2)y=20x﹣3(x﹣1),即y=17x+3.(3)当x=20 时,y=17×20+3=343.答:实际意义是:20 张白纸粘合后的长度是343cm.【点评】本题考查了函数的关系式,正确理解纸条的长度等于白纸的长度减去粘合部分的长度是关键.23.(11分)阅读可以增进人们的知识也能陶冶人们的情操.我们要多阅读,多阅读有营养的书.因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A、B、C、D、E 五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).阅读时间分组统计表组别阅读时间x(h)人数A0≤x<10 aB10≤x<20 100C20≤x<30 bD30≤x<40 140E x≥40c请结合以上信息解答下列问题(1)求a,b,c 的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20h 以下(不含20h)的学生所占百分比.【分析】(1)根据D 类的人数是140,所占的比例是28%,即可求得总人数,然后根据百分比的意义求得c 的值,同理求得A、B 两类的总人数,则a 的值即可求得,进而求得b 的值;(2)根据(1)的结果即可作出;(3)根据百分比的定义即可求解.【解答】解:(1)由题意可知,调查的总人数为140÷28%=500,∴b=500×40%=200,c=500×8%=40,则a=500﹣(100+200+140+40)=20;(2)补全图形如下:(3)由(1)可知×100%=24%,(4)答:估计全校课外阅读时间在20h 以下的学生所占百分比为24%.24.(11分)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后,卸完物品再另装货物共用45min,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60km/h,两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示.(1)求甲、乙两地之间的距离;(2)求点B 的坐标;(3)求快递车从乙地返回甲地时的速度.【分析】(1)根据“快递车的速度=货车的速度+两车的速度差”可以求出快递车的速度,再根据“路程=快递车的速度×快递车到达乙地的时间”即可得出结论;(2)结合快递车装货45min 即可得出点B 的横坐标,根据“两车间的距离=120﹣货车速度×快递车装货时间”即可得出点B 的纵坐标,由此即可得出点B 的坐标;(3)结合点B、C 的横坐标可得出快递车从返回到遇见货车所用的时间,再根据“快递车返回的速度=路程÷时间﹣货车的速度”即可得出结论.【解答】解:(1)快递车的速度为:60+120÷3=100(km/h),甲、乙两地之间的距离为:100×3=300(km).答:甲、乙两地之间的距离为300km.(2)点B的横坐标为:3+=3(h),点B的纵坐标为:120﹣×60=75(km),故点B的坐标为(3,75).(3)快递车从返回到遇见货车所用的时间为:4﹣3=(h),快递车从乙地返回甲地时的速度为:75÷﹣60=90(km/h).答:快递车从乙地返回甲地时的速度为90km/h.【点评】本题考查了一次函数的应用,解题的关键是结合函数图象以及数量关系直接计算.本题属于基础题,难度不大,解决该题型题目时,依照函数图象找出点的坐标,再结合数量关系列出算式即可算出结论.25.(11分)如图,△ABC在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2 个单位,再向左平移1 个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC 的面积.【分析】(1)根据点的坐标的定义即可写出答案;(2)根据上加下减,左减右加的原则写出答案即可;(3)先将三角形补成一个矩形,再减去三个直角三角形的面积即可.【解答】解:(1)点A、B、C分别在第三象限、第一象限和y轴的正半轴上,则A(﹣2,﹣2),B(3,1),C(0,2);(2)∵把△ABC 向上平移2 个单位,再向左平移1 个单位得到△A′B′C′,∴横坐标减1,纵坐标加2,即A′(﹣3,0),B′(2,3),C(﹣1,4);(3)S△ABC=4×5﹣×5×3﹣×4×2﹣×1×3=20﹣7.5﹣4﹣1.5=7.【点评】本题考查了点的坐标的确定,三角形面积的求法以及坐标图形的变换﹣平移,是基础知识要熟练掌握.26.(13分)2015年7月1日亚心网报道,广东地区大力调整农业产业结构,减棉近1.8万亩,通过种植商品玉米等作物,既优化了该地区产业结构,又为农民增收致富提供空间,若调整农业产业结构后的利润如表:减棉种植商品玉米的亩数(亩)利润(元/亩)不超过20 亩1500超过20 亩不超过200 亩的部分2000超过200 亩的部分a(1)当该地减棉种植商品玉米150 亩时,求种植商品玉米的利润;(2)若该地减棉种植商品玉米300 亩时,种植商品玉米的利润为610000 元,求a 的值;(3)求该地减棉种植商品玉米的亩数y(亩)与种植商品玉米的利润x(元/亩)之间的函数关系式.【分析】(1)根据“利润=1500×20+2000×(种植面积﹣20)”列式计算即可得出结论;(2)根据“利润=1500×20+2000×(200﹣20)+a(种植面积﹣200)”即可列出关于 a 的一元一次方程,解方程即可得出a 的值;(3)根据表格分0<x≤20、20<x≤200 以及200<x 三种情况考虑,结合数量关系得出每段的函数关系式,合在一起即可得出结论.【解答】解:(1)1500×20+2000×(150﹣20)=290000(元),答:种植商品玉米的利润为290000 元.(2)根据题意得:1500×20+2000×(200﹣20)+(300﹣200)a=610000,解得:a=2200.答:a 的值为2200 元/亩.(3)根据题意得:当0<x≤20 时,y=1500x;当20<x≤200 时,y=1500×20+2000(x﹣20)=2000x﹣10000;当200<x 时,y=1500×20+2000×(200﹣20)+2200(x﹣200)=2200x﹣50000.综上得:种植商品玉米的亩数y(亩)与种植商品玉米的利润x(元/亩)之间的函数关系式为y=.。

八年级数学第二学期期中试卷(含答案)

八年级数学第二学期期中试卷(含答案)

2018-2019学年度八年级数学第二学期期中考试试卷班级 姓名 成绩每个人都要经过许多的考验,今天我们就面对一次小小的考验,相信自己,努力争取,我们每一个人都能成功!第一部分 掌握基础才能继续发展一、人生的道路上有许多抉择,现在来看一下,自己是否具有慧眼识真的能力(注意只有一个是对的,将正确答案相对应的序号填在括号里)!(每题3分)1.下列计算正确的是( )A2=- B=C 21a =+D 3.14=-∏2.下面四组二次根式中,同类二次根式是( ) A163-和181 B 35b a 和()a cb 419+ C y x xy +与()y x +625 D ()31125+c 与175+c 3.下列结论正确的是( )A如 1a=- 则a<0B 如a 是同类二次根式,则a=1,b=1C已知13y = , 则 x=1,y=1 D 若0〈a 〈1,且16a a+=2= 4.已知 (0)b c a c a b k a b c a b c +++===++≠ 则函数y=kx+k 图像一定不经过 ( )A 第一象限B 第二象限C 第三象限D 第四象限5.当00><b ,a 时,函数y=ax+b 与a bx y +=在同一坐标系中的图象大致是( )A B C D6.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )A BC D7.在下列条件中,①∠A=45 º,AB=24,AC=30,A`B`=32,A`C`=40②AB=6,BC=7.5,AC=12,A`B`=10,B`C`=12.5,A`C`=20③∠A=47 º,AB=1.5,AC=2,∠A`=47 º,A`B`=2.8,B`C`=2.1能识别相似和'''C B A ABC ∆∆的有( )A 0个B 1个C 2个D 3个8.在直角三角形ABC 的直角边AC 上有一点定P (点P 与点A ,C 不重合),过点P 作直线截ΔABC ,使截得的三角形与ΔABC 相似,满足条件的直线共有( )条A 1B 2C 3D 4二、选择题,相信自己一定能把最准确的答案填在空白处!(每空3分) 9.的平方根是4925 10.当x 满足______的条件时,x 1-在实数范围内有意义;11.用计算器计算8.260(精确到0.01)12.已知某数的平方根为3a+1, 2a-6,则某数为13.双曲线()00>>=x ,k xk y 的图象上两点A 、B 作AC ⊥x 轴于C ,BD ⊥x 轴于D ,那么AOC S ∆和BOD S ∆的关系为14.函数y=2―x ,则y 随x 的增大而__________.15.如图中的直线ABC 为甲地向乙地打长途电话所需付的电话费y (元)与通话时间x (分钟)之间的函数关系的图象。

2021-2022学年河南省驻马店二中八年级下学期期中数学试卷及参考答案

2021-2022学年河南省驻马店二中八年级下学期期中数学试卷及参考答案

驻马店二中2021-2022学年八年级下期数学期中测试一、选择题(共10小题满分30分)1.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是( )A .B .C .D .2.下列等式从左到右的变形是因式分解的是( )A .22(3)26+=+x x x xB .22()()-=+-x y x y x yC .22221()1+++=++x xy y x yD .222438=⋅xy x y3.若>m n ,下列不等式不一定成立的是( )A .33+>+m nB .33-<-m nC .33>m n D .22>m n 4.如图,在V ABC 中,5,80,70=∠=∠︒︒=BC A B ,把V ABC 沿RS 的方向平移到V DEF 的位置,若4=CF ,则下列结论中错误的是( )A .4=BEB .30∠︒=FC .∥AB DED .5=DF5.如图,利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )A .SASB .ASAC 、SSSD 、AAS6.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .21090(15)1800+-≥x xB .90210(15)1800+-≤x xC .21090(15) 1.8+-≥x xD .90210(15) 1.8+-≤x x7.下列命题:①有两边相等的三角形是等腰三角形;②到角两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中,逆命题为假命题的个数是( )A .1B .2C .3D .48.若关于x 的不等式组2130-->⎧⎨-≥⎩x a x 的解集是≤x a ,则a 的取值范围是( ) A .2≤a B .2>-a C .2<-a D .2≤-a9.在平面直角坐标系xOy 中,第一次将V ABC 作原点的中心对称图形得到111V A B C ,第二次在作111V A B C 关于x 轴的对称图形得到222V A B C ,第三次222V A B C 作原点的中心对称图形得到333V A B C ,第四次再作333V A B C 关于x 轴的对称图形得到444V A B C ,按照此规律作图形的变换,可以得到202220222022V A B C 的图形,若点(3,2)C ,则2022C 的坐标为( )A .(3,2)-B .(3,2)C .(3,2)-D .(3,2)--10.等边三角形ABC 的边长为6,点O 是三边垂直平分线的交点,120∠=︒FOG ,∠FOG 的两边,OF OG 与,AB BC 分别相交于D ,E ,∠FOG 绕O 点顺时针旋转时,下列四个结论正确个数是( )①=OD OE ;②=V V ODE BDE S S ,③=四边形S ODBE ;④V BDE 周长最小值是9. A .1个 B .2个 C .3个 D .4个 二、填空题(共5小题满分15分)11.分解因式:24100-=x ____________.12.用反证法证明“三角形三个内角至少有一个不大于60︒”时,应先假设______________.13.如图,V ABC 为钝角三角形,将V ABC 绕点A 按逆时针方向旋转110︒得到V ADE ,连接AE .若∥AE BD ,则∠CAD 的度数为______________.14.如图,函数3=-y x 和=+y kx b 的图象相交于点(,4)A m ,则关于x 的不等式3+>-kx b x 的解集为_____________.15.如图,在长方形纸片ABCD 中,,10=AB ,12=BC ,点E 是AB 的中点,点F 是AD 边上的一个动点,将V AEF 沿EF 所在直线翻折,得到'V A EF ,连接,''A C A D ,则当'V A DF 是直角三角形时,FD 的长是_____________.三、解答题(共8小题满分75分)16.(1)(4分)解不等式,并把其解集表示在下面的数轴上13122-≥-x x ;(2)(4分)分解因式:()22241-+x x .17.(9分)如图,在V ABC 和V DCB 中,90∠=∠=︒A D ,=AC BD ,AC 与DB 交于点M .求证:(1)V V ≌ABC DCB ;(2)点M 在BC 的垂直平分线上.18.(8分)已知:a 、b 、c 是V ABC 的三边,且满足22220--+=a bc c ab .试判断该三角形的形状. 19.(9分)如图,方格纸中每个小正方形的边长都是1个单位长度.V Rt ABC 的三个顶点(2,2)-A ,(0,5)B ,(0,2)C .(1)画出V ABC 关于点C 成中心对称的11V A B C ,并写出点1B 的坐标;(2)平移V ABC ,使点A 的对应点2A 坐标为(2,6)--,请画出平移后对应的222V A B C ,并写出点2B 的坐标;(3)若将11V A B C 绕某一点旋转可得到222V A B C ,则旋转中心P 点的坐标是__________.20.(10分)如图,已知30∠=︒AOB ,P 是∠AOB 的平分线OC 上的任意一点,∥PD OA 交OB 于点D ,⊥PE OA 于点E ,如果8cm =OD ,求PE 的长.21.(10分)为了节能减排,我校准备购买某种品牌的节能灯,已知4只A 型节能灯和5只B 型节能灯共需55元,2只A 型节能灯和1只B 型节能灯共需17元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共300只,要求A 型节能灯的数量不超过B 型节能灯的数量的2倍,请设计出最省钱的购买方案,并说明理由.22.(10分)问题探究:小江同学根据学习函数的经验,对函数2||5=-+y x 的图象和性质进行了探究.下面是小刚的探究过程,请你解决相关问题:(Ⅰ)在函数2||5=-+y x 中,自变量x 可以是任意实数;(Ⅱ)如表y 与x 的几组对应值:(Ⅲ)如图,在平面直角坐标系中,描出以表中各对对应值为坐标的点,并根据描出的点,请你画出该函数的图象;(1)若(,),(6,)A m n B n 为该函数图象上不同的两点,则=m ____________;(2)观察函数2||5=-+y x 的图象,写出该图象的两条性质:①____________________________________;②____________________________________.(3)当12||53-<-+≤x 时,自变量x 的取值范围是______________.23.(11分)【操作发现】如图1,V ABC 为等边三角形,点D 为AB 边上的一点,30∠=︒DCE ,将线段CD 绕点C 顺时针旋转60︒得到线段CF ,连接AF 、EF ,请直接写出下列结果:①∠EAF 的度数为___________;②DE 与EF 之间的数量关系为______________;【类比探究】如图2,V ABC 为等腰直角三角形,90∠=︒ACB ,点D 为AB 边上的一点,45∠=︒DCE ,将线段CD 绕点C 顺时针旋转90︒得到线段CF ,连接AF 、EF .则线段AE ,ED ,DB 之间有什么数量关系?请说明理由;【拓展应用】如图3,V ABC 是一个三角形的余料,小张同学量得120∠=︒ACB ,=AC BC ,他在边AB 上取了D 、E 两点,并量得15∠=︒BCD 、60∠=︒DCE ,这样CD 、CE 将V ABC 分成三个小三角形,则S :S :S =V V V BCD DCE ACE ________________.驻马店二中2021-2022学年八年级下期数学期中测试参考答案一.选择题1、B2、B3、D4、D5、C6、A7、A8、C9、C10、B二.填空题(共4小题)11.4(x+5)(x﹣5).12. 三角形三个内角都大于60 °.13.75°.14.43>-x15.26/3或7三.解答题(共8小题)16.(1)1312 2-≥-xx(2)4x2﹣(x2+1)2.【解答】解:(1)两边都乘以2得,1﹣3x≥2﹣4x,移项得,﹣3x+4x≥2﹣1,合并同类项得,x≥1;....................................................3分在数轴上表示解集....................................................4分(2)4x2﹣(x2+1)2,=(2x+x2+1)(2x﹣x2﹣1)............................................2分=﹣(x+1)2(x﹣1)2............................................4分17.(1)证明:在△ABC和△DCB中∵∠A=∠D=90°=⎧⎨=⎩AC DBBC CB∴Rt △ABC ≌Rt △DCB (HL ). ...........................................5分(2)证明:∵由(1)知:△ABC ≌△DCB ,∴∠ACB =∠DBC ,∴MB =MC ,∴点M 在BC 的垂直平分线上. ............................................9分18.解:∵a 2﹣2bc ﹣c 2 + 2ab =0.∴a 2﹣c 2 + 2ab ﹣2bc = 0∴(a +c )(a ﹣c )+ 2b(a-c) = 0, ............................................2分∴(a ﹣c )(a +c +2b )=0, ............................................4分∵a 、b 、c 是△ABC 的三边∴a>0, b>0 , c>0 ............................................5分∴a +c +2b>0∴a ﹣c=0∴a =c ...........................................7分∴△ABC 为等腰三角形 ............................................8分19.(1)如图所示,△A 1B 1C 即为所求 ............................................3分B 1(0,−1) ............................................4分(2)如图所示,△A 2B 2C 2即为所求 ...........................................7分B 2(0,−3) ............................................8分(3)旋转中心坐标(0,−2). ...........................................9分20.解:如图,过点P 作PF ⊥OB 于点F , ....................1分∵OC 平分∠AOB ,PE ⊥OA ,∴PF =PE ........................................3分∠EOP =∠DOP ........................................4分∵PD ∥OA ,∠AOB =30°∴∠PDF=∠AOB=30°,∠DPO=∠EOP=∠DOP,∴PD=OD=8cm ............................................7分在Rt△PDF中∵∠DFP=90°∠FDP=30°∴PF=1/2PD=4cm .........................................9分∴PF=PE=4cm .............................................10分21.解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,根据题意得:4555217+=⎧⎨+=⎩x yx y,. ...........................................3分解得57=⎧⎨=⎩xy,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元............................................5分(2)设购买A型号的节能灯a只,则购买B型号的节能灯(300﹣a)只,费用为w元,w=5a+7(300﹣a)=﹣2a+2100,...........................................7分∵a≤2(300﹣a),∴a≤200,............................................8分∴当a=200时,w取得最小值,此时w=1700,300﹣a=100,............................................9分答:当购买A型号节能灯200只,B型号节能灯100只时最省钱.............................................10分22.解:(Ⅲ)在平面直角坐标系中,描点、连线,画出函数图象如图所示:............................................4分(1)m =﹣6 ...........................................6分(2)答案不唯一:如 图象关于y 轴对称; 函数最大值为5; 函数无最小值; 当x<0时,y 随x 的增大而增大等 ...........................................8分(3)﹣3<x ≤﹣1或1≤x <3 . ...........................................10分23.解:操作发现:①120°; ②DE =EF .........................................2分 类比探究: AE 2+DB 2=DE 2 .........................................3分 理由如下:∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°,由旋转知,CD =CF ,∠DCF =90°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,=⎧⎪∠=∠⎨⎪=⎩AC BCACF BCD CF CD,∴△ACF ≌△BCD (SAS ),∴∠CAF =∠B =45°,AF =DB ,∴∠EAF =∠BAC +∠CAF =90°;∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°﹣45°=45°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,=⎧⎪∠=∠⎨⎪=⎩CD CFDCE FCE CE CE,∴△DCE ≌△FCE (SAS ), ∴DE =EF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 又∵AF =DB ,∴AE 2+DB 2=DE 2. .......................................9分 实际应用:S △BCD :S △CDE :S △ACE =12 ........................................11分。

人教版八年级(下)数学期中试卷(二)

人教版八年级(下)数学期中试卷(二)

人教版八年级(下)数学期中试卷(二)一、选择题(本大题共10小题,共30分)1.(3分)下列几组数中,为勾股数的是()A.,,1B.3,4,6C.5,12,13D.0.9,1.2,1.52.(3分)若最简二次根式和能合并,则x的值为()A.x=﹣B.x=C.x=2D.x=53.(3分)下列所给的二次根式中,是最简二次根式的是()A.B.C.D.4.(3分)如果△ABC的三边满足关系:AB2=AC2﹣BC2,那么()A.△ABC不是直角三角形B.△ABC是直角三角形,∠A是直角C.△ABC是直角三角形,∠B是直角D.△ABC是直角三角形,∠C是直角5.(3分)下列性质中正方形具有而菱形没有的是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.一条对角线平分一组对角6.(3分)已知:如图,过四边形ABCD的顶点A、C、B、D分别作BD、AC的平行线围成四边形EFGH,如果EFGH成菱形,那么四边形ABCD必定是()A.菱形B.平行四边形C.矩形D.对角线相等的四边形7.(3分)已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.B.16C.D.88.(3分)下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC9.(3分)如图,四边形ABCD是边长为9的正方形纸片,B′为CD边上的点,B′C=3.将纸片沿某条直线折叠,使点B落在点B′处,点A的对应点为A′,折痕分别与AD,BC 边交于点M、N,则AM的长是()A.1.5B.2C.2.25D.2.510.(3分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF ⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①②B.②③C.①②③D.①②③④二、填空题(每小题3分,共18分)11.(3分)二次根式在实数范围内有意义,则x的取值范围是.12.(3分)如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.13.(3分)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为.14.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.15.(3分)如图,在平行四边形ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC,能说明平行四边形ABCD是矩形的有(填写序号).16.(3分)如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC 于E,MF⊥CD于F,则EF的最小值为.三、解答题(共72分)17.(10分)计算(1)(2)18.(8分)已知x=,y=,求下列各式的值.(1)x2﹣2xy+y2;(2)x2﹣y2.19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,;(3)如图3中∠BCD是不是直角?请说明理由(可以适当添加字母)20.(7分)如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16km,CB=11km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?21.(7分)定义:若两个二次根式a,b满足a•b=c,且c是有理数,则称a与b是关于c 的共轭二次根式.(1)若a与是关于4的共轭二次根式,则a=;(2)若与是关于12的共轭二次根式,求m的值.22.(8分)如图,在平行四边形ABCD中,点O是边BC的中点,连接AO并延长,交DC 延长线于点E,连接AC,BE.(1)求证:四边形ABEC是平行四边形;(2)当∠D=50°,∠AOC=100°时,判断四边形ABEC的形状,并说明理由.23.(11分)如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是.(2)探究如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG⊥BE.(3)应用在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,则线段DG是多少?(直接写出结论)24.(13分)如图,在四边形ABCD中,AD∥BC,AB=CD,DE⊥BC于点E,且DE=4,AD=18,∠C=60°;(1)BC=(2)若动点P从点D出发,速度为2个单位/秒,沿DA向点A运动,同时,动点Q从点B出发,速度为3个单位/秒,沿BC向点C运动,当一个动点到达端点时,另一个动点同时停止运动,设运动的时间为t秒.①t=秒时,四边形PQED是矩形;②t为何值时,线段PQ与四边形ABCD的边构成平行四边形;③是否存在t值,使②中的平行四边形是菱形?若存在,请求出t值;若不存在,请说明理由.。

人教版八年级下册数学《期中检测试卷》及答案

人教版八年级下册数学《期中检测试卷》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是( ) A. 222()-=-B.284⨯=C.2810+= D. 222-=2.下列四组线段中,能构成直角三角形的是( ) A. a =1,b =2,c =3 B. a =2,b =3,c =4 C. a =2,b =4,c =5D. a =3,b =4,c =53.函数y=2x ﹣5的图象经过( ) A. 第一、三、四象限 B. 第一、二、四象限 C. 第二、三、四象限D. 第一、二、三象限 4.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A. 中位数为1B. 方差为26C. 众数为2D. 平均数为05.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A 向左平移3个单位 B. 向右平移3个单位 C. 向下平移3个单位D. 向上平移3个单位6.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为( )A. 2B. 4C. 6D. 87.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y =B. 12y y <C. 12>y yD. 不能确定8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :队员1 队员2 队员3 队员4 平均数(秒) 51 50 51 50 方差2s (秒2) 3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定运动员参加比赛,应该选择( ) A. 队员1B. 队员2C. 队员3D. 队员49.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-10.21025x x -+5﹣x ,则x 的取值范围是( ) A. 为任意实数B. 0≤x≤5C. x≥5D. x≤511.直角三角形的面积为 ,斜边上的中线为 ,则这个三角形周长为 ( ) A22d S d +B. 2d S d -C. 22d S d ++D. )22d S d +12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩二.填空题(每小题4分,共24分)13.若x 2+在实数范围内有意义,则x 的取值范围是______.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____. 15.计算3393aaa a +-=__________. 16.如图,两张等宽纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解: 点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By Cd A B++=+如:求:点()P 1,1到直线2x 6y 90+-=的距离. 解:由点到直线的距离公式,得222161910d 204026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离. 则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.三.解答题:(本大题共7小题,共78分)19.0201827233(2π)(1)--+-20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示. (1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定. 22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围; (3)求MOP △的面积.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)答案与解析一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是()A.=- B. 4= C. = D. 2= 2[答案]B[解析][分析],=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.[详解]A2=,故原题计算错误;B=,故原题计算正确;C=故原题计算错误;D、2不能合并,故原题计算错误;故选B.[点睛]此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.下列四组线段中,能构成直角三角形的是()A. a=1,b=2,c=3B. a=2,b=3,c=4C. a=2,b=4,c=5D. a=3,b=4,c=5[答案]D[解析][分析]根据勾股定理的逆定理对各选项进行逐一分析即可.[详解]解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选:D.[点睛]本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.函数y=2x﹣5的图象经过( )A. 第一、三、四象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、二、三象限[答案]A[解析][分析]先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.[详解]∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.[点睛]本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A. 中位数为1B. 方差为26C. 众数为2D. 平均数为0[答案]B[解析][详解]A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.412125x-++-+==,()()()()222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.5.要得到函数y=2x+3的图象,只需将函数y=2x的图象()A. 向左平移3个单位B. 向右平移3个单位C. 向下平移3个单位D. 向上平移3个单位[答案]D[解析][分析]平移后相当于x不变y增加了3个单位,由此可得出答案.[详解]解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.[点睛]本题考查一次函数图象的几何变换,注意平移k值不变的性质.6.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为( )A. 2B. 4C. 6D. 8[答案]B[解析][分析]已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.[详解]∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120° ∴∠AOB=60°∴△AOB 是等边三角形 ∴OA=OB=AB=2 ∴AC=2OA=4 故选:B[点睛]本题考查了矩形的基本性质,等边三角形的判定和性质.7.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y = B. 12y y <C. 12>y yD. 不能确定[答案]C [解析] [分析]根据()()12223,,2,P y P y -是一次函数y=-x-1图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.[详解]∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2, ∴12>y y . 故选C[点睛]此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 队员1B. 队员2C. 队员3D. 队员4[答案]B[解析][分析]据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.[详解]因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定. 故选B .[点睛]考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-[答案]C[解析][分析] 根据一次函数的图象和两函数的交点坐标即可得出答案[详解]解:从图象得到,当x >-2时,3y x b =+的图象在函数y=ax-3的图象上∴不等式3x+b>ax-3的解集是x>-2,故选:C[点睛]此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象10.5﹣x,则x的取值范围是( )A. 为任意实数B. 0≤x≤5C. x≥5D. x≤5 [答案]D[解析][分析]根据二次根式的性质得出5-x≥0,求出即可.[详解]|5|5x x==-=-,∴5-x≥0,解得:x≤5,故选D.[点睛]本题考查了二次根式的性质的应用,注意:当a≥0时,当a≤0时.11.直角三角形的面积为,斜边上的中线为,则这个三角形周长为()2d dC. dD. )2d[答案]D[解析][分析]根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.[详解]解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴12S xy=,则2xy=4S,即(x+y)2=4d2+4S,∴x y+=∴这个三角形周长为:)2d ,故选D. [点睛]本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩[答案]D[解析][分析]由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.[详解]当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .[点睛]本题考查的是一次函数的性质,解答此题时要注意进行分类讨论. 二.填空题(每小题4分,共24分)13.,则x 的取值范围是______.[答案]x≥-2[解析]分析:根据二次根式有意义条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____.[答案]4[解析][分析]平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.[详解]一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有15(x 1+x 2+x 3+x 4+x 5)=2, 那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是15(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4. 故答案是:4.[点睛]考查的是样本平均数的求法及运用,解题关键是记熟公式:12n x nx x x ++⋯+=. 15.计算3393a a a a +-=__________. [答案]3a[解析]分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=333a a a +-=3a点睛:本题主要考查二次根式的加减,比较简单.16.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.[答案]2[解析][分析]首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.[详解]解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E,∵AB ∥CD,AD ∥BC,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE,∴AD=AB,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2[点睛]本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.[答案]①③④[解析][分析]根据y 1=kx+b 和y 2=x+a 图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.[详解]根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx+b=x+a 的解是x=3,正确;④当x >3时,y 1<y 2正确.故答案是:①③④.[点睛]考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By C d A B ++=+ 如:求:点()P 1,1到直线2x 6y 90+-=的距离.解:由点到直线的距离公式,得222161910d 4026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.[答案]13[解析][分析]根据题意在1l :238x y +=上取一点()4,0P ,求出点P 到直线2l :23180x y ++=的距离d 即可.[详解]在1l :238x y +=上取一点()4,0P ,点P 到直线2l :23180x y ++=的距离d 即为两直线之间的距离:d ==故答案为[点睛]本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.三.解答题:(本大题共7小题,共78分)19.02018π)(1)--+- [答案]1.[解析][分析]首先计算乘方、开方,然后计算乘法,最后从左向右依次计算即可[详解02018)(1)π--+-,=1=.[点睛]本题考查了实数的运算,解题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.[答案]24m 2.[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,根据△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理 2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.[答案](1)填表:初中平均数为85(分),众数85(分);高中部中位数80(分);(2)初中部成绩好些;(3)初中代表队选手成绩较为稳定.[解析][分析](1)根据成绩表加以计算可补全统计表;根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.[详解]解:(1)填表:(1)填表:初中平均数为:15(75+80+85+85+100)=85(分), 众数85(分);将高中部的数据从小到大进行排列得:70,75,80,100,100,∴高中部中位数80(分);(2)初中部成绩好些,因为两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些;(3)∵21s =15[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70, 22s =15[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160. ∴21s <22s ,因此,初中代表队选手成绩较为稳定.[点睛]此题主要考查了平均数、众数、中位数、方差的统计意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;(3)求MOP △的面积.[答案](1)一次函数表达式为y=2x-2;正比例函数为y=x ;(2)x<2;(3)1.[解析][分析](1)将(0,-2)和(1,0)代入y ax b =+解出一次函数的解析式,将M(2,2)代入正比例函数y kx =解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.[详解]()1y ax b =+经过()1,0和()0,2-,0=2k b b+⎧∴⎨-=⎩ 解得k 2=,b 2=-,一次函数表达式为:y 2x 2=-;把()M 2,m 代入y 2x 2=-得m 2222∴=⨯-=,点()M 2,2,直线y kx =过点()M 2,2,22k ∴=,k 1∴=,正比例函数解析式y x =.()2由图象可知,当x 2=时,一次函数与正比例函数相交;x 2<时,正比例函数图象在一次函数上方, 故:x 2<时,x 2x 2>-.()3如图,作MN 垂直x 轴,则MN 2=,OP 1=,MOP ∴的面积为:11212⨯⨯=.[点睛]本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.23.如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.3连接OE,交CD 于点F,根据菱形的性质得出F 为CD 中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.[详解]()1证明:CE //OD ,DE //OC ,四边形OCED 是平行四边形,矩形ABCD,AC BD ∴=,1OC AC 2=,1OD BD 2=, OC OD ∴=,四边形OCED 菱形;()2在矩形ABCD 中,ABC 90∠=,BAC 30∠=,AC 4=,BC 2∴=,AB DC 23∴==,连接OE,交CD 于点F,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形 [点睛]本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.已知:甲乙两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.[答案](1)y=100(03)2754080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)=40y x乙(0≤x≤152);(3)两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[解析][分析](1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于274小时是一次函数.可根据待定系数法列方程,求函数关系式;(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了92小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解;(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.[详解](1)当0≤x≤3时,是正比例函数,设为y=kx,当x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤274时,是一次函数,设为y=kx+b,代入两点(3,300)、(274,0),得3300274k bk b+=⎧⎪⎨+=⎪⎩,解得80540kb=-⎧⎨=⎩,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=100(03)27 54080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)当x=92时,y甲=540﹣80×92=180;乙车过点(92,180),=40y x乙.(0≤x≤152)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=157;②当3<x≤274时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[点睛]本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)[答案](1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC. [解析]试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P C D A 八年级下学期数学试卷
一、选择题:(每小题3分,共30分)
1若m 3为二次根式,则m 的取值为( )
A 、m≤3
B 、m <3
C 、m≥3
D 、m >3 2、计算:18 ÷( 3 — 6 )的结果是( ):
A 、 6 — 3 ;
B 、 3 ;
C 、— 6 —2 3 ;
D 、—3 3 3、在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充条件后仍不一 定能保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )
A 、BC=
B ’
C ’ B 、∠A=∠A ’ C 、AC=A ’C ’
D 、∠C=∠C ’ 4、如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )
A 、相等
B 、不相等
C 、互余或相等
D 、互补或相等 5、若α是锐角,sin α=cos50°,则α的值为( )
A 、20°
B 、30° C、40° D 、50° 6、已知:如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍球的高度h 应为 ( ) A 、 2.7m B 、 1.8m
C 、 0.9m
D 、 6m
7、如图,正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A 、D 在PQ 、PR 上,则PA:PQ=( ) A 、
B 、1:2
C 、1:3
D 、2:3
8、若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2
A 、150;
B 、753;
C 、9;
D 、7
9、如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是 ( )
A 、∠ACD=∠
B B 、CH=CE=EF
C 、AC=AF
D 、CH=HD
E
C A
B
H
第4题
A
B
C
D θ
a E
D
C
A 10、在正方形网格中,ABC △的位置如右图所示,则cos
B ∠的值为( )
A 、
1
2
B 、
2
C 、
2
D 、
3
二、填空题:(每小题3分,共30分)
1、当x___________时,x 43-在实数范围内有意义.
2、化简-
8
15
27102
÷31225a
=____________. 3、已知a=3+2 2 ,b=3-2 2 ,则 a 2b -ab 2= 。

4、如右图,已知∠B =∠D=90°,,若要使△AB C ≌△ADC ,那么还要需要一个条件,这个条件可以是:_____________,
理由是:________ ____;(只填一个你认为正确的即可)
5、如图,某同学将一块三角形的玻璃打碎成了三块,•现需配一块完全一样的玻璃,那么只需要其中的第______块就可以了.
6、某飞机在离地面1200米的上空测得地面控制点的俯角为60°, 此时飞机与该地面控制点之间的距离是______米.
7、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°, AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似, 则AD 的长= 。

8、如图,矩形ABCD(AD>AB)中AB=a,∠BDA=θ,
作AE 交BD 于E,且AE=AB,试用a 与θ表示: AD=______,BE=_______.
9、如图,D 、E 分别是△ABC 的边AB 、AC 上的点, DE ∥BC ,
DB
AD
=2,则s △ADE ︰s △ABC = 第5题
D E A
B C
D
A
第10题
10、如图所示,某河堤的横断面是梯形ABCD ,
BC AD ∥,迎水坡AB 长13米,且12tan 5
BAE ∠=
, 则河堤的高BE 为 米.
三、解答题:(共60分) 1、计算:(每题4分,共8分)
⑴22)3223()3223(+--; (2) 3845cos 260sin 3+-
2、(8分)如图所示,校园内有两棵树,相距12米,其中大树高11米,小 树高6米,一只小鸟从大树的顶端飞到小树的顶端,至少要飞多少米?
3、(8分)如图所示,点D 、E
在BC 上,且FD ∥AB ,FE ∥AC , 求证:△ABC ∽△FDE
4、(8分)如图:已知AB 与CD 相交于O ,∠C =∠B ,CO =BO ,试说明△AOC 与△DOB 全等。

A
B
C
D E
F
B
C
5、(8分)如图,有一位同学用一个30 °角的直角三角板估测他们学校的旗杆AB 的高度,他将30°角的直角边水平放在1.3米高的支架CD 上, 三角板的斜边与旗杆的顶点在同一直线上,他又量得D 、B 的距离为15米,试求旗杆AB 的高度.(精确到0.1米)
6、(10分)某船向正东航行,在A 处望见灯塔C 在东北方向,前进到B 处望见灯塔C 在北偏西30o ,又航行了半小时到D 处,望灯塔C 恰在西北方向,若船速为每小时20海里,求A 、D 两点间的距离。

(结果不取近似值)
7、(10分)如图,AB 和CD 是同一地面上的两座相距36在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为450,楼底D 俯角为30
0,求楼CD 的高? (结果保留根号) (满分10分)。

相关文档
最新文档