遥感图像分类的精度评价(kappa统计值与分类精度的对应关系)
遥感分类精度评价中Kappa系数的计算方法

遥感分类中,精度评价是一个很重要的环节。现在需要计算一下里边的Kappa系数,但是我手头上没有书,只能到网上找,但是在中文世界里,要找这样的东西何其难也。英文的倒是一大批。在一个软件的使用手册里我找到了计算方法,说的非常详细,连用户精度,生产者精度,还有我以前没见过的Hellden以及Short尺度,都说的非常清楚。就是里边有一点儿小错误,不过我已经标出来了。
Kappa系数

Kappa系数Kappa在遥感里主要应该是使用在accuracy assessment上。
比如我们就计算标准Kappa值来更好的检验分类结果的正确程度。
The Kappa Index of Agreement (K): this is an important index that the cross classification outputs. It measures the association between the two input images and helps to evaluate the output image. Its values range from -1 to +1 after adjustment for chance agreement. If the two input images are in perfect agreement (no change has occurred), K equals 1. If the two images are completely different, K takes a value of -1. If the change between the two dates occurred by chance, then Kappa equals 0. Kappa is an index of agreement between the two input images as a whole. However, it also evaluates a per-category agreement by indicating the degree to which a particular category agrees between two dates. The per-category K can be calculated using the following formula (Rosenfield andFitzpatrick-Lins,1986):K = (Pii - (Pi.*P.i )/ (Pi. - Pi.*P.i )where:P ii = Proportion of entire image in which category i agrees for both datesP i. = Proportion of entire image in class i in reference image P.i = Proportion of entire image in class i non-reference imageAs a per-category agreement index, it indicates how much a category have changed between the two dates. In the evaluation, each of the two images can be used as reference and the other as non-reference.Kappa 系数是在综合了用户精度和制图精度两个参数上提出的一个最终指标,他的含义就是用来评价分类图像的精度问题,在遥感里主要应该使用在精确性评价(Accuracy Assessment)和图像的一致性判断。
遥感数据分类精度评价的方法和指标

遥感数据分类精度评价的方法和指标遥感技术在地质、农业、环境等领域的应用越来越广泛,其分类精度评价成为评估遥感数据可靠性的重要手段。
本文将介绍遥感数据分类精度评价的方法和指标,并探讨在应用中的局限性和改进方向。
一、方法1. 精确性评价法精确性评价法通过对比遥感分类结果和真实地面样本数据,计算分类的准确率、误差矩阵、Kappa系数等指标。
准确率指标能反映分类精度的整体水平,误差矩阵则可以分析各类别之间的混淆程度,Kappa系数可以衡量分类结果与随机分类的一致性。
这些指标可以从不同角度评价分类的精确性,但需要借助真实样本数据,存在采样不均匀和标注误差等问题。
2. 信息熵评价法信息熵评价法通过信息熵和互信息等信息论指标,衡量分类结果中包含的信息量和类别关联性。
信息熵越小,代表分类结果中包含的信息越少,分类精确度越高;互信息可以衡量分类结果与真实结果的相关程度。
这些指标基于信息论的原理,可以有效评价分类的精度,但对于数据量较大的情况,计算量较大。
3. 混淆矩阵评价法混淆矩阵评价法主要通过构建混淆矩阵,分析分类结果中不同类别之间的混淆情况。
混淆矩阵由真实类别和分类类别组成,可以直观地展示分类结果的正确性和误判情况。
通过混淆矩阵,可以分析分类结果中各类别之间的相似度和差异性,为分类模型的改进提供参考。
二、指标1. 总体精度总体精度是评价分类结果的整体正确率,通过计算分类正确的像素数量与总像素数量的比例得出。
高总体精度代表分类结果准确度高,但并不能说明各类别的精确性。
2. 用户精度和生产者精度用户精度和生产者精度是评价分类结果各类别准确性的重要指标。
用户精度是指分类结果为某一特定类别的样本中,实际属于该类别的比例。
生产者精度是指实际属于某一特定类别的样本中,被正确分类为该类别的比例。
用户精度主要关注分类结果对应每个类别的准确性,生产者精度主要关注每个类别被正确分类的概率。
3. Kappa系数Kappa系数是衡量分类结果与随机分类结果一致性的指标。
遥感图像解译中的分类器选择与精度评估

遥感图像解译中的分类器选择与精度评估遥感图像解译是对遥感图像进行分析和解读,以获取地物信息的过程。
在这个过程中,分类器的选择和精度评估是非常关键的步骤。
本文将探讨遥感图像解译中的分类器选择和精度评估的重要性,并介绍一些常用的分类器和精度评估方法。
一、分类器选择的重要性分类器是遥感图像解译中的重要工具,它能够根据图像的特征将像素分为不同的类别。
分类器的选择直接影响到解译结果的准确性和可靠性。
不同的分类器适用于不同的数据类型和问题,因此选择合适的分类器对于高质量的遥感图像解译非常重要。
在选择分类器时,需要考虑以下几个方面:1. 数据类型:根据遥感图像的数据类型选择合适的分类器。
例如,对于高分辨率的光学遥感图像,常用的分类器有支持向量机(SVM)、人工神经网络(ANN)等;而对于雷达遥感图像,常用的分类器有随机森林(RF)和最大似然法(ML)等。
2. 算法性能:分类器的算法性能也是选择的重要考虑因素之一。
分类器的训练速度、内存消耗以及对于噪声和异常值的鲁棒性都需要考虑在内。
同时,分类器的算法性能与训练样本的大小和质量也密切相关,因此需要根据实际情况进行选择。
3. 可扩展性:分类器的可扩展性是指该方法是否适用于不同的场景和问题。
由于遥感图像的类型和问题的复杂性不同,选择一个具有较好的可扩展性的分类器可以减少重新训练的工作量并提高解译效率。
二、精度评估的重要性精度评估是对分类结果进行验证和评估的过程,它能够衡量分类器的准确性以及解译结果的可靠性。
精度评估的目的是确定分类器的误差类型和大小,以及解译结果的可信度。
在进行精度评估时,常用的方法有混淆矩阵、准确度评估、精确率和召回率等。
这些方法能够提供分类器的整体性能和各个类别的表现情况,帮助我们了解分类器的优点和不足之处,并进行相应的改进。
精度评估的过程中,需要注意以下几个问题:1. 样本选择:在进行精度评估时,需要选择一定数量的具有代表性的样本进行验证。
这些样本应该涵盖不同的类别和地理位置,以保证评估结果的全面性和可靠性。
遥感图像分类方法与准确性评价指标

遥感图像分类方法与准确性评价指标遥感图像分类是利用遥感数据进行地物分类的过程,其目的是将遥感图像中的不同地物进行识别与分类。
在遥感图像分类中,有效的分类方法和准确性评价指标对于获得准确的分类结果至关重要。
一、常用的遥感图像分类方法1. 监督分类方法监督分类方法是指在进行分类之前,通过在选定的地物样本中确定其类别,并利用这些样本进行分类算法的训练。
常用的监督分类方法包括最大似然分类、支持向量机、决策树等。
最大似然分类是一种基于统计理论的方法,其基本假设是不同类别地物的像元值符合某种概率分布。
支持向量机是一种基于几何学原理的分类方法,其核心思想是将不同类别地物的像元用超平面分割成两个部分,以实现分类。
决策树是一种基于判定树的分类方法,通过根据不同属性进行逐级判定,最终将地物分类。
2. 无监督分类方法无监督分类方法是指在进行分类之前不需要先进行样本标签的确定,而是根据图像中像元之间的相似性和差异性进行聚类。
常用的无监督分类方法包括K-means 聚类、高斯混合模型等。
K-means聚类是一种基于距离度量的分类方法,其核心思想是将图像中的像元根据相似性进行分组,形成不同的类,实现地物分类。
高斯混合模型是一种基于概率统计的分类方法,通过假设图像像元符合多个高斯分布的线性组合,确定不同类别地物的概率分布。
二、遥感图像分类准确性评价指标1. 精度(Accuracy)精度是指分类结果中被正确分类的像元数占总像元数的比例。
精度越高,表示分类结果越准确。
在实际应用中,精度常常使用整体精度(Overall Accuracy)和Kappa系数进行评价。
整体精度是指分类正确的像元数占总像元数的比例,其范围为0到1之间,1表示分类完全正确。
Kappa系数是基于整体精度的一种校正指标,它考虑了分类结果与随机分类之间的差异性,范围也在0到1之间,1表示没有误分类。
2. 生产者精度(Producer's Accuracy)生产者精度是指在分类结果中,某一类地物被正确分类的像元数占该类地物实际像元数的比例。
测绘技术中如何进行遥感影像的地物检测和分类识别的准确性评估

测绘技术中如何进行遥感影像的地物检测和分类识别的准确性评估遥感影像的地物检测和分类识别是现代测绘技术中的重要内容之一。
准确性评估是保证地物检测和分类识别结果可靠性的关键环节。
本文将探讨测绘技术中遥感影像地物检测和分类识别的准确性评估方法及其应用。
一、遥感影像地物检测的准确性评估在遥感影像的地物检测中,为了保证结果的准确性,需要进行准确性评估。
准确性评估的关键在于正确标定参考样本。
常用的方法包括人工解译法和辅助工具法。
1. 人工解译法:该方法通过人工解译的方式,将地物实体标记在遥感影像上,形成参考样本。
然后与地物检测结果进行对比,计算准确性指标。
这种方法的优点是准确性较高,但费时费力,对人员要求较高。
2. 辅助工具法:该方法通过辅助工具,如GIS软件或专业软件,辅助标定参考样本。
利用这些工具,可以进行自动提取或手动选择地物,形成参考样本。
然后与地物检测结果进行对比,计算准确性指标。
这种方法的优点是效率较高,但准确性可能受到工具的影响。
二、遥感影像地物分类识别的准确性评估地物分类识别是将遥感影像中的地物按照事先设定的类别进行分类的过程。
准确性评估是判断分类结果与实际情况的一致性。
常用的方法包括混淆矩阵法和Kappa系数法。
1. 混淆矩阵法:该方法通过构建混淆矩阵来评估分类结果的准确性。
混淆矩阵是一种二维表格,列出了分类结果与实际情况之间的对应关系。
通过统计混淆矩阵中分类正确和分类错误的数量,计算准确性指标,如总体精度、生产者精度和用户精度等。
这种方法直观易懂,常用于判断分类结果的准确性。
2. Kappa系数法:该方法通过计算Kappa系数来评估分类结果的准确性。
Kappa系数是一种度量分类一致性的统计指标。
它考虑了由于随机性引起的分类一致性,并将其与分类准确性进行比较。
Kappa系数的取值范围为-1到1,越接近1表示分类结果越准确。
这种方法可以解决混淆矩阵法中的样本不平衡问题,常用于评估分类结果的准确性。
分类精度评价

遥感影像分类精度评价遥感影像分类精度评价(2009-11-20 14:20:57)在ENVI中,选择主菜单->Classification->Post Classification->ConfusionMatrix->Using Ground Truth ROIs。
将分类结果和ROI输入,软件会根据区域自动匹配,如不正确可以手动更改。
点击ok后选择报表的表示方法(像素和百分比),就可以得到精度报表。
对分类结果进行评价,确定分类的精度和可靠性。
有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。
对一帧遥感影像进行专题分类后需要进行分类精度的评价,而进行评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和拥护精度。
1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。
混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。
混淆矩阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量,有像元数和百分比表示两种。
2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。
被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。
像元总数等于所有地表真实分类中的像元总和。
3、Kappa系数:是另外一种计算分类精度的方法。
它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方差减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。
遥感影像分类精度评价教学内容

价
遥感影像分类精度评价
在ENVI中,选择主菜单->Classification->Post Classification->Confusion Matrix- >Using Ground Truth ROIs将分类结果和ROI输入,软件会根据区域自动匹配, 如不正确可以手动更改。点击ok后选择报表的表示方法(像素和百分比),就 可以得到精度报表。
6、制图精度:指假定地表真实为A类,分类器能将一幅图像的像元归为A
的概率
7、用户精度:指假定分类器将像元归到A类时,相应的地表真实类别是A的概率。混淆矩阵中的几项价指标,如下:总体分类精度
等于被正确分类的像元总和除以总像元数。被正确分类的像元数目沿着混淆矩 阵的对角线分布,总像元数等于所有真实参考源的像元总数,如本次精度分类 精度表中的Overall Accuracy= (1849/2346)
面。本例中,林地有419个真实参考像元,其中正确分类265,12个是其他类
别错分为林地(混淆矩阵中林地一行其他类的总和),那么其错分误差为
12/419=2.9%。
漏分误差
指本身属于地表真实分类,当没有被分类器分到相应类别中的像元数。如在本 例中的耕地类,有真实参考像元465个,其中462个正确分类,其余3个被错 分为其余类(混淆矩阵中耕地类中一列里其他类的总和),漏分误差为
类的制图精度和拥护精度
1混淆矩阵(Confusion Matrix):主要用于比较分类结果和地表真实信息, 可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个地表 真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。混淆矩 阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分 类图象中对应于相应类别的数量,有像元数和百分比表示两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感图像分类的精度评价
精度评价是指比较实地数据与分类结果,以确定分类过程的准确程度。
分类结果精度评价是进行土地覆被/利用遥感监测中重要的一步,也是分类结果是否可信的一种度量。
最常用的精度评价方法是误差矩阵或混淆矩阵(Error Matrix )方法(Congalton ,1991;Richards ,1996;Stehman ,1997),从误差矩阵可以计算出各种精度统计值,如总体正确率、使用者正确率、生产者正确率(Story 等,1986),Kappa 系数等。
误差矩阵是一个n ×n 矩阵(n 为分类数),用来简单比较参照点和分类点。
一般矩阵的行代表分类点,列代表参照点,对角线部分指某类型与验证类型完全一致的样点个数,对角线为经验证后正确的样点个数(Stehman ,1997)。
对分类图像的每一个像素进行检测是不现实的,需要选择一组参照像素,参照像素必须随机选择。
Kappa 分析是评价分类精度的多元统计方法,对Kappa 的估计称为KHAT 统计,Kappa 系数代表被评价分类比完全随机分类产生错误减少的比例,计算公式如下:
2N.(.)
K=(.)r
ii i i i i i x x x N x x ++∧++--∑∑∑
式中 K ∧
是Kappa 系数,r 是误差矩阵的行数,x ii 是i 行i 列(主对角线)上的值,x i +和x +i 分别是第i 行的和与第i 列的和,N 是样点总数。
Kappa 系数的最低允许判别精度0.7(Lucas 等,1994)
表1 kappa 统计值与分类精度对应关系 (Landis and Koch 1977)
Table1 classification quality associated to a Kappa statistics value
1. Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing Environ., 1991, 37: 35-46.
2. Richards, J. A. Classifier performance and map accuracy. Remote Sensing Environ. 1996, 57:
161-166.
3.Stehman, S. V. Selecting and interpreting measures of thematic classification accuracy.
Remote Sensing Environ., 1997, 62: 77-89.
4.Story, M. and Congalton, R. G. Accuracy assessment: a user’s perspective. Photogrammetric
Engineering & Remote Sensing, 1986, 48(1): 131-137.
5.Lucas, I. F. J., Frans, J. M. Accuracy assessment of satellite derived land-cover data: a review.
Photogrammetric Engineering & Remote Sensing, 1994, 60(4): 410-432.。