固体物理重点计算题详细解答

合集下载

固体物理试题分析及答案

固体物理试题分析及答案

固体物理试题分析及答案一、单项选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是由哪种原子排列形成的?A. 金属原子B. 非金属原子C. 金属原子和非金属原子D. 任意原子答案:C解析:晶体的周期性结构是由金属原子和非金属原子按照一定的规律排列形成的,这种排列方式使得晶体具有长程有序性。

2. 哪种类型的晶体具有各向异性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:C解析:单斜晶体属于三斜晶系,其三个轴的长度和夹角均不相同,因此具有各向异性。

3. 固体物理中,电子的能带结构是由什么决定的?A. 原子核B. 电子C. 原子核和电子D. 晶格答案:C解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。

4. 哪种类型的晶体具有完整的布里渊区?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有完整的布里渊区,这是因为立方晶体的晶格常数相等,使得布里渊区的形状为正八面体。

5. 固体物理中,哪种类型的晶体具有最高的对称性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有最高的对称性,这是因为立方晶体的晶格常数相等,且晶格中的原子排列具有高度的对称性。

二、填空题(每题2分,共10分)1. 晶体的周期性结构是由______和______共同决定的。

答案:原子核、电子解析:晶体的周期性结构是由原子核和电子共同决定的,原子核提供了晶格的框架,而电子则填充在晶格中,形成了晶体的周期性结构。

2. 晶体的对称性可以通过______来描述。

答案:空间群解析:晶体的对称性可以通过空间群来描述,空间群是描述晶体对称性的数学工具,它包含了晶体的所有对称操作。

3. 电子的能带结构是由______和______共同决定的。

答案:原子核、电子解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。

(完整word版)固体物理学习题解答(完整版)

(完整word版)固体物理学习题解答(完整版)

《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。

分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2)体心立方:8(3)面心立方:6(4)六方密堆积:6(5)金刚石:。

固体物理试题分析及答案

固体物理试题分析及答案

固体物理试题分析及答案一、选择题(每题2分,共10分)1. 固体物理中,晶格振动的量子化描述是()。

A. 声子B. 电子C. 空穴D. 磁子答案:A分析:晶格振动的量子化描述是声子,声子是晶格振动的量子化激发,是固体物理中描述晶格振动的基本准粒子。

2. 能带理论中,导带和价带之间的能量差称为()。

A. 能隙B. 费米能级C. 功函数D. 电子亲和能答案:A分析:能带理论中,导带和价带之间的能量差称为能隙,能隙的大小决定了材料的导电性质。

3. 布拉格定律描述的是()。

A. X射线衍射B. 电子衍射C. 光的干涉D. 电子的散射答案:A分析:布拉格定律描述的是X射线衍射现象,它给出了X射线在晶体中衍射的条件,是晶体结构分析的重要理论基础。

4. 金属中的自由电子模型中,电子的准经典描述是()。

A. 费米气体B. 玻色气体C. 爱因斯坦模型D. 德布罗意波答案:A分析:金属中的自由电子模型中,电子的准经典描述是费米气体,它描述了金属中电子的统计行为和能量分布。

5. 固体中的超导现象是由于()。

A. 电子-电子相互作用B. 电子-声子相互作用C. 电子-光子相互作用D. 电子-电子排斥答案:B分析:固体中的超导现象是由于电子-声子相互作用,这种相互作用导致了电子配对,从而形成了超导态。

二、填空题(每题2分,共10分)1. 固体物理中,晶格常数的倒数与晶格振动频率成正比,这个关系称为________。

答案:德拜模型分析:德拜模型描述了晶格振动频率与晶格常数的关系,指出晶格常数的倒数与晶格振动频率成正比。

2. 能带理论中,材料的导电性由________决定。

答案:费米能级分析:能带理论中,材料的导电性由费米能级决定,费米能级位于导带和价带之间,决定了材料的电子分布和导电性质。

3. 在固体物理中,________是指晶体中原子排列的规则性和周期性。

答案:晶格分析:晶格是指晶体中原子排列的规则性和周期性,它是固体物理中描述晶体结构的基本概念。

《固体物理学》答案[1]

《固体物理学》答案[1]

* v0 =
(2π )3 v0
1.5 证明:倒格子矢量 G = h1b1 + h2 b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证:
v v v uuu v uuu r a r a a a CA = 1 − 3 , CB = 2 − 3 h1 h3 h2 h3 uuu r v Gh1h2h3 ⋅ CA = 0 容易证明 v uuu r Gh1h2h3 ⋅ CB = 0 v v v v G = h1b1 + h2b2 + h3b3 与晶面系 (h1h2 h3 ) 正交。 v v v h k l ( ) 2 + ( )2 + ( )2 ;说明面 a b c
图 1.3 体心立方晶胞
(2)对体心立方晶体,任一个原子有 8 个最近邻,若原子刚性球堆积,如图 1.3 所示,体心位置 O 的原 子 8 个角顶位置的原子球相切, 因为晶胞空间对角线的长度为 3a = 4r , V = a 3 , 晶胞内包含 2 个原子, 所
2* 4 3π( 以ρ = a3
3a 3 4

3 ε 23 2 1 − ε 23 2 ε 33
由上式可得
ε 23 = 0, ε 32 = 0, ε 11 = ε 22 . ε 11 ε = 0 0 0 ε 11 0 0 0 . ε 33
于是得到六角晶系的介电常数
附:证明不存在 5 度旋转对称轴。 证:如下面所示,A,B 是同一晶列上 O 格点的两个最近邻格点,如果绕通过 O 点并垂直于纸面的转轴顺时 针旋转θ 角,则 A 格点转到 A 点,若此时晶格自身重合,点处原来必定有一格点,如果再绕通过 O 点的
3a = 8r , 晶胞体积 V = a 3

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理习题带答案

固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有

r
m


rn
。证明:要使两原子处于平衡状

r
m


rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2

2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m

r0
m 1
n

r0
n 1
。所以
m nm r0 。 n
0
r0



d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r


固体物理试题解答

固体物理试题解答

一.简答题(20)1、玻恩-卡门边界条件及其重要意义。

玻恩-卡门边界条件:设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第tN +j个原子的运动情况一样,其中t=1,2,3…。

书P109其重要意义:P992、说明淬火后的金属材料变硬的原因。

P143我们已经知道晶体的一部分相对于另一部分的滑移,实际是位错线的滑移,位错线的移动是逐步进行的,使得滑移的切应力最小。

这就是金属一般较软的原因之一。

显然,要提高金属的强度和硬度,似乎可以通过消除位错的办法来实现。

但事实上位错是很难消除的。

相反,要提高金属的强度和硬度,通常采用增加位错的办法来实现。

金属淬火就是增加位错的有效办法。

将金属加热到一定高温,原子振动的幅度比常温时的幅度大得多,原子脱离正常格点的几率比常温时大得多,晶体中产生大量的空穴、填隙缺陷。

这些点缺陷容易形成位错。

也就是说,在高温时,晶体内的位错缺陷比常温时多得多。

高温的晶体在适宜的液体中急冷,高温时新产生的位错来不及恢复和消退,大部分被保留了下来。

数目众多的位错相互交织在一起,某一方向的位错的滑移,会受到其他方向位错的牵制,使位错滑移的阻力大大增加,使得金属变硬。

3、杂化轨道理论。

P61为了解释金刚石中碳原子具有4个等同的共价键,1931年泡林(Pauling )和斯莱特(Slater )提出了杂化轨道理论。

碳原子有4个价电子2s ,2p x ,2p y ,2p z ,它们分别对应ϕ2s ,ϕ2px ,ϕ2py ,ϕ2pz 量子态,在构成共价键时,它们“混合”起来重新组成四个等价的轨道,其中每一个轨道包含有s 41和p 43的成分,这种轨道称为杂化轨道,分别对应4个新的量子态()z y x p p p 222s 2121ϕϕϕϕψ+++= ()z y x p p p 222s 2221ϕϕϕϕψ--+= ()z y x p p p 222s 2321ϕϕϕϕψ-+-= ()zy x p p p 222s 2421ϕϕϕϕψ+--= 4个电子分别占据ψ1,ψ2,ψ3,ψ4新轨道,在四面体顶角方向形成4个共价键。

固体物理习题解答参考答案晶体结构

固体物理习题解答参考答案晶体结构
r r r r r r r R = l ( 2i ) + m ( 2 j ) + n 2k + (i + j + k )
r
( )
。由 R 所定义的也是一个点阵常数为
r
r r r ( i 2 的 SC 点阵,但相对于上面一个 SC 点阵位移了一个矢量 + j + k ) ,
这个点正好位于体心位置。 上面两个 SC 点阵穿套起来正好是一个 bcc 点阵,故 ni 或全为奇数,或全为偶数所定义的是一个 bcc 点阵。 (2)若
体心立方晶格原胞基矢 a1 = (−i + j + k ) a2 = (i − j + k ) a3 = (i + j − k ) 体心立方晶格原胞体积 倒格子基矢:
r
a 2
r
r
r r
ห้องสมุดไป่ตู้
a r 2
r
r r
a r 2
r
r
同理: 可见由 为基矢构成的格子为面心立方格子。
面心立方格子原胞基矢: 面心立方格子原胞体积: 倒格子基矢: 同理 可见由 为基矢构成的格子为体心立方格子。
(2) 体心立方(书P3,图1-3)
r 取 原 子 球 相 切 时 的 半 径 ( 体 对 角 线 的 1/4 ) , r= 3a / 4 ,n=2, V = a 3 所 以
ρ=
n 4π r 3 3 = 3π / 8 V
(3) 面心立方(书P4,图1-7)
r 取 原 子 球 相 切 时 的 半 径 ( 面 对 角 线 的 1/4 ) r= 2a / 4 ,n=4, V = a 3 , 所 以
则由 ε = AxT ε Ax 得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 213422()()4ab i j k i j k a aππ∴=⨯⨯-++=-++同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

所以,面心立方的倒格子是体心立方。

(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω3123,,222(),,2222,,222a a a a a a a a a a a a a-Ω=⋅⨯=-=-,223,,,,()2222,,222i j k a a a a a a j k a a a ⨯=-=+- 213222()()2a b j k j k a aππ∴=⨯⨯+=+同理可得:232()2()b i k ab i j aππ=+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。

所以,体心立方的倒格子是面心立方。

1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长.解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G h i k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++22222()a d h k l =++2.1、证明两种一价离子组成的一维晶格的马德隆常数为(2ln 2=α)。

证明:设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有(1)11112[ (234)ij rr r r r rα±'==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为234(1) (34)n x x x x x x +=-+-+ 当X=1时,1111 (2234)n-+-+=2.3、若一晶体的相互作用能可以表示为 ()mnu r r r αβ=-+试求:(1)平衡间距0r ;(2)结合能W (单个原子的);(3)体弹性模量;(4)若取02,10,3,4m n r A W eV ====,计算α及β的值。

解:(1)求平衡间距r 0由0)(0==r r drr du ,有:mn nm n m m n n m r r n r m --++⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⇒=-1101.0100αββαβα结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量称为结合能(用w 表示) (2)求结合能w (单个原子的)题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。

显然结合能就是平衡时,晶体的势能,即U min即:nmr r r U W 000)(βα-+=-= (可代入r 0值,也可不代入)(3)体弹性模量由体弹性模量公式:0220209r r U V r k ⎪⎪⎭⎫ ⎝⎛∂∂=(4)m = 2,n = 10,A r 30=, w = 4eV ,求α、β22n α∴=818105210⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=αβαβr ① )5(54)(802010.200代入αβαβα=-=+-=r r r r r UeV r r U W 454)(20==-=⇒α② 将A r 30=,J eV 1910602.11-⨯=代入①②211523810459.910209.7mN m N ⋅⨯=⋅⨯=⇒--βα 详解:(1)平衡间距r 0的计算 晶体内能()()2m n N U r r rαβ=-+ 平衡条件0r r dUdr==,11000m n m n r r αβ++-+=,10()n m n r m βα-= (2)单个原子的结合能01()2W u r =-,00()()m n r r u r r r αβ==-+,10()n m n r m βα-= 1(1)()2mn m m n W n m βαα--=-(3)体弹性模量0202()V UK V V ∂=⋅∂ 晶体的体积3V NAr =,A 为常数,N 为原胞数目 晶体内能()()2m n N U r r rαβ=-+ U U r V r V ∂∂∂=∂∂∂1121()23m n N m n r r NAr αβ++=- 221121[()]23m n U N r m n V V r r r NAr αβ++∂∂∂=-∂∂∂ 022222000001[]29m n m n V V U N m n m n V V r r r r αβαβ=∂=-+-+∂ 由平衡条件1120001()023m n V V U N m n Vr r NAr αβ++=∂=-=∂,得00m n m n r r αβ=222220001[]29m n V V U N m n V V r r αβ=∂=-+∂ 02220001[]29m nV V U N m n m n V V r r αβ=∂=-+∂2000[]29m n N nm V r r αβ=--+ 000()2m n N U r r αβ=-+ 020220()9V V U mnU V V =∂=-∂ 体弹性模量009mn K U V = (4)若取02,10,3,4m n r A W eV ====10()n mn r m βα-=,1(1)()2mn m m n W n m βαα--=-1002W r β=,20100[2]r W r βα=+-95101.210eV m β=⨯⋅,1929.010eV m α-=⨯⋅3.2、讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波解,当M = m 时与一维单原子链的结果一一对应。

解:质量为M 的原子位于2n-1, 2n+1, 2n+3 ……;质量为m 的原子位于2n , 2n+2, 2n+4 ……。

牛顿运动方程2221212121222(2)(2)n n n n n n n n m M μβμμμμβμμμ+-+++=---=---N 个原胞,有2N 个独立的方程设方程的解[(2)]2[(21)]21i t na q n i t n aq n Ae Beωωμμ--++==,代回方程中得到22(2)(2cos )0(2cos )(2)0m A aq B aq A M B βωβββω⎧--=⎪⎨-+-=⎪⎩ A 、B 有非零解,2222cos 02cos 2m aqaq M βωβββω--=--,则 12222()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+两种不同的格波的色散关系1222212222()4{1[1sin ]}()()4{1[1sin ]}()m M mM aq mM m M m M mM aq mM m M ωβωβ+-+=+-++=--+一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.当M m =时4cos 24sin 2aq m aq m βωβω+-==,两种色散关系如图所示: 长波极限情况下0q →,sin()22qa qa≈, (2)q mβω-=与一维单原子晶格格波的色散关系一致.3.3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为β和10β,令两种原子质量相等,且最近邻原子间距为2a 。

试求在0,q q a π==处的()q ω,并粗略画出色散关系曲线。

此问题模拟如2H 这样的双原子分子晶体。

(注 :课本中的c 即为此题中的β k 对应q)答:(1)浅色标记的原子位于2n-1, 2n+1, 2n+3 ……;深色标记原子位于2n , 2n+2, 2n+4 ……。

第2n 个原子和第2n +1个原子的运动方程:212222112121122112222()()n n n n n n n nm m μββμβμβμμββμβμβμ+-+++=-+++=-+++体系N 个原胞,有2N 个独立的方程方程的解:1[(2)]221[(21)]221i t n aq n i t n aq n AeBeωωμμ--++==,令221122/,/m m ωβωβ==,将解代入上述方程得:11222222212121122222221212()()0()()0i aq i aq i aq i aq A e eB eeA B ωωωωωωωωωω--+--+=+-+-=A 、B 有非零的解,系数行列式满足:11222222212121122222221212(),()0(),()i aq i aq i aq i aq eeeeωωωωωωωωωω--+--+=+-+-1111222222222222121212()()()0i aq i aq i aq i aq e e e e ωωωωωωω--+--++= 1111222222222222121212()()()0i aq i aq i aq i aq eeeeωωωωωωω--+--++=因为1ββ=、210ββ=,令2222012010,10c c m mωωωω====得到 222400(11)(10120cos )0aq ωωω--+=两种色散关系:220(1120cos 101)qa ωω=±+当0q =时,220(11121)ωω=±,0220ωωω+-==当q aπ=时,22(1181)ωω=±,00202ωωωω+-==(2)色散关系图:44.2、写出一维近自由电子近似,第n 个能带(n=1,2,3)中,简约波数2k aπ=的0级波函数。

相关文档
最新文档