【精选】人教版七年级上册数学 代数式专题练习(word版

合集下载

七年级数学代数式易错题(Word版 含答案)

七年级数学代数式易错题(Word版 含答案)

3.某校要将一块长为 a 米,宽为 b 米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图 1,在空地上横、竖各铺一条宽为 4 米的石子路,其余空地种植花草. 方案二:如图 2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地 铺筑成石子路.
(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有 π,则保留) (2)若 a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π 取 3.14). 【答案】 (1)解:方案一:∵ 石子路宽为 4, ∴ S 石子路面积=4a+4b-16,
与 的差一定是 9 的倍数
(4)解:∵ + + + + + =3470+
∴ 222(a+b+c)=222×15+140+
∵ 100< <1000, ∴ 3570<222(a+b+c)<4470, ∴ 16<a+b+c≤20. 尝试发现
只有 a+b+c=19,此时 =748 成立, 这个三位数为 748.
一、初一数学代数式解答题压轴题精选(难)
1.任何一个整数 N,可以用一个的多项式来表示:
N=
.
例如:325=3×102+2×10+5. 一个正两位数的个位数字是 x,十位数字 y. (1)列式表示这个两位数; (2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明 新数与原数的和能被 11 整除. (3)已知 是一个正三位数.小明猜想:“ 与 的差一定是 9 的倍数。”请你帮助
2.|a|的几何意义是数轴上表示数 a 的点与原点 O 的距离,例如:|3|=|3﹣0|,即|3﹣0| 表示 3、0 在数轴上对应两点之间的距离.一般地,点 A、B 在数轴上分别表示数 a、b,那 么 A、B 之间的距离可表示为|a﹣b|,解决下面问题: (1)数轴上表示﹣1 和 2 的两点之间的距离是________;数轴上 P、Q 两点的距离为 6, 点 P 表示的数是 2,则点 Q 表示的数是________; (2)点 A 在数轴上表示数为 x,点 B、C 在数轴上表示的数分别为多项式 2m2n+mn﹣2 的 常数项和次数.________ ①若 B、C 两点分别以 3 个单位长度/秒和 2 个单位长度/秒的速度同时向右运动 t 秒.当 OC =2OB 时,求 t 的值;________ ②用含 x 的绝对值的式子表示点 A 到点 B、点 A 到点 C 的距离之和为________,直接写出

七年级数学上册 代数式专题练习(解析版)

七年级数学上册 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

深圳观澜街道观澜二中数学代数式单元练习(Word版 含答案)

深圳观澜街道观澜二中数学代数式单元练习(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。

最新七年级上册数学压轴题专题练习(word版

最新七年级上册数学压轴题专题练习(word版

最新七年级上册数学压轴题专题练习(word 版一、压轴题1.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图1是显示部分代数式的“等和格”,可得a=_______(含b 的代数式表示); (2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________; (3)图3是显示部分代数式的“等和格”,求b 的值。

(写出具体求解过程)2.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 3.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 4.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

代数式(基础、典型、易错、压轴)分类专项训练(原卷版)

代数式(基础、典型、易错、压轴)分类专项训练(原卷版)

第4章代数式(基础、典型、易错、压轴)分类专项训练【基础】一、单选题1.(2022·浙江·七年级专题练习)化简:﹣(﹣2)=( ) A .﹣2B .﹣1C .1D .22.(2022·浙江金华·七年级期末)如果单项式3n xy 和24m x y -是同类项,则m 和n 的值是( ) A .2,1B .2-,1C .1-,2D .1,23.(2022·浙江杭州·七年级期中)若6x y =+,11xy =,则225x xy y -+的值为( ) A .3B .5C .17D .253-4.(2022·浙江丽水·七年级期末)若20x y +-=,则代数式8x y --+的值是( ) A .10B .8C .6D .45.(2022·浙江绍兴·七年级期末)已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a 、b 、m 、n 中的一个量即可,则要知道的那个量是( )A .aB .bC .mD .n6.(2022·浙江丽水·七年级期末)若313m n x y -与3-x y 是同类项,则m -2n 的值为( ) A .1B .0C .-1D .-37.(2022·浙江台州·七年级阶段练习)如果单项式2522m n a b -+与32n ab -可以合并同类项,那么m 和n 的值分别为( ) A .2,3B .3,2C .-3,2D .3,-28.(2022·浙江绍兴·七年级期末)如图,小明在33⨯的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为1A ,2A ,3A ,每列的三个式子的和自左至右分别记为1B ,2B ,3B ,其中值可以等于732的是( )A .1AB .1BC .2AD .3B二、填空题9.(2022·浙江台州·七年级期末)写出一个系数为3,次数为2的单项式. _____. 10.(2022·浙江舟山·七年级期末)用代数式表示:x 的2倍与y 的平方的差___________. 11.(2022·浙江台州·七年级阶段练习)单项式342m n -的系数是______,次数是________.12.(2022·浙江台州·七年级阶段练习)下列说法中:①若a a =-,则0a <;②若0a <,0ab <,则0b >;③式子233412xy x y -+是七次三项式;④若a b =,m 是有理数,则a bm m=;⑤几个有理数相乘,负因数的个数是奇数时积为负.其中说法正确的是____________.13.(2022·浙江台州·七年级阶段练习)已知1004a b -=-,则1322a b -+=__________. 14.(2022·浙江绍兴·七年级期末)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第67个数为______.15.(2022·浙江杭州·七年级期末)已知3x =,则代数式11x x x x ⎛⎫-⋅ ⎪+⎝⎭的值为______.三、解答题16.(2022·浙江·七年级专题练习)化简: (1)﹣(﹣5); (2)﹣(+7);(3)23⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦.17.(2022·浙江台州·七年级阶段练习)先化简,再求值:(1)2225435256x x x x x +----+,其中3x =(2)2211312()()2323x x y x y --+-+,其中-2x =,23y =18.(2022·浙江台州·七年级阶段练习)如图,长为60cm ,宽为(cm)x 的大长方形被分割为7小块,除阴影A 、B 外,其余5块是形状大小完全相同的小长方形,其中小长方形的较短一边长度为10cm .(1)从图可知,每块小长方形的较长的一边长度是_________cm .代数式30x -,40x -中,哪一个代数式的值为正数?_______________.(2)请你先用含x 的代数式表示阴影A 、B 的面积,并说明阴影A 的面积一定比阴影B 的面积大2300cm . (3)设阴影A 和B 的面积之和为2(cm )S ,阴影A 和B 的周长之和为(cm)C ,问代数式“S -C ”的值可能是负数吗?请你先作出判断,并说明理由.19.(2022·浙江·杭州市大关中学七年级期中)已知s =﹣3,能否确定代数式(s ﹣2t )(s +2t +1)+4t 1()2t +的值?如果能确定,试求出这个代数式的值.【典型】一、单选题1.(2022·浙江·宁波市海曙外国语学校七年级开学考试)若x =2时,代数式ax 4+bx 2+5的值是3,则当x =﹣2时,代数式ax 4+bx 2+7的值为( ) A .﹣3B .3C .5D .72.(2020·浙江·七年级期中)下列说法正确的是( ) A .0是单项式;B .a -的系数是1C .31a a+是三次二项式 D .23a b 与2ab -是同类项3.(2020·浙江嘉兴·七年级期末)下列去括号正确的是( ) A .a 2-(2a -b+c)=a 2-2a -b+c B .-(x -y)+(xy -1)=-x -y+xy -1 C .a -(3b -2c)=a -3b -2c D .9y 2-[x -(5y+4)]=9y 2-x+5y+44.(2020·浙江金华·七年级期中)如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n5.(2021·浙江绍兴·七年级期中)杨辉是我国南宋时期杰出的数学家和教育家,如图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”.它是古代重要的数学成就,比西方的“帕斯卡三角形”早了300多年.请仔细观察计算该图中第n 行中所有数字之和为( )A .2n ﹣2B .2n ﹣1C .2nD .2n +16.(2022·浙江·杭州育才中学七年级期中)将正方形BEFG 和正方形DHMN 按如图所示放入长方形ABCD 中,AB =10,BC =13,若两个正方形的重叠部分长方形甲的周长为10,则下列无法确定的选项为( )A .乙的周长B .丙的周长C .甲的面积D .乙的面积二、填空题7.(2021·浙江·杭州育才中学七年级阶段练习)如果单项式4n x y -与22m x y 是同类项,则代数式1254m mn +-的值为______.8.(2022·浙江·七年级专题练习)若|a+3|+(b ﹣6)2=0,则a +b=_____.9.(2022·浙江·七年级专题练习)若x ,y 互为相反数,a 、b 互为倒数,则代数式16x+16y-2ab的值是_______.10.(2022·浙江宁波·七年级期末)已知5x y =--,2xy =,计算334x y xy +-的值为______.11.(2020·浙江温州·七年级阶段练习)已知a 、b 互为相反数,c 、d 互为倒数,且2m =,则a +b +3cd -m 2的值是_____.12.(2020·浙江杭州·七年级期末)由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍): 第1行 2 第2行 4 6 第3行8 10 12 14若规定坐标号(,)m n 表示第m 行从左向右第n 个数,则(5,6)所表示的数是________;数2022对应的坐标号是________.13.(2020·浙江·诸暨市滨江初级中学七年级阶段练习)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题14.(2020·浙江·七年级期末)“十一”期间,某中学七年级(1)班的三位老师带领本班a 名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元. (1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?【易错】一.选择题(共10小题)1.(2021秋•西湖区期末)下列各组中的两项是同类项的是( ) A .2a 与2abB .3xy 与﹣yxC .2a 2b 与2ab 2D .x 2y 与﹣12.(2021秋•嘉兴期末)代数式x ﹣2(y ﹣1)去括号正确的是( ) A .x ﹣2y ﹣1B .x ﹣2y +1C .x ﹣2y ﹣2D .x ﹣2y +23.(2021秋•鄞州区期末)下列计算正确的是( ) A .2a +b =2ab B .2a 2﹣a =2a C .a 2b ﹣2a 2b =﹣a 2bD .2ab +ab =2a 2b 24.(2021秋•湖州期末)单项式﹣12x 3y 的系数和次数分别是( ) A .﹣12,4B .﹣12,3C .12,3D .12,45.(2021秋•定海区期末)下列各组中的两个代数式属于同类项的是( ) A .3xy 与﹣x 2yB .﹣2.1与C.2a3b与2ab3D.3ab2与0.001ba26.(2021秋•青田县期末)去括号等于()A.B.C.D.7.(2021秋•西湖区期末)请仔细分析下列赋予4a实际意义的例子,其中错误的是()A.若葡萄的价格是4元/千克,则4a表示买a千克该种葡萄的金额B.若a表示一个正方形的边长,则4a表示这个正方形的周长C.一辆汽车以a千米/小时的速度行驶,从A城到B城需4小时,则4a表示A,B两城之间的路程D.若4和a分别表示一个两位数中的十位数字和个位数字,则4a表示这个两位数8.(2021秋•江北区期末)当x=1时,代数式px3+qx+1的值是﹣2020,则当x=﹣1时,代数式px3+qx+1的值是()A.2019B.2020C.2021D.20229.(2021秋•海曙区期末)如果代数式a﹣2b的值为4,那么代数式4b﹣2a﹣3的值等于()A.﹣11B.﹣7C.7D.110.(2021秋•越城区期末)当x为1,2,4时,代数式ax+b的值分别是m,1,n,则2m+n的值为()A.4B.3C.2D.1二.填空题(共2小题)11.(2021秋•西湖区期末)3x﹣7x=.12.(2021秋•东阳市期末)按下面的程序计算,若输出结果为16,则满足条件的正数a为.三.解答题(共2小题)13.(2021秋•杭州期末)在数学课上,老师给出了一道题目:“先化简再求值:(x2+□x﹣1)﹣3(x2﹣2x+4),其中x=﹣1”,□中的数据被污染,无法解答,只记得□中是一个实数,于是老师即兴出题,请同学们回答.(1)化简后的代数式中常数项是多少?(2)若点点同学把“x =﹣1”看成了“x =1”,化简求值的结果仍不变,求此时□中数的值;(3)若圆圆同学把“x =﹣1”看成了“x =1”,化简求值的结果为﹣3,求当x =﹣1时,正确的代数式的值.14.(2021秋•拱墅区期末)如图是一个运算程序示意图: (1)若输入的数x =﹣2,求输出的数值A 的值. (2)若输出的数值A =﹣8,求输入的数x 的值.【压轴】一、单选题1.(2020·浙江杭州·七年级期末)如图,已知在矩形ABCD 内,将两张边长分别为5和3的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠);矩形中末被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴部分的面积为2S 当3AD AB -=时,21S S -的值为( )A .3B .6C .9D .122.(2020·浙江杭州·七年级期末)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760二、填空题3.(2022·浙江·七年级专题练习)按如图所示的规律排列,请写出第17行,第16列的数字:__________.4.(2020·浙江·余姚市子陵中学教育集团七年级期中)下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………5.(2020·浙江·杭州采荷实验学校七年级期中)下列式子按一定规律排列:2a -,36a ,512a -,720a ,…,则第5个式子是_____则第n 个式子是______.6.(2020·浙江宁波·七年级期末)已知有理数a ,b ,c 满足a b c a b c ++=+-,且0c ≠,则210a b c c +-+--=_____.7.(2020·浙江杭州·七年级阶段练习)一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22213-=,则3就是智慧数;22204-=,则4就是智慧数. (1)从0开始第7个智慧数是____; (2)不大于200的智慧数共有____.8.(2020·浙江杭州·七年级期末)大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m 分解后,其中有一个奇数为1799,则m 的值为____________.9.(2020·浙江·华东师范大学附属杭州学校七年级阶段练习)下图各圆中三个数之间都有相同的规律,根据这个规律,探索第n 个圆中的m =________.(用含n 的代数式表示).三、解答题10.(2020·浙江·杭州市十三中教育集团(总校)七年级期中)回答下列问题:(1)已知一列数:2,6,18,54,162,….,若将这列数的第一个数记为1a ,第二个数记为2a …,第n 个数记为n a ,则67________;____a a == (2)观察下列运算过程: 231222...2n S =+++++①①2⨯得2312222...2n S +=++++②②-①得121n S +=-参考上面方法,求(1)中数列的前n 个数的和S .11.(2020·浙江杭州·七年级期末)已知关于x 的多项式4323ax bx cx dx e ++++,其中a b c d ,,,为互不相等的整数,且4abcd =.(1)求+++a b c d 的值.(2)当1x =时,这个多项式的值为64,求e 的值.(3)当1x =-时,求这个多项式的所有可能的值.12.(2020·浙江杭州·七年级期末)(1)如图,长为50cm ,宽为xcm 的大长方形被分刚为8小块,除阴影,A B 外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm .①从图可知,每个小长方形较长一边长是_____cm (用含a 的代数式表示).②求图中两块阴,A B 的周长和(可以用含x 的代数式表示).(2)将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好分割为两个长方形,面积分别为1S 和2S ,已知小长方形纸片的长为a ,宽为b ,且a b >,当AB 长度不变而BC 长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,1S 与2S 的差总保持不变,求,a b 满足的关系式.①为解决上述问题,如图3,小明设EF x =,则可以表示出1S =_____,2S =______;②求,a b 满足的关系式,写出推导过程.13.(2020·浙江·宁波市镇海区尚志中学七年级期中)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出2个四位“和谐数”,并猜想任意一个四位“和谐数”能否被11整除?并说明理由.(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字是x (14x ≤≤,x 为自然数),十位上的数字是y ,用含x 的代数式表示y .14.(2020·浙江·宁波市第七中学七年级期中)如图,点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB a b 请你利用数轴回答下列问题:(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和2-的两点之间的距离为________. (2)数轴上表示x 和1两点之间的距离为_______,数轴上表示x 和3-两点之间的距离为________. (3)若x 表示一个实数,且53x -<<,化简35x x -++=________. (4)12345x x x x x -+-+-+-+-的最小值为________.(5)13x x +--的最大值为________.15.(2020·浙江·七年级期末)如果一个两位数的个位数字是n ,十位数字是m ,那么我们可以把这个两位数简记为mn ,即10mn m n =+. 如果一个三位数的个位数字是c ,十位数字是b ,百位数字是a ,那么我们可以把这个三位数简记为abc ,即10010abc a b c =++.(1)若一个两位数mn 满足75mn m n =+,请求出m ,n 的数量关系并写出这个两位数.(2)若规定:对任意一个三位数abc 进行M 运算,得到整数()32+M abc a b c =+.如:()3232132+1=32M =+. 若一个三位数5xy 满足()5132M xy =,求这个三位数.(3)已知一个三位数abc 和一个两位数ac ,若满足65abc ac c =+,请求出所有符合条件的三位数.16.(2020·浙江·七年级期末)任何一个正整数n 都可以这样分解:n p q =⨯(p 、q 是正整数,且p q ),则n 的所有这种分解中,如果两因数p ,q 之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p F n q=. 例如:18可以分解成118,29⨯⨯或36⨯,则1(18)236F ==. (1)计算:(24)F 、(270)F . (2)如果一个三位正整数,10600t t x y =++(19x y <,x ,y 为自然数),交换其个位上的数与百位上的数得到的新三位正整数加上原来的三位正整数所得的和恰好能被11整除,那么我们称这个数t 为“心意数”.①求所有满足条件的“心意数”t ;②对于满足“心意数”t 中的x ,y ,设10m x y =+,求()F m 的最小值.17.(2020·浙江杭州·七年级期末)已知b 是立方根等于本身的负整数,且a 、b 满足21(2)02a b c +++=,请回答下列问题:(1)请直接写出a 、b 、c 的值:=a ______,b =______,c =______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简12m +; (3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒一个单位长度的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离为AC ,点A 与点B 之间的距离为AB ,请问:AB AC -的值是否随着t 的变化而改变?若变化,请说明理由;若不变,请求出AB AC -的值.18.(2020·浙江杭州·七年级期末)已知()621211212112101x x a x a x a x a x a -+=++⋯+++.(1)求01212a a a a +++⋯+的值;(2)求24612a a a a +++⋯+的值.。

七年级数学上册-代数式化简求值压轴题五种模型全攻略(解析版)

七年级数学上册-代数式化简求值压轴题五种模型全攻略(解析版)

专题09代数式化简求值压轴题五种模型全攻略【考点导航】目录【典型例题】 (1)【类型一整体代入求值】 (1)【类型二特殊值法代入求值】 (2)【类型三降幂思想运算求值】 (5)【类型四整式的加减中的化简求值】 (6)【类型五整式加减的应用化简求值】 (7)【过关检测】 (10)【典型例题】【类型一整体代入求值】例题:(2023春·四川雅安·七年级校考期末)已知:23210x x +-=,则2645x x +-的值为()A .7-B .3-C .7D .3【答案】B【分析】由23210x x +-=知2321x x +=,代入226452(32)5x x x x +-=+-计算可得.【详解】解:当23210x x +-=,即2321x x +=时,2645x x +-22(32)5x x =+-125=⨯-25=-3=-,故选:B .【点睛】本题主要考查代数式求值,解题的关键是掌握整体代入思想的运用.【变式训练】【类型二特殊值法代入求值】例题:(2023秋·全国·七年级专题练习)已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3) 6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+27=,3e ∴=;(3)解:当=1x -时,4323ax bx cx dx e ++++()()()()43231111a b c d e=⨯-+⨯-+⨯-+⨯-+3a b c d e =-+-+14=,13a b c d ∴-+-=-,0a b c d +++= ,6.5a c ∴+=-.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练】1.若()665432654321021x a x a x a x a x a x a x a -=++++++,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∴0=1a ,2.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.【类型三降幂思想运算求值】【变式训练】2222021x x x =-+++22021x x =++12021=+2022=,故答案为:2022.【点睛】本题考查了因式分解的应用,将3x 降次为2x x -+是解题关键.2.已知21x x +=,求43222023x x x x +--+的值.【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=,∴43222023x x x x +--+()22222023x x x x x =+--+2222023x x x =--+22023x x =--+()22023x x =-++12023=-+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键.【类型四整式的加减中的化简求值】【变式训练】【类型五整式加减的应用化简求值】例题:(2023秋·全国·七年级专题练习)如图,四边形ABCD是一个长方形.【变式训练】1.(2023秋·山东济南·六年级统考期末)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地若圆形的半径为r,长方形的长为a,宽为b.(1)分别用代数式表示草地和广场空地的面积.(2)若长方形的长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(π取3.14)(1)木地板和地砖分别需要多少平方米(2)如果地砖的价格为每平方米40元,木地板价格为每平方米少钱【答案】(1)木地板和地砖分别需要10∴木地板和地砖分别需要10ab 、15ab 平方米;(2)解:由题意知,小高一共需要10701540ab ab ⨯+⨯元,将2, 2.5a b ==代入得,102 2.570152 2.5406500⨯⨯⨯+⨯⨯⨯=,∴小高一共需要花6500元.【点睛】本题考查了列代数式,代数式求值.解题的关键在于根据题意正确的列代数式.【过关检测】一、单选题二、填空题【详解】解:当3x =时,31px qx ++3331p q =⨯+⨯+2731p q =++2021=,可得2732020p q +=,∴当3x =-时,32px qx +-3(3)(3)2p q =-⨯+-⨯-2732p q =---()2732p q =-+-20202=--2022=-,故答案为:2022-.【点睛】此题考查了求代数式值问题的解决能力,关键是能进行准确化简和运用整体思想.三、解答题[]3961342345=⨯+-+=+=.【点睛】本题是整式加减混合运算,求代数式的值,正确运算是解题的关键.15.(2023秋·山东东营·六年级统考期末)李红同学家的住房户型呈长方形,平而图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a 的值=_____________,所有地面总面积为_________平方米:(2)铺设地而需要木地板_____________平方米,需要地砖_________平方米:(含x 的代数式表示)(3)已知卧室2的面积为15平方米,按市场价格,木地板单价为200元/平方米,地砖单价为80元/平方米,求小明家铺设地面总费用为多少元.【答案】(1)3;136;(2)(8513)x -;(5113)x +;(3)17960元【分析】(1)对比长方形的宽即可求得a 的值,利用长方形的面积公式进行求解即可;(2)根据长方形的面积公式从而可求得3间卧室的面积之和,再由住房的总面积减去卧室的面积即可求得铺地砖的面积;(3)根据(2)中的面积进行求解即可.【详解】(1)解:由题意得:544a +=+,解得:3a =,则所有地面总面积为:()()10744136+⨯+=(平方米);故答案为:3,136;(2)解:由题意得:卧室2的长为:()()107422197x x x x +-+-+=-(米),卧室铺设木地板,其面积为:()424731978513x x x ⨯+⨯+-=-(平方米),除卧室外,其余的铺设地砖,则其面积为:()136********x x --=+(平方米),故答案为:()8513x -,()5113x +;(3)解:∵卧室2的面积为15平方米,∴卧室2的长为:1535÷=(米),∴5422107x x x ++-+=+,解得:2x =,则小明家铺设地面总费用为:()()2008513805113x x -++17000260040801040x x=-++210801560x=-当2x =时,原式210801*********=-⨯=(元),答:小明家铺设地面总费用为17960元.【点睛】本题主要考查列代数式,解答的关键是理解清楚题意,找到其中的等量关系.16.(2023秋·山东泰安·六年级统考期末)阅读材料:“如果代数式3a b -的值为3,那么代数式()()1082a b a b +-+的值是多少?”我们可以这样来解:原式101081626a b a b a b =+--=-.把式子33a b -=两边同乘以2,得266a b -=.所以代数式()()1082a b a b +-+的值是6.仿照上面的解题方法,完成下面的问题:(1)已知23m m +=-,求22023m m ++的值;(2)已知3x y -=-,求()35x y x y --++的值;(3)已知222a ab +=-,24ab b -=-,求2225a ab b +-的值.【答案】(1)2020(2)1-(3)8-【分析】(1)直接将23m m +=-代入22023m m ++中计算即可;(2)把()35x y x y --++变形为()()35x y x y ---+,然后把3x y -=-代入计算即可;(3)把2225a ab b +-变形为2224a ab ab b ++-,再代入求值即可.【详解】(1)解:23m m +=- ,22023320232020m m ∴++=-+=;(2)3x y -=- ,()35x y x y ∴--++()()35x y x y =---+()()3335=⨯---+1=-;(3)222a ab - +=,24ab b -=-,2244a ab ∴+=-2225a ab b ∴+-2224a ab ab b =++-()44=-+-8=-.【点睛】本题考查了代数式求值,把题目中给出的代数式准确变形,利用整体代入法是解答本题的关键.。

2018年人教版数学七年级上册《解一元一次方程》专题试题汇编

2018年人教版数学七年级上册《解一元一次方程》专题试题汇编(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年人教版数学七年级上册《解一元一次方程》专题试题汇编(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年人教版数学七年级上册《解一元一次方程》专题试题汇编(word版可编辑修改)的全部内容。

解一元一次方程—-合并同类项同步练习一、选择题:x 11.下列方程中,解是的是 ( )2(x 2) 12 2(x 1) 411x 1 5(2x 1)2 (1 x) 2(A)(B) (C) (D)x x x5a x 13x 22.某同学在解关于的方程时,误将看作,得到方程的解为,则原方程的解为()x 3x 0x 2x 1(A) (B) (C) (D)3.小丽的年龄乘以3再减去3是18,那么小丽现在的年龄为( )(A)7岁 (B)8岁 (C)16岁 (D)32岁aax 5 3xx 5 4。

若方程的解为,则的值是(). 1 (A)(B)4 (C)16 (D)80 4二、填空题:x 4x 3x 3,x 5,x 101.在中,是方程的解.211x (2x 5)(9x 2)2.当时,代数式与的差为10.2311m5m m 3.如果与互为相反数,则的值为_______.441,和等于4。

在公元前1600年左右遗留下来的古埃及文献中,有这样一个问题:“哈!它的全部,它的719”,这个数是_____________。

5。

某人有三种邮票共18•枚,•它们的数量比为1 2 3,•则这三种邮票数分别为_______. 6。

完整word人教版初一数学七年级数学上册练习题附答案

人教版七年级数学上册精品练习题七年级有理数一、境空题〔每空2分,共38分〕1、1的倒数是; 2 的相反数是____.3____ 132、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为 2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为 5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为2 ,最高气温为 ℃,那么该景点这天的温差是 ____.C86、计算:(1)100( 1)101 ______.7、平方得1的数是;立方得–64的数是____.2____8、+2与 4___________________。

2是一对相反数,请赋予它实际的意义:9、绝对值大于1而小于4的整数有____________,其和为_________。

10、假设a 、b 互为相反数,c 、d 互为倒数,那么 3(a+b)3cd=__________。

11、假设(a 1)2|b 2| 0,那么ab=_________。

、数轴上表示数5和表示14 的两点之间的距离是__________。

125、、 3、、,最小的积是、在数 1 52 中任取三个数相乘,其中最大的积是13_______________________。

14、假设m ,n 互为相反数,那么│m -1+n│=_________.二、选择题〔每题3分,共21分〕15、有理数a 、b 在数轴上的对应的位置如下图:那么〔 〕a b-101A.a+b<0B.a+b>0;C.a-b=0D.a-b>016、以下各式中正确的选项是〔〕A.a2(a)2B.a3(a)3;C.a2|a2|D.a3|a3|17、如果ab0,且ab0,那么〔〕A.a0,b0;B.a0,b0;C.a、b异号;D.a、b异号且负数和绝对值较小18、以下代数式中,值一定是正数的是()A.x2 B.|-x+1| C.(-x)2+2 D.-x2+119、算式〔-33〕×4可以化为〔〕4〔A〕-3×4-3×4〔B〕-3×4+3〔C〕-3×4+3×4〔D〕-3×3-34420、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是〔〕A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折〔80%〕大拍卖,那么该商品三月份的价格比进货价〔〕A、高%B、低%C、高40%D、高28%三、计算〔每题5分,共15分〕22、(357)÷1;23、|7|÷(21)1(4)2491236935313224、12(12)6(3)374四、解答题〔共46分〕25、|a|=7,|b|=3,求a+b的值。

最新七年级数学上册代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。

2.已知A,B在数轴上分别表示的数为m、n.(1)对照数轴完成下表:m 5﹣3﹣4﹣4n 2 0 3﹣2A、B两点间的距离________ 3________________(3)已知A,B在数轴上分别表示的数为x和﹣2,则A、B两点的距离d可表示为d=|x+2|,如果d=3,求x的值.(4)若数轴上表示数m的点位于﹣5和3之间,求|m+5|+|m﹣3|的值.【答案】(1)3;7;2(2)解:d=|m﹣n|,文字描述为:数轴上两点间的距离d等于表示两点数之差的绝对值(3)解:d=|x+2|根据题意得出:d=|x﹣(﹣2)|=|x+2|,如果d=3,那么3=|x+2|,解得x=1或﹣5(4)解:根据题意得出:∵﹣5<m<3,∴|m+5|+|m﹣3|=|5+3|=8【解析】【解答】解:(1)填表如下:m 5﹣3﹣4﹣4n 2 0 3﹣23 372A、B两点间的距离【分析】(1)结合数轴,得出两点间的距离公式,即可求解。

七年级数学上册代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的而积,小明同学想出了两种办法,结果分別如下:方法①: ________ 方法②: ________请你从小明的两种求面积的方法中,直接写出含有字母a, b代数式的等式是:(2)根据(1)中的等式,解决如下问题:①C知:a -fj =S,a2 + b2 = 20* 求乩的值;②己知:(* 一2018)2+(丸一2020尸=12,求_ 2019)2 的值.【答案】(1) (a-b) 2: a2-2ab+b2;(a-b) 2=a2-2ab+b2(2)解:①把a_ b =5,a2 + 62 = 20代入(a 一b)2 = a2— 2ab + b2・•・52二20-2為•ab = 一2・ 5••②原式可化为:f x-2019 + l;2+(X-2019-1)2=12••• (x - 2019)2 + 2(x - 2019) + 1 + & - 2019)2 - 2(x - 2019) + 1 = 12••• 2(x-2019)2 = 10••• (%-2019)2 二5【解析】【解答】解:(1)方法①:草坪的面积=(a-b) (a-b) = 2 .方法②:草坪的而积二界-加b + b5 :等式为:(c - b)2 = a2 - 2ab + b2故答案为:仓—匕丿',a" -%b "/: (a-b)22二护_2血+沪【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得岀答案:方法②是正方形的而积减去两条道路的而积,即可得出剩余草坪的面积:根据(1)得岀的结论可得岀(a-b)2 = a2-2ab^b2 : (2)①分别把a-b的值和/十/的值代入(1)中等式,即可得到答案:②根据题意,把(x-2018)和(x-2020) 变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹・",又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规左:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200 千克的按零售价的88%优惠.B家的规定如下表:_______ 元:(2) ____________________________________________________________________ 如果他批发x千克太湖蟹<150<X<200),则他在A家批发需要____________________________ 元,在B家批发需要 _______ 元(用含x的代数式表示):(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由. 【答案】(1)4968 : 4890(2) 54x; 45X+1200(3〉解:当x=170 时,54x=54xl70=9180,45x+1200=45xl70+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A: 90x60x92%=4968 (元),B: 50x60x95%+40x60x85%=4890 (元)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难) 1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草. 方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.

(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留) (2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14). 【答案】 (1)解:方案一:∵石子路宽为4, ∴S石子路面积=4a+4b-16,

方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2 (2)解:已知a=30,b=20,故方案一:S石子路面积=184m2 , S植物=600-184=416m2; 方案二:S石子路面积=129m2 , 则S植物=600-129=471m2. 故答案为:择方案二,植物面积最大为471m2。 【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积; 方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆 ; (2)把a、b的值的代入(1)中的两种方案计算即可判断求解.

2.先阅读下面文字,然后按要求解题. 例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的. 因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果. 解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.

(1)补全例题 解题过程; (2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b). 【答案】 (1)解:101×50 (2)解:原式=50×(2a+99b)=100a+4950b. 【解析】【分析】(1)根据算式可得共有50个101,据此解答即可. (2)仿照(1)利用加法的交换律和结合律进行计算即可.

3.解答题:

(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.

(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?

(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9. ①这10枝钢笔的最高的售价和最低的售价各是几元? ②当小亮卖完钢笔后是盈还是亏? 【答案】 (1)解:∵a,b互为相反数,c,d互为倒数, ∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x

∵|x|=1,∴x=±1 ∴当x=1时,x2﹣x=0;

当x=﹣1时,x2﹣x=2

(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣3 30×10+(﹣3)=897 答:这10箱苹果的总质量是897千克.

(3)解:①最高售价为6+9=15元 最低售价为6﹣2.1=3.9元 ②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50 =16.3元 答:小亮卖完钢笔后盈利16.3元. 【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案; (2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案; (3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的 总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。 4.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:

(1)十字框中的五个数的和与中间的数16有什么关系? (2)设中间的数为x,用代数式表示十字框中的五个数的和; (3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由. 【答案】 (1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5, ∴十字框中的五个数的和为中间的数16的5倍 (2)解:设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10, ∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x (3)解:假设能够框出满足条件的五个数,设中间的数为x, 根据题意得:5x=2016, 解得:x=403.2. ∵403.2不是整数, ∴假设不成立, ∴不能框住五个数,使它们的和等于2016. 【解析】【分析】(1)算出十字框中的五个数的和 ,即可发现是16的5倍; (2) 设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10 ,利用整式加法法则即可算出 十字框中的五个数的和 ; (3) 假设能够框出满足条件的五个数,设中间的数为x ,根据(2)计算的结果及这五个数的和是2016,,列出方程,求解如解是整数即可,不是整数即不可。

5.阅读:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m,k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2. (1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m,k的值. (2)若代数式x2﹣6x+a可化为(x﹣b)2﹣1的形式,求b﹣a的值. 【答案】 (1)解:∵ x2+6x+15=x2+6x+32+6=(x+3)2+6, ∴m=3.k=6;

(2)解:∵x2﹣6x+a=x2﹣6x+9﹣9+a=(x﹣3)2+a﹣9=(x﹣b)2﹣1, ∴b=3,a﹣9=﹣1,即a=8,b=3, ∴b﹣a=﹣5. 【解析】【分析】(1)根据完全平方公式的结构,按照要求x2+6x+15=x2+6x+32+6=(x+3) 2+6,可知m=3.k=6,从而得出答案.

(2)根据完全平方公式的结构,按照要求x2-6x+a=x2-6x+9-9+a=(x-3)2+a-9=(x-b)2-1,即可知b=3,a-9=-1,然后将求得的a、b的值代入b-a,并求值即可.注意完全平方公式:(a±b)2=a2±2ab+b2

6.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨 元.

(1)试用含 的代数式填空: ①涨价后,每个台灯的销售价为________元; ②涨价后,商场的台灯平均每月的销售量为________台; ③涨价后,商场每月销售台灯所获得总利润为________元. (2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由. 【答案】 (1);;

(2)解:甲与乙的说法均正确,理由如下: 依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a); 当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元); 当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元); 故经理甲与乙的说法均正确 【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元); ②涨价后,商场的台灯平均每月的销售量为800-10a(元); ③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ); 故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ). 【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.

7.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x , 类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛. 尝试应用: (1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是________.

相关文档
最新文档