数学奥林匹克问题
小学六年级数学奥林匹克竞赛题(含答案)

小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛.结果不低于80分的人数比80分以下的人数的4倍还多2人.及格的人数比不低于80分的人数多22人.恰是不及格人数的6倍.求参赛的总人数?解:设不低于80分的为A人.则80分以下的人数是(A-2)/4.及格的就是A+22.不及格的就是A+(A-2)/4-(A+22)=(A-90)/4.而6*(A-90)/4=A+22.则A=314.80分以下的人数是(A-2)/4.也即是78.参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思.为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1.则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1.则原来应收入1x元.而现在增加了原来的五分之一.就应该再*(1+5/1).减缩后得到(1+1/5x)}如此计算后得到总收入.使方程左右相等甲乙在银行存款共9600元.如果两人分别取出自己存款的40%.再从甲存款中提120元给乙。
这时两人钱相等.求乙的存款答案取40%后.存款有9600×(1-40%)=5760(元)这时.乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖.如果增加10颗奶糖后.巧克力糖占总数的60%。
再增加30颗巧克力糖后.巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖.巧克力占总数的60%.说明此时奶糖占40%.巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力.巧克力占75%.奶糖占25%.巧克力是奶糖的3倍增加了3-1.5=1.5倍.说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球.小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6.我就比你多2个了。
小学数学奥林匹克竞赛试题及答案(五年级)

小学数学奥林匹克竞赛试题及答案(五年级)小学数学奥林匹克竞赛试题及答案1.在下列算式中加一对括号后,算式的最大值是()。
7×9 + 12÷3 - 2A。
75.B。
147.C。
89.D。
90答案:B。
1472.已知三角形的内角和是180度。
一个五边形的内角和应是(。
)度。
A。
500.B。
540.C。
360.D。
480答案:D。
4803.甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数。
那么甲数是(。
)。
A。
1.75.B。
1.47.C。
1.45.D。
1.95答案:C。
1.454.一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱少1.1元。
顾客应退回的瓶钱是(。
)元。
A。
0.8.B。
0.4.C。
0.6.D。
1.2答案:C。
0.65.两数相除得3余10,被除数、除数、商与余数之和是143,这两个数分别是(。
)和(。
)。
A。
30和100.B。
110和30.C。
100和34.D。
95和40答案:B。
110和306.今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁?A。
16.B。
11.C。
9.D。
10答案:C。
97.一个两位数除以250,余数是37,这样的两位数是(。
)。
A。
17.B。
38.C。
71.D。
91答案:D。
918.把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成(。
)段。
A。
13.B。
12.C。
14.D。
15答案:A。
139.把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积(。
)。
A。
12.B。
18.C。
10.D。
11答案:B。
1810.一昼夜钟面上的时针和分针重叠(。
)次。
A。
23.B。
12.C。
20.D。
13答案:C。
2011.某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台,求四月份比原计划超产多少台机器?A。
2023年小学二年级数学奥林匹克竞赛题附答案

小学二年级数学奥林匹克竞赛题(附答案)1、用0、1、2、3能组成多少个不同的三位数?2、小华参与数学竞赛,共有10道赛题。
规定答对一题给十分,答错一题扣五分。
小华十题所有答完,得了85分。
小华答对了几题?3、2,3,5,8,12,( ),( )4、1,3,7,15,( ),63,( )5、1,5,2,10,3,15,4,( ) ,( )6、○、△、☆分别代表什么数?(1)、○+○+○=18 (2)、△+○=14 (3)、☆+☆+☆+☆=207、△+○=9 △+△+○+○+○=258、有35颗糖,按调皮-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?9、调皮有300元钱,买书用去56元,买文具用去128元,调皮剩下的钱比本来少多少元?10、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟?11. 修花坛要用94块砖,•第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算)12. 王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米?13. 食堂买来60棵白菜,吃了56棵,又买来30棵,现在人多少棵?14、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元?15、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本?16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵?17、1+2+3+4+5+6+7+8+9+10=( )18、11+12+13+14+15+16+17+18+19=( )19、按规律填数。
(1)1,3,5,7,9,( )(2)1,2,3,5,8,13 ( )(3)1,4,9,16,( ) ,36(4)10,1,8,2,6,4,4,7,2,( )20、在下面算式适当的位置添上适当的运算符号,使等式成立。
(1)8 8 8 8 8 8 8 8 =1000(2) 4 4 4 4 4 =16(3)9 8 7 6 5 4 3 2 1=2221、30名学生报名参与小组。
一年级奥林匹克竞赛试题

一年级奥林匹克竞赛试题一年级的奥林匹克竞赛试题通常旨在培养学生的逻辑思维、数学技能和解决问题的能力。
以下是一些适合一年级学生的奥林匹克竞赛试题:1. 数学逻辑题:- 问题:小明有5个苹果,他给了小华2个。
请问小明现在还有几个苹果?- 答案:小明现在有3个苹果。
2. 图形识别题:- 问题:下列哪个图形与其他图形不同?- A. 圆形- B. 正方形- C. 三角形- D. 椭圆形- 答案:B. 正方形(因为其他三个选项都是曲线图形)3. 序列推理题:- 问题:观察下列数字序列,找出下一个数字。
- 2, 4, 6, 8, ?- 答案:10(这是一个等差数列,公差为2)4. 空间想象题:- 问题:如果一个立方体的一面是红色,另一面是蓝色,那么这个立方体最多可以有多少面是红色?- 答案:3面(因为立方体有6面,红色和蓝色各占一半)5. 简单计算题:- 问题:计算下列算式的结果。
- 5 + 3 - 2- 答案:66. 模式识别题:- 问题:下列哪个选项可以完成下列模式?- 模式:红,黄,蓝,红,黄,?- A. 绿- B. 蓝- C. 黄- D. 红- 答案:B. 蓝7. 时间推理题:- 问题:如果现在是上午9点,那么3小时后是几点?- 答案:中午12点8. 分类题:- 问题:将下列物品分类为“水果”和“非水果”。
- 苹果,椅子,香蕉,桌子,橙子- 答案:水果 - 苹果,香蕉,橙子;非水果 - 椅子,桌子9. 简单应用题:- 问题:如果每个篮子里有4个鸡蛋,小明有3个篮子,那么小明一共有多少个鸡蛋?- 答案:12个鸡蛋10. 观察与比较题:- 问题:下列哪个数字比10大?- A. 9- B. 11- C. 8- 答案:B. 11这些题目旨在激发一年级学生的好奇心和探索欲,同时帮助他们发展基本的数学和逻辑技能。
奥林匹克竞赛数学试题

奥林匹克竞赛数学试题一、选择题1. 已知函数 \( f(x) = ax^2 + bx + c \),其中 \( a \),\( b \),\( c \) 为常数。
若 \( f(1) = 3 \),\( f(2) = 7 \),\( f(3) =15 \),则 \( a \) 的值为:A. 1B. 2C. 3D. 42. 一个等差数列的前五项和为 35,第五项为 7,求该等差数列的公差。
3. 在直角坐标系中,点 \( A(2,3) \) 关于直线 \( y = x \) 的对称点 \( B \) 的坐标是:A. (3,2)B. (2,2)C. (3,3)D. (2,3)4. 已知圆的周长为 \( 4\pi \),求该圆的面积。
二、填空题5. 一个等比数列的前三项和为 7,且第一项与第二项之和为 4,求该等比数列的第三项。
6. 一个正方形的对角线长度为 10cm,求该正方形的面积。
7. 已知一个三角形的两边长分别为 5cm 和 12cm,且夹角为 60 度,求第三边的长度。
三、解答题8. 证明:对于任意正整数 \( n \),\( 1^2 + 2^2 + 3^2 + \ldots+ n^2 = \frac{n(n+1)(2n+1)}{6} \)。
9. 一辆汽车从 A 点出发,以每小时 60 公里的速度向 B 点行驶。
同时,另一辆汽车从 B 点出发,以每小时 40 公里的速度向 A 点行驶。
如果两地相距 240 公里,求两辆汽车相遇的时间。
10. 一个无限等差数列的前 \( n \) 项和为 \( S_n \),已知\( S_{10} = 110 \),\( S_{20} - S_{10} = 440 \),求 \( S_{30} \)。
四、综合题11. 在平面直角坐标系中,点 \( P \) 到原点 \( O \) 的距离为 5,点 \( P \) 到直线 \( y = x \) 的距离为 4,求点 \( P \) 的坐标。
2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及参考答案

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试(A 卷)试题(含参考答案)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 . 答案:2.解:22910181nnnnz z.因21812023z ,而当3n 时,181132023nn n z,故n 的最大值为2.2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z”发生的概率为 . 答案:127.解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627. 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则||的最小值为 .答案:23.解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y,则由2||得2by a ,由3|| 得3ax b .所以2232||2223b ax y xy a b. 取3,2a b ,此时6x y ,||取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 . 答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k.上述解亦可写成2()36Z k x k,其中0,1,,19k 对应最小的20个正实数解,它们的和为192219202013036326k k. 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a .由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a .令23()f x x x x ,则()a b c f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r .椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b. 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b.又2264811a b ,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .AB C D EFGH答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P-1 G (m , n )Pn...210-1-2-m ...取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f .由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x .……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示). 显然此时有ABED ACFD BCFE S S S . ……………5分XFEB DCA由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S .取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD. ……………15分 于是 的高221352h AA AD. 又43ABC S ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求.假如312t,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分以下考虑322t 的情形.为便于讨论,先指出如下引理.引理:若1,2u v ,且52u v ,则1uv .事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时1(1)(1)(1)(1)S a b a b ,其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S .若12a b ,则取1132t c d I ,此时13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d .②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分。
2023第十八届中国北方数学奥林匹克几何题解答
2023第十八届我国北方数学奥林匹克几何题解答1. 引言在数学领域,几何一直是许多学生和数学爱好者们感到头疼的一个题目。
几何题目往往需要结合图形进行分析和解答,需要具备一定的空间想象能力和逻辑推理能力。
而我国北方数学奥林匹克作为一个备受瞩目的数学竞赛,其几何题目更是备受关注。
在本文中,我们将按照从简到繁的顺序,对2023年第十八届我国北方数学奥林匹克的几何题进行全面评估和解答,帮助读者更深入地理解几何题目的解题思路和方法。
2. 题目一题目描述:已知直角三角形ABC中,$\angle C=90^\circ$,AB=3, AC=4,则BC=?(请提供详细的解题步骤)解题思路:这是一个典型的直角三角形题目,根据勾股定理可快速解答。
解答步骤:1. 根据勾股定理,设BC=x,则根据题意有$x^2+3^2=4^2$;2. 化简得$x^2=16-9$;3. 求解得$x=5$。
BC=5。
3. 题目二题目描述:已知正方形ABCD中,E为AD的中点,连接BE交AC于点F,求证:$\triangle AEF \cong \triangle CBF$。
(请提供详细的证明过程)解题思路:利用正方形的对称性和等边三角形的性质进行证明。
证明过程:1. 连接CF,并证明$\angle AFE = \angle CFB$;2. 证明AE=EB=BC;3. 根据SSS全等三角形的条件,得证$\triangle AEF \cong \triangle CBF$。
4. 总结和回顾通过以上两道题目的解答和证明过程,我们发现几何题目的解题过程中,逻辑推理和几何图形的分析非常重要。
我们也要灵活运用图形的对称性和三角形的性质来推导出答案。
希望通过本文的共享,读者能对几何题目的解题思路和方法有所启发。
5. 个人观点和理解个人认为,在解答几何题目的过程中,不仅要掌握好几何知识,还要培养良好的空间想象能力和逻辑推理能力。
多做一些几何题目的练习和思考也能够提高解题能力。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分 设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。
初三数学奥林匹克竞赛题及答案
初三数学奥林匹克竞赛题及答案已知3a^2-10ab+8b^2+5a-10b=0,求……已知实数a、b满足3a^2-10ab+8b^2+5a-10b=0,求u=9a^2+72b+2的最小值答案:分解因式(a-2b)(3a-4b)+5a-10b=0即(a-2b)(3a-4b+5)=0从而a=2b或4b=3a+5带入u就可做了。
a=2b的u=-344b=3a+5的u=11即u最小为-34***从1,2,3,4……2010这2010个正整数中,最多有多少个数,可以在这些数中任选三个数的乘积都能被33整除?答案:33的倍数共有60个所以{3,11,33,66,99……1980,任意一个数}所以最多63个数***(1)五位数 abcde 满足下列条件它的各位数都不为0(2)它是一个完全平方数(3)它的万位上的数字 a 和 bc de 都是完全平方数求所有满足上诉条件的5位数***怎样的四个点可以共圆,初三奥数题这题奥数题的答案说。
∠APB=∠BQR=90°,∴BQRP四点共圆,这是为什么??这是因数四边形BQRP的两个对角BRP和PBQ的和是90°依据是对角互补的四边形是圆内接四边形!***如图,圆O中,AB,AC为切线分别切圆与D,E且BC过O点,F为弧DE 上一点,过F作圆O的切线交AB,AC于M,N。
求证,△MBO∽OCN答案:少一个条件:AB=AC(△MBO∽△OCN 就意味着∠B=∠C,但是题目只说BC过O)1) 显然∠DOB=90°-∠B,∠EOC=90°-∠C,于是∠DOE=180°-(∠DOB+∠EOC)=∠B+∠C=2∠B2) 显然∠DOM=∠FOM,∠EON=∠FON,于是∠DOE=∠DOM+∠FOM+∠EON+∠FON=2(∠FOM+∠FON)=2∠MON3) 比较1)、2)的结论可知∠MON=∠B=∠C4) 根据3)的结论,以及∠BMO=∠OMN可知△MBO∽△MON5) 根据3)的结论,以及∠CNO=∠ONM可知△OCN∽△MON6) 由4)、5)的结论可知△MBO∽△OCN证毕***绝对值用()表示。
数学奥林匹克竞赛试题
数学奥林匹克竞赛试题数学奥林匹克竞赛是针对中学生的高水平数学竞赛,旨在激发学生对数学的兴趣,培养他们的逻辑思维、创新能力和解决复杂问题的能力。
以下是一些典型的数学奥林匹克竞赛试题示例,供大家参考和练习。
代数问题问题1:解方程求解方程 (x^3 - 5x^2 + 7x - 1 = 0)。
问题2:因式分解将多项式 (x^4 - 81) 进行因式分解。
几何问题问题3:三角形面积在直角三角形中,已知两直角边的长度分别为3和4,求斜边上的高。
问题4:圆的性质证明:若一个圆内接四边形的对角互补,则该四边形为矩形。
组合与概率问题问题5:排列组合计算用数字1到9(每个数字仅使用一次)可以组成的所有不同三位数的数量。
问题6:概率计算一个袋子里有5个红球和3个蓝球,随机取出两个球,求取出的两个球都是红球的概率。
数列与函数问题问题7:等差数列如果数列 (a_n = 2n + 1),求第10项和前10项的和。
问题8:函数图像画出函数 (y = |x-3|) 的图像,并指出其与x轴的交点。
解析与答案问题1答案通过因式分解或使用牛顿法等方法求解。
问题2答案(x^4 - 81 = (x^2 + 9)(x^2 - 9) = (x^2 + 9)(x + 3)(x - 3))。
问题3答案斜边上的高 (h = \frac{3 \times 4}{5} = 2.4)。
问题4答案利用圆周角定理和直角三角形的性质证明。
问题5答案总共有 (9 \times 8 \times 7) 种不同的排列方式。
问题6答案概率为 (\frac{C_5^2}{C_8^2} = \frac{10}{28} = \frac{5}{14})。
问题7答案第10项 (a_{10} = 21),前10项和 (S_{10} = 2(1 + 2 + ... + 10) + 10 = 110)。
问题8答案函数图像为V型,与x轴的交点为(3,0)。
请注意,以上只是示例题目,实际的数学奥林匹克竞赛题目可能会更加复杂和多样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 7
本
期
问
题
外切 , o0 内切 于点 A、 C, A、 与 B、 过 B作 o0
初 2 5 如 图 1 三个 半径 为 r的 圆两两 9 ,
的切 线 交 于 点 P 求 由两条 切 线 及 切 点 间 的 . 圆弧 所形 成 的阴影 区域 的面积 . 初 2 6 如 图 2, 9 已o D 与 o 0 。 :交 于 点
个元 素 ( 括 ) Ⅱ 相 同 , 称 元 素 o 是 包 与 则 “ 的” 如果 矩阵 ( 中至 少有一 个元素 好 . 0) 是好 的 , 求 的最小 值. 高 2 6 已知 P是一 个 给定 的 圆内接 凸 9 /边 形 , n一 7 , 用 3条 对 角 线 将 P 任 意 划 分 为 n一 2个三 角形 , 这些对 角线在 J 且 P内部不 相 交 . 明 : n一 证 这 2个 三角 形 的 内切 圆半 径 之 和不依 赖 于 划 分 方 式 ( 对 任 意 的 划 分 方 即 式 , /一 这 / 2个 三角形 的内切 圆半径之 和是一 , 个 定值 ) .
一
(a 1) +( la 2 ) 一 8 = 2 +1 0 + l + 8x 2a O
1 0<
丁 6 『< ≤
『 4. 『< 5
的所有 根都 是正整数 . 口的值及 方程 的根. 求
一
2 —1=( 一 +1 ( 一 —1 . 2 ’ ) 2‘ . ):…
=
( 1 (2 1 …(2+ )2 + ) 2 ~+ )2k ~+ ) 2 1 (2 1. 0
方 面 , 凡有奇 因数 s , 2 一1是 若 >1则
同余 方 程
而J 时 , >i
一1 m d 2 ( o ( +1 ) ) 有解
x ( o ( +1 ) -2 m d2 ). ( +12 2‘ , +1 =( , + ) ) 2“ 一12 1 =… ( 一12 2 , +1 )=1 . 所 以 , 据 中国剩余 定理 知 同余 方 程组 根
=
2 一1=( 一1的 因数 , “ 2) 即
2 一1=( 了一1 2)
( 贺航 飞 海 南省海 南 中学 ,7 18 5 15 )
4 8
中 等 数 学
A、 C B, D是 两圆的外 公切 线 , 切点 为 C D, 、 直 线B C与 A B D、 D与 A C分 别 交 于点 E、 . F 求
EA F B 让 : ‘
、 一
相同, 且
口+l + ≥ l . 1 1
+Y + =4 .
所 以 ,( )+ ( b 一1 Y 6—1 20 7 即 )= 0 ,
( — ) ( + ) y = 0 . 6 1 [b 1 + ] 2 7 0
于是 , b ) 20 7 ( 一1 l 0 . 又 6≤20 1 则 1 <6 ,
初 2 3 已知 方程 9
=
( 一 )( ( + +2) 1. 2 1[2) + 2) 一 一 … ( + ]
若2 一1是 m +2 9的 因数 , 2 8 则 一1
是m +8 2 9的因数. 因为 3 2 一1 ,7\ 2 一1 , ( ) 1 卜 ) 且 ( 2 一1 一1 m d4 , ( o ) 所 以 , 必 有一个 质 因数 P> , 2 一1 3 且
P 一1 m d4 . ( o )
;2 ( o ( +1 )J , , , rd2 o ) ( =12 … k一1 )
有解 ‰.
令m= 7。则m + 8 29x +1被 1x. 29= 8(: )
2 一1整 除.
从而 , 一 8 ( o ) m 2 9 m dp .
0 2 m dP , = - ( o ) 矛盾.
另 一方 面 ,
当 /= 1 时 , ,= 1 = 2x 4 , 7 20 1 因 l 20 1 3 + 6 1 ,
所以, =6 r 6 1 ,= 4 .
最后 留在场 上 的学生 原 . 0 四、 2( n= k为非 负整数 ) .
而 12= 6× 2 4=1 8 则 1 5 2= 8X 4× ,
r +1 口 1+ | i }=5 2 1 6, 8, 4,
高 2 5 考 虑矩 阵 9 ( ( { , , ) n) a ∈ 12 3} . 若 8 所在 的第 i 和第 列 均至 少 有 3 i 行
【 口+1 = ,4 . 1一 2 ,8
上 期 问 题 解 答
0 9级 研 究 生 ,0 3 7 30 8 )
初 2 4 问 : 否 存 在 满 足 条 件 的正 整 9 是 数 b使 得 2O l 以在 b , l 可 进制 下写成 , 且
+ ) + =2 +0 + 1 + 1 , .
解 因为 … =x 6+ = 1 , b +y z 20 1
解得 ( , a )=( 8 2 ) ( ,2 ,0 3 . 1 ,7 , 5 1 ) ( , )
因为 口为正整 数 , 以 , 8 5 所 a:1 ,. 当 n=1 8时 , 方程 的根 为 1 , ,8 原 812. 当 口=5时 , 方程 的根为 5 2 1. 原 , ,4 ( 王 宇 天 津师 范 大 学数 学科 学 学 院
C
P
M
D
图 1
图2
最 后 留在场上 的学 生原 始编 号为 3 , r且 S =M +( +1 Ⅳ k ) : +( +1 ) .
两边
二
次 方得
m i 一1 。m dP . 7 (o )
由费 马 小 定 理 得 1 ̄ 一1 mo , - - ( dP) 即