浙教版数学八年级下册《期末复习五特殊平行四边形》同步练习
浙教版八年级下册数学《第5章特殊平行四边形》单元练习(B)含答案

浙教新版八年级下第5章特殊的平行四边形练习B卷姓名:__________班级:__________考号:__________一、选择题(本大题共11小题)1.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4 B.C.D.52.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图).现有下列四种选法,你认为其中错误的是 ( )A.①②B.②③C.①③D.②④3.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个4.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.B.6 C.D.5.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°7.把两块形状大小完全相同的含有45角的三角板的一边拼在一起,则所得到的图形不可能有()A.正方形B.等边三角形C.等腰直角三角形D、平行四边形(非矩形、菱形、正方形)8.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作B F∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.109..如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:D.1:10.如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.211.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第 1 次操作,折痕DE 到BC 的距离记为 h 1;还原纸片后,再将 △ADE 沿着过AD 中点D 1的直线折叠,使点A 落在 DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为 h 2;按上述方法不断操作下去…,经过第次操作后得到的折痕DE 到BC 的距离记为h .若h l = 1,则h 的值为( )A .201521B .201421C .2015211- D .2014212-二 、填空题(本大题共6小题 )12.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 .13.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC=8,BD=6,过点O 作OH 丄AB ,垂足为H ,则点0到边AB 的距离OH= .14.如图,菱形的边长为1,;作于点,以为一边,做第二个菱形,使;作于点,以为一边做第三个菱形,使;依此类推,这样做的第个菱形的边的长是_____________.15.如图,点E 在正方形ABCD 的边CD 上,若△ABE 的面积为18,CE=4,则线段BE 的长为 .16.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长=cm .17.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE=1,F 为AB 上的一点,AF=2,P 为AC 上一个动点,则PF+PE 的最小值为 .三 、解答题(本大题共7小题 )18.如图,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF .111AB C D 160B ∠=211AD B C ⊥2D 2AD 222AB C D 260B ∠=322AD B C ⊥3D 3AD 333AB C D 360B ∠=n n n n AB C D nAD19.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.21.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.22.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.23.如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB.(1)判断△ABE形状?并说明理由;(2)若AB=2,AD=3,求PE的长.24.如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.浙教新版八年级下第6章特殊的平行四边形练习B卷答案解析一、选择题25.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.26.分析:利用正方形的判定进行判定解:A.∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项不符合题意;B.∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项符合题意;C.∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项不符合题意;D.∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项不符合题意.答案 B27.解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.28.分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.29.分析:可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.30.分析:连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.31.分析:根据常识可知,含有45°角的三角板为等腰直角三角形,故可知,当斜边拼在一起可得正方形,将一条直角边拼在一起可得等腰直角三角形和平行四边形,即只有B选项不符题意.解:将两块三角板的斜边拼在一起可得正方形,将一条直角边拼在一起可得等腰直角三角形和平行四边形.故选B.32.分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2E D=8.故选:C.33.分析:设AC与BD的交点为O,根据周长可得AB=BC=2,根据AE=可得BE=1,则△ABC为等边三角形,则AC=2,BO=,即BD=2,即AC:BD=1:.解:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为cm,∴BE==1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB==(cm),∴BD=2OB=2cm,∴AC:BD=1:.故选D.34.分析:首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△A O D=S△A O P+S△D O P=OA•PE+OD•PF求得答案.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形A B C D=AB•BC=48,O A=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△A C D=S矩形A B C D=24,∴S△A O D=S△A C D=12,∵S△A O D=S△A O P+S△D O P=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.35.分析:根据题意和折叠对称的性质,DE是△ABC的中位线,D1E1是△A D1E1的中位线,D2E2是△A2D2E1的中位线,…二、填空题36.分析:根据菱形的对角线的长度即可直接计算菱形ABCD的面积.解:∵菱形的对角线长AC、BD的长度分别为8cm、6cm∴菱形ABCD的面积S=BD•AC=×6×8=24cm2.故答案为:24cm2.37.分析:因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.38.分析:要找出规律方能解答.第一个菱形边长为1,∠B 1 =60°,可求出AD 2 ,即第二个菱形的边长…按照此规律解答即可.解:第1个菱形的边长是1,易得第2个菱形的边长是;2第3个菱形的边长是();…每作一次,其边长为上一次边长的;故第n个菱形的边长是故答案为39.分析:根据正方形面积是△ABE面积的2倍,求出边长,再在RT△BCE中利用勾股定理即可.解:设正方形边长为a,∵S△ABE=18,∴S正方形ABCD=2S△ABE=36,∴a2=36,∵a>0,∴a=6,在RT△BCE中,∵BC=6,CE=4,∠C=90°,∴BE===2.故答案为2.40.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.41.分析:正方形ABCD是轴对称图形,AC是一条对称轴,利用轴对称找最短线段的方法找到P点。
浙教版数学八年级下册第5章特殊平行四边形测试题及答案

浙教版数学八年级下册第5章测试卷评卷人得分一、单选题1.菱形具有而一般平行四边形不具有的性质是()A.对边平行B.对边相等C.对角线互相平分D.对角线平分一组对角2.下列说法不能判定四边形是矩形的是()A.有一个角为90°的平行四边形B.四个角都相等的四边形C.对角线相等的平行四边形D.对角线互相平分的四边形3.两条对角线相等且互相垂直平分的四边形是()A.平行四边形B.矩形C.菱形D.正方形4.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.3B.5C.2.4D.2.55.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1)B.(-1,3)C.(3,1)D.(-3,-1)6.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD7.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°则∠BOE=()A.30°B.45°C.60°D.75°8.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是()A.3B.23C.32D.339.如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.B.2C.D.8310.如图,菱形ABCD的周长为40cm,对角线AC,BD相交于点O,DE⊥AB,垂足为E,DE∶AB=4∶5,下列结论:①DE=8cm;②BE=4cm;③BD=cm;④AC=cm;=80cm2.其中正确的有()⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤评卷人得分二、填空题11.菱形的两条对角线分别是6cm,8cm,则菱形的边长为________cm,面积为cm.________212.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.13.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的番号).14.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.15.用6个完全相同菱形拼成如图所示的图案,则菱形中较大的内角度数为________.16.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.17.如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为________.18.如图,矩形ABCD中,E、F分别为AD、AB上一点,且EF=EC,EF⊥EC,若DE=2,矩形周长为16,则矩形ABCD的面积为_________评卷人得分三、解答题19.如图,在矩形ABCD中,过点B作BE∥AC交DA的延长线于E,求证:BE=BD.20.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.21.如图,在矩形ABCD中,AB=8,AD=4,点E,F分别在边CD,AB上,若四边形AFCE 是菱形,求菱形AFCE的周长.22.如图,在Rt△ABC中,∠ACB=90°,AD=BD,AE∥CD,CE∥AB,BE交CD于O.(1)判断四边形ADCE的形状,并证明.(2)若AC=BC=2,求BO的长.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角,墙DF足够长,墙DE 长为12米,现用20米长的篱笆围成一个矩形花园ABCD,点C在墙DF上,点A在墙DE 上,(篱笆只围AB,BC两边).(1)如何才能围成矩形花园的面积为75m2?(2)能够围成面积为101m2的矩形花园吗?如能说明围法,如不能,说明理由.24.在矩形ABCD中,AB=a,BC=b,M是BC的中点,DE⊥AM,垂足为E(1)如图①,求DE的长(用a,b表示);(2)如图②,若垂足E落在点M或AM的延长线上,结论是否与(1)相同?25.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.参考答案1.D【解析】A.对边平行是菱形和一般平行四边形都具有的性质,故不正确;B.对边相等是菱形和一般平行四边形都具有的性质,故不正确;C.对角线互相平分是菱形和一般平行四边形都具有的性质,故不正确;D.对角线平分一组对角是菱形具有而一般平行四边形不具有的性质,故正确;故选D.2.D【解析】【分析】根据矩形的判定方法逐项分析即可.【详解】A.有一个角为90°的平行四边形,正确;B.四个角都相等的四边形,正确;C.对角线相等的平行四边形,正确;D.对角线互相平分的四边形是平行四边形,不一定是矩形,故不正确;故选D.【点睛】本题考查了矩形的判定方法:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.3.D【解析】试题分析:平行四边的对角线互相平分,矩形的对角线互相平分且相等,菱形的对角线互相垂直平分,正方形的对角线相等且互相垂直平分,故选D.4.B【解析】【分析】根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【详解】连接CE∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8-AE)2,解得:AE=5,故选B.【点睛】本题考查了矩形的性质,勾股定理,线段垂直平分线性质的应用,解此题的关键是得出关于AE的方程.5.A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.6.C【解析】试题解析:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形,∴A正确;∵AO=CO,BO=DO,∴四边形ABCD 是平行四边形,又90A ∠= ,∴四边形ABCD 是矩形,∴B 正确;180B C ∠+∠= ,AB DC ∴ ,∵∠A =∠C ,180B A ∴∠+∠= ,AD BC ∴ ,∴四边形ABCD 是平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形,∴C 不正确;90A B ∠=∠= ,180A B ∴∠+∠= ,,AD BC ∴ 如图所示:在Rt ABC △和Rt BAD 中,{AC BDAB AB ==,Rt Rt (HL)ABC BAD ∴ ≌,∴BC =AD ,∴四边形ABCD 是平行四边形,又90A ∠= ,∴四边形ABCD 是矩形,∴D 正确;故选C.7.D【解析】∵矩形ABCD,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°-15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°-60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°-30°)=75°.故选D.本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE8.C【解析】如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,∠A=∠A∠A=∠A=A,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP=18=32故答案为:32.9.A【解析】如图,连接BP,设点C到BE的距离为h,则S△BCE=S△BCP+S△BEP,即12BE⋅h=12BC⋅PQ+12BE⋅PR,∵BE=BC,∴h=PQ+PR,∵正方形ABCD的边长为4,∴h=4×22=22.故答案为22 10.B【解析】试题分析:由菱形的性质可求得菱形的边长,结合DE:AB=4:5可判断①;在Rt△ABE 中由勾股定理可求得AE,则可求得BE,可判断②;在Rt△BDE中由勾股定理可求得BD,可判断③;由菱形的对角线互相平分,可求得BO,在Rt△AOB中可求得AO,可求得AC,可判断④;根据求得的AC和BD可求得菱形的面积,可判断⑤,可得出答案.∵菱形ABCD的周长为40cm,∴AB=×4cm=10cm,∵DE:AB=4:5,∴DE=8cm,故①正确;∵DE⊥AB,且AD=10cm,DE=8cm,∴AE===6(cm),∴BE=AB﹣AE=10cm﹣6cm=4cm,故②正确;∵DE=8cm,BE=4cm,∴BD===4(cm),故③正确;∵四边形ABCD是菱形,∴BO=BD=2cm,且AC⊥BD,∴AO===4(cm),∴AC=2AO=8cm,故④正确;∴S菱形ABCD=AC•BD=×8×4=80(cm2),故⑤不正确,单位错误;考点:菱形的性质11.524【解析】【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,=5cm,∴面积S=12×6×8=24cm2.故答案为5;24.【点睛】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.12.12 5【解析】试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得1134522OH⨯⨯=⨯⨯,解得OH=125.故答案为12 5.点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.13.①②.【解析】试题分析:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,∵AB=EB,∠CBA=∠FBE,BC=BF,∴△ABC≌△EBF(SAS),选项①正确;∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD,同理可得AE=DF,∴四边形AEFD是平行四边形,选项②正确;若AB=AC,∠BAC=120°,则有AE=AD,∠EAD=120°,此时AEFD为菱形,选项③错误,故答案为①②.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定;4.正方形的判定.14.AB=BC(或AC⊥BD)答案不唯一【解析】【分析】根据邻边相等的平行四边形是菱形可知添加条件AB=BC.【详解】解:添加条件:AB=BC,根据邻边相等的平行四边形是菱形可以判定四边形ABCD是菱形.故答案为AB=BC.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.120°【解析】【分析】根据六个相同的菱形能够平面密铺可以求出菱形一个较小的内角,进而求出较大的内角.【详解】设菱形较小内角度数为α,∵6个完全相同菱形能平面密铺,∴6α=360°,∴α=60°,∴较大内角为180°-60°=120°.故答案为120°.【点睛】本题主要考查了菱形的性质以及平面密铺等知识,解答本题的关键是根据六个菱形能平面密铺可得到菱形的一个内角的度数,此题难度不大.16.8【解析】试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.试题解析:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.考点:1.菱形的判定与性质;2.矩形的性质. 17.63-6.【解析】试题解析:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴3-33-6=63-6,∴F点到AC的距离为63-6.考点:1.正方形的性质;2.等边三角形的判定与性质.18.15【解析】因为EF⊥EC,所以∠FEC=90°,所以∠AEF+∠DEC=90°,因为∠AEF+∠AFE=90°,所以∠AFE=∠DEC,因为∠A=∠D,EF=CE,所以△AEF≌△DCE,所以AE=CD,AF=DE,设AB=CD=x,则AD=AE+DE=CD+DE=x+2,所以2(x+x+2)=16,解得x=3,所以AB×BC=3×(3+2)=15,故答案为15.19.见解析.【解析】【分析】首先证明四边形AEBC是平行四边形,推出BE=AC,再根据矩形的性质推出AC=BD,由此即可证明.【详解】证明:∵四边形ABCD是矩形,∴AC=BD,AD∥BC.又∵BE∥AC,∴四边形AEBC是平行四边形∴EB=AC,∴EB=BD.【点睛】本题考查矩形的性质.平行四边形的判定和性质等知识,解题关键是熟练掌握平行四边形、矩形的判定和性质,灵活运用知识解决问题,属于中考常考题型.20.86°.【解析】试题分析:由菱形的性质有BC=CD,∠BCD=∠A=110°,根据旋转的性质知CE=CF,∠ECF=∠BCD=110°,于是得到∠BCE=∠DCF=110°﹣∠DCE,根据三角形的判定证得△BCE≌△DCF,根据三角形的性质即可得到结论.试题解析:解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在△BCE和△DCF中,∵BC=CD,∠BCE=∠DCF,CE=CF,∴△BCE≌△DCF,∴∠F=∠E=86°.点睛:本题主要考查了菱形的性质,旋转的性质,三角形的性质和判定,由旋转的性质得到CE=CF,∠ECF=∠BCD是解题的关键.21.25【解析】【分析】根据四边形AFCE是菱形,可得AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长【详解】解:∵四边形ABCD是矩形,∴∠D=90°,∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=CE=8﹣x,=8﹣x,解得:x=3,将x=3代入原方程检验可得等式两边相等,即x=3为方程的解.则菱形的边长为:8﹣3=5,周长为:4×5=25,故菱形AFCE的周长为25.【点睛】本题考查了矩形的性质,菱形的性质及勾股定理的知识,解答本题的关键是理解矩形对边平行且相等的性质以及菱形四条边相等的性质.22.(1)答案见解析(2)10 2【解析】【分析】(1)首先证得四边形ADCE是平行四边形,然后证得邻边相等即可得到菱形;(2)首先根据AC=BC=2得到CD⊥AB,AB=2,从而得到AE,然后利用勾股定理求得BE从而求得BO=12BE=10 2.【详解】解:(1)菱形.证明如下:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵∠ACB=90°,AD=BD,∴CD=AD,∴四边形ADCE是菱形.(2)∵AC=BC=2,∴CD⊥AB,,∴EA⊥AB,,∴,在Rt△BAE中,,∵AD=BD,AE∥DO,∴BO=12BE=102.【点睛】本题考查了菱形的判定,等腰三角形的性质,三角形的中位线及勾股定理的知识,解题的关键是牢记菱形的判定定理,难度不大.23.(1)当BC=5米,AB=15米时,矩形的面积为75米2;(2)不能围成面积为101m2的矩形花园.【解析】【试题分析】(1)设BC=x米(0<x≤12),则AB=(20﹣x)米,则矩形的面积为x(20﹣x)=75,解得x=5或15,注意,x的取值范围0<x≤12,进行取舍.(2)思路同(1),得方程x(20﹣x)=101,得到方程无解,则不能围成面积为101m2的矩形花园.【试题解析】(1)设BC=x米(0<x≤12),则AB=20﹣x米,依题意得:x(20﹣x)=75,即x2﹣20x+75=0,解得x1=5,x2=15(不合题意,舍去),答:当BC=5米,AB=15米时,矩形的面积为75米2;(2)不能围成面积为101m2的矩形花园,因为:同(1)得,设BC=x米,得方程x(20﹣x)=101,即x2﹣20x+101=0△=b2﹣4ac=(﹣20)2﹣4×1×101=﹣4<0,∴原方程无实根,答:不能围成面积为101m2的矩形花园.【方法点睛】(1)训练利用方程思想解决问题的意识;(2)利用一元二次方程的解的存在性来说明某种情况的可能存在与否.24.(1)2224ab a b a b +(2)相同【解析】【分析】(1)根据中点定义求出AM ,再根据同角的余角相等求出∠AMB =∠DAE ,然后利用两组角对应相等,两三角形相似求出△ABM 和△DEA 相似,根据相似三角形对应边成比例列式求解即可;(2)结论不变,求解过程完全相同.【详解】(1)解:∵M 是BC 的中点,BC=b ,∴BM=12b∴=2∵∠BAM+∠DAE=∠BAD=90°∠BAM+∠AMB=180°﹣90°=90°∴∠AMB=∠DAE又∵∠B=∠AED=90°∴△ABM ∽△DEA ∴DE AB =AD AM ,a DE 4a 2,解得DE=224a b a b +(2)解:垂足E 落在点M 或AM 的延长线上时结论与(1)相同,求解过程可以与(1)完全相同【点睛】本题考查了矩形的性质,主要利用了勾股定理,相似三角形的判定与性质,根据垂足E 变化,而相似的三角形始终不变考虑解答是解题的关键.25.(1)见解析;(2)是定值【解析】分析:①作出辅助线,得到EN =EM ,然后判断∠DEN =∠FEM ,得到△DEN ≌△FEM ,则有DE =EF 即可;②同①的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.详解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形.∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°.在△DEN和△FEM中,∵∠DNE=∠FME,EN=EM,∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,②CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°.∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG.在△ADE和△CDG中,∵AD=CD,∠ADE=∠CDG,DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE AB=4,∴CE+CG=4是定值.点睛:本题是四边形综合题,主要考查了正方形的性质,矩形的性质,矩形的判定,三角形的全等的性质和判定,勾股定理,解答本题的关键是作出辅助线,判断三角形全等.26.(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF,"∠P="∠F=90°,"AP=CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.。
浙教版八年级下册数学第五章 特殊平行四边形含答案(完整版)

浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x 轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.-27C.-32D.-362、在如图所示的网格中,已知线段AB,现要在该网格内再确定格点C和格点D,某数学探究小组在探究时发现以下结论:以下结论错误的是()A.将线段平移得到线段,使四边形为正方形的有2种; B.将线段平移得到线段,使四边形为菱形的(正方形除外)有3种; C.将线段平移得到线段,使四边形为矩形的(正方形除外)有两种; D.不存在以为对角线的四边形是菱形.3、已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是( )A.4个B.3个C.2个D.1个4、如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长是()A.5B.7.5C.10D.255、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.17B.18C.19D.206、在▱ABCD中,AB=5,BC=7,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.5B.4或5C.3或4D.5或77、下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等8、下列命题中,正确的是()A.对角线垂直的四边形是菱形B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形D.位似图形一定是相似图形9、如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥B F;③AO=OE;④S△AOB =S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个10、如图1,正方形纸片ABCD边长为2,折叠∠B和∠D,使两个直角的顶点重合于对角线BD上的一点P,EF、GH分别是折痕(图2),设AE=x(0<x<2),给出下列判断:①x= 时,EF+AB>AC;②六边形AEFCHG周长的值为定值;③六边形AEFCHG面积为定值,其中正确的是()A.①②B.①③C.②D.②③11、如图,在中,,,,为边上一动点,于点,于点为的中点,则的最小值为()A. B. C. D.12、正方形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对边平行且相等D.对角线互相垂直平分13、如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= ;②a的最小值为10.则下列说法正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对14、如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论不正确是()A. B. C. D.四边形DECF是正方形15、如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1, S2,则S1, S2的关系是()A.S1>S2B.S1<S2C.S1=S2D.3S1=2S2二、填空题(共10题,共计30分)16、如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB= ,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(且),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接AC,AD.有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着的变化而变化;③当时,四边形OADC为正方形;④ 面积的最大值为.其中正确的是________.(把你认为正确结论的序号都填上)17、在菱形ABCD中,DE⊥AB,cosA= ,BE=2,则tan∠DBE的值是________.18、如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为________.19、已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.20、在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点C,若将菱形向下平移2个单位,点B恰好落在反比例函数的图象上,则反比例函数的表达式为________.21、如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是________cm.22、已知正方形ABCD的对角线AC= ,则正方形ABCD的周长为________.23、如图,正方形ABCD的面积为3cm2, E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________ cm.24、如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.25、如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,请计算耕地的面积.28、如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求证:四边形AECD是菱形.29、如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.30、如图,已知菱形ABCD,延长AD到点F,使,延长CD到点E,使DE=CD,顺次连接点A,C,F,E,A.求证:四边形ACFE是矩形.参考答案一、单选题(共15题,共计45分)2、C3、D4、C5、B6、C7、C8、D9、A10、C11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
浙教版 八年级数学下册 第五章 特殊平行四边形 章节检测卷+课堂同步练习题合集(含答案解析)

第5章 特殊平行四边形5.1 矩形(第1课时)课堂笔记有一个角是 的 叫做矩形;矩形的 个角都是直角;矩形的对角线 ;矩形既是 对称图形,又是 对称图形,它至少有 条对称轴. 分层训练A 组 基础训练1. 已知一矩形的周长是24cm ,相邻两边之比是1∶2,那么这个矩形的面积是( )A. 24cm2B. 32cm 2C. 48cm 2D. 128cm 22. 矩形具有而一般的平行四边形不具有的特征是( ) A. 对角线相等 B. 对边相等C. 对角相等D. 对角线互相平分3. 如图,在矩形ABCD 中,∠DBC=29°,将矩形沿直线BD 折叠,顶点C 落在点E 处,则∠ABE 的度数是( )A. 29°B. 32°C. 22°D. 61°4. 如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 的面积的( )A.51 B. 41 C. 31 D. 103 5. (兰州中考)如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠ADB=30°,AB=4,则OC =( )A. 5B. 4C. 3.5D. 36. (泰安中考)如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连结CE ,则CE 的长为( )A . 3B . 3.5C . 2.5D . 2.87. 如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为度时,两条对角线长度相等.8. 如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2= .9. 如图,矩形ABCD中,E,F分别是AD,AB上的点.若EF=EC,EF⊥EC,DE=2,矩形的周长为16,则AE的长为.10. 如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,则EF的最小值为 .11. 如图,矩形ABCD,P是矩形外一点,且PA=PD,求证:PB=PC.12. 如图,在矩形ABCD中,对角线AC,BD交于点O,DE平分∠ADC,交BC于点E,∠BDE 的度数为15°. 请求出∠COD的度数.13. 如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E. (1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.B组自主提高14. 如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,AD的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()A.512 B. 524 C. 548 D. 不能确定15. 如图所示,将矩形ABCD 沿BD 对折,使点C 落在C ′处,BC ′交AD 于点E ,AD =8,AB =4.(1)求证:BE =ED ; (2)求△BED 的面积.参考答案5.1 矩形(第1课时)【课堂笔记】直角 平行四边形 四 相等 中心 轴 两【分层训练】1—5. BABBB 6. C 7. 90 8. 60° 9. 3 10. 2.411. ∵PA=PD ,∴∠PAD=∠PDA. ∵矩形ABCD ,∴AB=CD ,∠BAD=∠CDA=90°,∴∠PAB=∠PDC ,∴△PAB ≌△PDC (SAS ),∴PB=PC. 12. ∠COD=60°13. (1)∵四边形ABCD 是矩形,∴AC=BD ,AB ∥CD. ∵BE ∥AC ,∴四边形ABEC 是平行四边形. ∴AC=BE ,∴BD=BE ;(2)∵在矩形ABCD 中,BO=4,∴BD=2BO=2×4=8. ∵∠DBC=30°,∴CD=21BD=21×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8. 在Rt △BC D 中,BC=22CD BD -=2248-=43,∴S 四边形ABED=21(AB+DE )·BC=21(4+8)×43=243. 14. B15. (1)根据折叠得:∠EBD =∠DBC ,又矩形ABCD ,∴AD ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED.(2)设BE =DE =x ,在△ABE 中,(8-x )2+42=x 2,解得:x=5,∴S △BED =21×5×4=10. 第5章 特殊平行四边形5.1 矩形(第2课时)课堂笔记有 个角是直角的四边形是矩形;对角线相等的 是矩形. 分层训练A 组 基础训练1. 下列命题中假命题是( )A. 有三个角都是直角的四边形是矩形B. 对角线相等的平行四边形是矩形C. 对角线互相平分且相等的四边形是矩形D. 对角线相等的四边形是矩形2. 四边形ABCD的对角线AC,BD,下面给出的三个条件中,选取两个,能使四边形ABCD是矩形,①AC,BD互相平分;②AC⊥BD;③AC=BD,则正确的选法是()A. ①②B. ①③C. ②③D. 以上都可以3. 矩形的三个顶点坐标分别是(-2,-3),(1,-3),(-2,-4),那么第四个顶点坐标是()A. (1,-4)B. (-8,-4)C. (1,-3)D. (3,-4)4. 平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形 B.一般四边形C.对角线垂直的四边形 D.矩形5.如图,已知四边形ABCD的两条对角线AC,BD互相垂直,E,F,G,H分别是四边形ABCD 各边中点. 若AC=8,BD=6,则四边形EFGH的面积为()A.48 B.24 C.12 D.无法计算6. 在四边形ABCD中,AD=BC,AB=CD,请再添加一个条件,使四边形ABCD是矩形. 你添加的条件是(写出一种即可).7. 定理“矩形的对角线相等”的逆命题是,这个命题是(填“真”或“假”)命题.8. 的对角线AC,BD相交于点O,△AOD是正三角形,AD=4的面积为 .9. 如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连结AE交BC于F,∠AFC=n∠D,当n= 时,四边形ABEC是矩形.10. 工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;(2)摆放成如图2的四边形,则这时窗框的形状是形,根据的数学道理是:;(3)将直角尺靠紧窗框的一个角(如图3),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是形,根据的数学道理是:.11.如图,AB∥CD,EF交AB于E,交CD于F,且EF截AB、CD所得的两对同旁内角的平分线分别相交于G,H. 求证:四边形EGFH是矩形.12.中,E为BC的中点,连结AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.B组自主提高13.(桂林中考)如图,矩形A1B1C1D1的面积为4,顺次连结各边中点得到四边形A2B2C2D2,再顺次连结四边形A2B2C2D2四边中点得到四边形A3B3C3D3……依此类推,求得四边形A n B n C n D n 的面积是 .14. 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,且AF=DC,连结CF.(1)求证:D是BC的中点;(2)如果AB=AC,试猜测四边形ADCF的形状,并证明你的结论.参考答案5.1 矩形(第2课时)【课堂笔记】 三 平行四边形 【分层训练】 1—5. DBADC6. 答案不唯一. 如:∠A=90°,AC=BD 等7. 对角线相等的四边形是矩形 假8. 1639. 210. (2)平行四边 两组对边分别相等的四边形是平行四边形 (3)矩 有一个角是90°的平行四边形是矩形11. ∵AB ∥CD ,∴∠AEF+∠CFE=180°,∵FG ,EG 分别平分∠CFE 和∠AEF ,∴∠GEF=21∠AEF ,∠GFE=21∠CFE ,∴∠GEF+∠GFE=90°,∴∠G=90°,同理可得∠H=90°,∵FH 平分∠EFD ,∴∠EFH=21∠EFD ,∴∠GFE+∠EFH=21∠CFE+21∠EFD=90°,∴四边形EGFH是矩形.12. (1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∵点F 为DC 的延长线上的一点,∴AB ∥DF ,∴∠BAE=∠CFE ,∠ECF=∠EBA ,∵E 为BC 中点,∴BE=CE ,则在△BAE 和△CFE 中,∠BAE=∠CFE ,∠EBA=∠ECF ,BE=CE ,∴△BAE ≌△CFE ,∴AB=CF. (2)满足BC =AF 时,四边形ABFC 是矩形. 理由:由(1)得AB=CF ,又∵AB ∥CF ,∴四边形ABFC 是平行四边形,又∵BC=AF 是矩形(对角线相等的平行四边形为矩形).13.321 n14. (1)∵AF ∥BC ,∴∠AFE=∠DBE. ∵E 是AD 的中点,∴AE=DE. 又∵∠AEF=∠DEB ,∴△AEF ≌△DEB ,∴AF=DB. ∵AF=DC ,∴DB=DC ,即D 是BC 的中点. (2)四边形ADCF 是矩形.证明:∵AF ∥DC ,AF=DC ,∴四边形ADCF 是平行四边形. ∵AB=A C ,D 是BC 的中点,∴AD ⊥BC. ∴四边形ADCF 是矩形.【点拨】(1)利用平行得角相等,从而证明△AEF ≌△DEB ,由此可得BD=DC ;(2)只要利用等腰三角形“三线合一”的性质说明AD ⊥BC 即可.5.2 菱形(第1课时)课堂笔记一组 相等的平行四边形叫菱形. 菱形的四条边 ;菱形的对角线 ,并且每条对角线平分 ;菱形既是 对称图形,又是对称图形,它至少有条对称轴.分层训练A组基础训练1. 下列特征中,菱形具有而矩形不一定具有的是()A. 对边平行且相等B. 对角线互相平分C. 内角和等于外角和D. 每一条对角线所在直线都是它的对称轴2. 如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是()A. DA=DEB. BD=CEC. ∠EAC=90°D. ∠ABC=2∠E3. (长沙中考)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A. 5cmB. 10cmC. 14cmD. 20cm4. 如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A. 3.5B. 4C. 7D. 145. 已知菱形的边长与一条对角线的长相等,则菱形的最大的内角是()A. 90° B. 120° C. 135° D. 150°6. 如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,交AB于点E,连结DF,则∠CDF等于()A. 80°B. 70°C. 65°D. 60°7. 如图,在菱形ABCD中,对角线AC,BD交于点O,则∠AOD= 度,若AC=AB=6,则BD= .8. 菱形的一个内角是150°,一边长为10cm,则它的面积是 .9. 如图,是利用四边形的不稳定性制作的菱形晾衣架,已知每个菱形的边长为20cm,∠1=60°,则在墙上悬挂晾衣架的两个铁钉A,B间的距离是 cm.10. (孝感中考)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH 的长为.11. (岳阳中考)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.中,对角线AC,BD交于点O,.求证:.12. 已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.13. (沈阳中考)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连结EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.B组自主提高14. (黄冈中考)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连结OH,求证:∠DHO=∠DCO.15. 已知△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合). 以AD为边作菱形ADEF,使∠DAF=60°,连结CF.(1)如图1,当点D在边BC上时:①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?若不成立,请写出∠AFC,∠ACB,∠DAC之间存在的等量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上,且点A,F分别在直线BC的异侧时,其他条件不变,请补全图形,并直接写出∠AFC,∠ACB,∠DAC之间存在的等量关系.参考答案5.2 菱形(第1课时)【课堂笔记】邻边都相等互相垂直一组对角中心轴两【分层训练】1—5. DBDAB 6. D7. 90 638. 50cm29. 2035010.1311. AC⊥BD 四边形ABCD是菱形证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.12. (1)略(2)9313. (1)∵四边形ABCD是菱形,∴AD=CD,∠A=∠C. ∵DE⊥AB,DF⊥CB,∴∠AED=∠CFD=90°,∴△ADE≌△CDF.(2)∵四边形ABCD是菱形,∴AB=CB. ∵△ADE≌△CDF,∴AE=CF,∴BE=BF,∴∠BEF=∠BFE.14. 证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°. 又∵DH⊥AB,∴OH=OB,∴∠OHB=∠OBH. ∵AB∥CD,∴∠OBH=∠ODC,∴∠OHB=∠ODC. 在Rt△COD中,∠ODC+∠OCD=90°,又DH⊥AB,∴∠DHO+∠OHB=90°,∴∠DHO=∠DCO.15. (1)①提示:证△ABD≌△ACF(SAS),得∠ADB=∠AFC;②结论成立.(2)不成立,关系为∠AFC=∠ACB-∠DAC,证△ABD≌△ACF,得∠ADC=∠AFC. ∵∠ACB=∠ADC+∠DAC. ∴∠AFC=∠ACB-∠DAC.(3)补全图形略,等量关系是:∠AFC=2∠ACB-∠DAC或∠AFC+∠DAC+∠ACB=180°,这两个等式的变式都行.5.2 菱形(第2课时)课堂笔记四条边相等的四边形是;对角线的平行四边形是菱形.分层训练A组基础训练1. 下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形2. 用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形3. 如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG、FH交于点O,则图中的菱形共有()A.4个 B.5个 C.6个 D.7个4. 将一张矩形纸对折再对折,如图,然后沿着图中的虚线剪下,得到①,②两部分,将①展开后得到的平面图形是()A. 矩形B. 三角形C. 梯形D. 菱形5. 折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM;③MN=AN;④四边形ADNM是菱形,其中正确的个数是()A.1个 B.2个 C.3个 D 4个6. 如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒2cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()A. 2B. 2C. 22D. 37. 如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是(只需填一个).8. 一组邻边相等且对角线的四边形是菱形.9. 如图,P是菱形ABCD对角线AC上一点,PE⊥AB,且PE=3,则点P到AD的距离为 .10. 如图,在△ABC中,点D,E,F分别在边BC,AB,CA上,且DE∥CA,DF∥BA. 下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF 是菱形. 其中正确的有(只填写序号).11.如图,将宽度为2cm的两张纸条交叉重叠在一起,得到的重叠部分为四边形ABCD. (1)四边形ABCD是菱形吗?请说明理由.(2)若∠ABC=45°,求四边形ABCD的面积.12. (张家界中考)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB 的延长线于点F,连结AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.B组自主提高13. 如图,在平面直角坐标系中,A点与B点关于x轴对称并且点A的坐标为(3,1),平面内是否存在点N,使以O,A,B,N为顶点的四边形是菱形,请写出所有满足条件的N 点的坐标为 .14. 中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG应满足什么条件?(不需要证明);(3)若四边形EHFG应满足什么条件?(不需要证明).参考答案5.2 菱形(第2课时)【课堂笔记】菱形互相垂直【分层训练】1—5. CBBDC 6. B7. 答案不唯一. 如:AB=BC等 8. 互相平分 9. 3 10. ①②③④11. (1)四边形ABCD是菱形,用面积法说明邻边相等;(2)四边形ABCD的面积=42cm2.12. (1)∵四边形ABCD是平行四边形,∴AE∥BF,∴∠EAG=∠FBG,∵EF是AB的垂直平分线,∴AG=BG,在△AGE和△BGF中,∵∠EAG=∠FBG,AG=BG,∠AGE=∠BGF,∴△AGE≌△BGF(ASA). (2)四边形AFB E是菱形.理由:由(1)得:△AGE≌△BGF,∴AE=BF,又AE∥BF,∴四边形AFBE是平行四边形,∵EF是AB的垂直平分线,∴AF=BF,∴平行四边形AFBE是菱形.13. (0,2)、(0,-2)、(23,0)14. (1)∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB的中点,F是CD的中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH 是平行四边形;(2)当平行四边形ABCD满足AB=2AD时,平行四边形EHFG是矩形;(3)当平行四边形ABCD是矩形时,平行四边形EHFG是菱形.5.3 正方形(第1课时)课堂笔记有一组相等,并且有一个角是的平行四边形叫做正方形;有一组邻边相等的是正方形. 有一个角是直角的是正方形.分层训练A组基础训练1. 下列命题错误的是()A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D.有一个角是直角的菱形是正方形2. 已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是()A.∠D=90° B.AB=CD C.AD=BC D.BC=CD3. (威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A. BC=ACB. CF⊥BFC. BD=DFD. AC=BF4. 顺次连结四边形ABCD各边中点所组成的四边形是正方形,则四边形ABCD的对角线()A.互相垂直但不相等 B.相等且互相垂直C.相等但不互相垂直 D.互相平分5. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A.22.5°角 B.30°角 C.45°角 D.60°角6. 如图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以 B.甲、乙都不可以C.甲不可以,乙可以 D.甲可以,乙不可以7.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是 .8. 如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,AB与AD边上的AF重合,则四边形ABEF就是一个大的正方形,他判定的方法是 .9. 矩形各内角的平分线所构成的四边形是形.10. (兰州中考)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件. 下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB ⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD,其中正确的序号是 .11. 如图所示,在Rt△ABC中,CF为∠ACB的平分线,FD⊥AC于D,FE⊥BC于点E,试说明四边形CDFE是正方形.12. (内江中考)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED. 点G是BC、AE延长线的交点,AG与CD相交于点F. 求证:四边形ABCD是正方形.B组自主提高13. 如图,将正方形纸片ABCD按下图方式折叠两次,再沿MN剪开,则可得()A. 四个相同的正方形B. 两个相同的正方形C. 四个等腰直角三角形D. 两个等腰直角三角形和两个正方形14. 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一动点,过点D 作DE⊥BC,交直线MN于点E,垂足为点F,连结CD、BE.(1)求证:CE=AD;(2)当D运动到AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D运动到AB中点,则∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案5.3 正方形(第1课时)【课堂笔记】邻边直角矩形菱形【分层训练】1—5. ADDBC 6. A7. 正方形 8. 有一组邻边相等的矩形是正方形 9. 正方 10. ①③④11. ∵∠FEC=∠ECD=∠CDF=90°,∴四边形ECDF是矩形. ∵CF平分∠ACB,FD⊥AC,FE⊥BC,∴EF=DF,∴四边形ECDF是正方形.12. ∵四边形ABCD是矩形,∴∠BAD=∠BCD=90°. ∵∠BAE=∠BCE,∴∠BAD-∠BAE=∠BCD-∠BCE,即∠EAD=∠ECD. ∵∠AED=∠CED,ED=ED,∴△AED≌△CED. ∴AD=CD. ∴矩形ABCD 是正方形.13. A14. (1)∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.5.3 正方形(第2课时)课堂笔记正方形的个角都是直角,四条边;正方形的对角线,并且,每条对角线平分一组;正方形既是对称图形,又是 对称图形,有 条对称轴.分层训练A 组 基础训练1. 如图,菱形ABCD 中,∠B=60°,A B=4,则以AC 为边长的正方形ACEF 的周长为( )A . 14B . 15C . 16D . 172. 矩形、菱形、正方形都具有的性质是( )A . 对角线相等B . 对角线互相平分C . 对角线平分一组对角D . 对角线互相垂直3. 已知正方形ABCD 的边长为2,E ,F 分别为BC 和CD 边上的中点,则△AEF 的面积为( )A . 2.5B . 1.5C . 2D . 5354. 如图,正方形ABCD 中,∠DAF=25°,AF 交对角线BD 于点E ,那么∠BEC 等于( )A . 45°B . 60°C . 70°D . 75°5. 如图,正方形A BCD 的边长为8,点M 在DC 上且DM=2,N 是AC 上一动点,则DN+MN 的最小值为( )A. 8B. 82C. 217D. 106. 边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB ′C ′D ′,两图叠成一个“蝶形风筝”(如图中阴影部分),则这个风筝的面积是( )A. 2-33B. 332C. 2-43 D. 27. (黄冈中考)已知:如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED= .8.(绍兴中考)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD 上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A →D→E→F. 若小敏行走的路程为3100m,则小聪行走的路程为 m.9. 如图,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=8,BF=5,则EF的长为 .10.如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中正确的有 . (填序号)11. (广安中考)如图,四边形ABCD是正方形,E、F分别是AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE.12.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠AD E=∠CDF.(1)求证:AE=CF;(2)连结DB交EF于点O,延长OB至点G,使OG=OD,连结EG,GF,判断四边形DEGF是否是菱形,并说明理由.B组自主提高13. 如图,将正方形对折后展开(图4是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有()A. 4个B. 3个C. 2个D. 1个14.如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连结DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连结AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系(直接写出结论).参考答案5.3 正方形(第2课时)【课堂笔记】四相等相等互相垂直平分对角中心轴 4【分层训练】1—5. CBBCD 6. A7. 45°8. 46009. 1310. ①②④11. 证明:∵四边形ABCD是正方形,∴AB=BC,∠A=∠CBE=90°,∵BF⊥CE,∴∠BCE+∠CBG=90°,∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF,在△BCE和△ABF中,∠BCE=∠ABF,BC=AB,∠CBE=∠A,∴△BCE≌△ABF(ASA),∴BE=AF.12. (1)在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∠ADE=∠CDF,AD=CD,∠A=∠C=90°,∴△ADE≌△CDF(ASA),∴AE=CF;(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∵△ADE≌△CDF,∴DE=DF,∴BD垂直平分EF,又∵OG=OD,∴四边形DEGF是菱形.13. C14. (1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.(2)AE⊥DF. 设AE与DF相交于点H.∵四边形ABCD是正方形,∴AD=A B,∠DAF=∠BAF.又∵AF=AF,∴△ADF≌△ABF. ∴∠1=∠2. 又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,∴△ADE≌△BCE. ∴∠3=∠4. ∵∠2+∠4=90°,∴∠1+∠3=90°,∴∠AHD=90°. ∴AE⊥DF.(3)∵∠ADE=90°,AE ⊥DF. ∴∠1+∠5=90°,∠3+∠1=90°. ∴∠3=∠5,∵∠3=∠4,∴∠4=∠5. ∵DC=BC ,∠DCM=∠BCE=90°,∴△DCM ≌△BCE. ∴CE=CM ,又∵E 为CD 中点,且CD=CB ,∴CE=21CD=21BC ,∴CM=21CB ,即M 为BC 中点,∴BM=MC. 第5章 特殊平行四边形检测卷一、选择题(每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A . 正三角形B . 平行四边形C . 矩形D . 直角三角形2. 如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长为( )A. 4B. 6C. 8D. 103. (广安中考)下列说法:①四边相等的四边形一定是菱形;②顺次连结矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分. 其中正确的有 个. ( )A . 4B . 3C . 2D . 14. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为( )A . 80°B . 60°C . 45°D . 40°5. 小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于21AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求. 根据他的作图方法可知四边形ADBC 一定是( )A . 矩形B . 菱形C.正方形 D.有一内角为60°的平行四边形6.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()A. 45度 B. 30度 C. 22.5度 D. 20度7. 如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边上的中点,连结EF,若EF=3,BD=4,则菱形ABCD的周长为()A. 4 B. 46 C. 47 D. 288. 如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1 B. 3-5 C.5+1 D.5-19.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连结AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连结AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连结EF,则四边形ABEF 是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确D.甲、乙均错误10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A. 23 B. 26 C. 3 D.6二、填空题(每小题3分,共30分)11.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于.12.如图,正方形ABCD的边长为8,E为AD上一点.若BE=10,则CE= .13. 顺次连结对角线互相垂直的四边形各边中点所得的四边形是.14.如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3= 度.15.如图,一块长方形场地ABCD的长AB与宽AD的比为2∶1,DE⊥AC于点E,BF⊥AC于点F,连结BE,DF,则四边形DEBF与长方形ABCD的面积比为 .16. 如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB= .17.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=22,则点B的坐标为.18.(张家界中考)如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点 E,连结PC,则三角形PCE的面积为 .19. 将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则菱形AECF的周长为 .20. 如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为.三、解答题(共40分)21.(6分)如图,把一个正方形剪成四个完全一样的直角三角形,请用这四个直角三角形拼成符合下列要求的一个图形(全部用上,互不重叠且不留空隙),并把你的拼法的草图画出来.(1)不是矩形和菱形的平行四边形;(2)不是正方形的菱形;(3)不是正方形的矩形.22.(6分)(邵阳中考)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.23.(8分)在平行四边形ABCD中,E,F分别为边AB,CD的中点,连结DE,BF,BD.(1)求证:△ADE≌△CBF;(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.24.(10分)如图,矩形纸片ABCD(AD>AB)中,将它折叠,使点A与点C重合,折痕EF交AD于点E,交BC于点F,交AC于点O,连结AF,CE.(1)求证:四边形AFCE是菱形;(2)若AE=8,△ABF的面积为9,求AB+BF的值.25. (10分)如图1,四边形A BCD是正方形,G是CD边上的一个动点(与C,D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.(1)猜想图1中线段BG,DE的数量关系及所在直线的位置关系(不必证明);(2)将图1中的正方形CEFG绕点C按顺时针(或逆时针)方向任意旋转角度α,得到图2,图3. 请你通过观察、测量等方法判断(1)中所得到的结论是否仍然成立,并选取图2证明你的判断.参考答案第5章 特殊平行四边形检测卷一、选择题1—5. CCCAB 6—10. CCDCA二、填空题11. 4 12. 21713. 矩形14. 13515. 3∶516. 22.5°17. (22+2,2) 18. 9-5319. 8 20. 141n三、解答题21. 图略22. (1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵∠OBC=∠OCB ,∴OB=OC ,∴AC=BD ,∴平行四边形ABCD 是矩形;(2)AB=AD (或AC ⊥BD ,答案不唯一). 理由:∵四边形ABCD 是矩形,又∵AB=AD ,∴四边形ABCD 是正方形. 或:∵四边形ABCD 是矩形,又∵AC ⊥BD ,∴四边形ABCD 是正方形.23. (1中,AD=BC ,AB=CD ,∠A=∠C ,∵E 、F 分别为边AB 、CD 的中点,∴AE=CF ,在△ADE 和△CBF 中,AD=BC ,∠A=∠C ,AE=CF ,∴△ADE ≌△CBF (SAS );(2)是菱形. 证明:由(1)可得BE=DF ,又AB ∥CD ,∴BE DF ,∴四边形BEDF 是平行四边形,连结EF 中,E 、F 分别为边AB 、CD 的中点,∴DF AE ,∴四边形AEFD 是平行四边形,∴EF ∥AD ,∵AD ⊥BD ,∴EF ⊥BD ,又∵四边形BFDE 是平行四边形,∴四边形BFDE 是菱形.24. (1)证明:当顶点A 与C 重合时,折痕EF 垂直平分AC ,∴OA=OC ,∠AOE=∠CO F=90°,∵在矩形ABCD 中,AD ∥BC ,∴∠EAO=∠FCO ,∴△AOE ≌△COF (ASA ),∴OE=OF ,∴四边形AFCE 是菱形.(2)∵四边形AFCE 是菱形,∴AF=AE=8,在Rt △ABF 中,AB2+BF2=AF2,∴AB2+BF2=82,∴(AB+BF )2-2AB ·BF=64①,∵△ABF 的面积为9,∴21AB ·BF=9,∴AB ·BF=18②,由①、②得:(AB+BF )2=100,∵AB+BF >0,∴AB+BF=10.25. (1)BG=DE ,BG ⊥DE ;(2)仍然成立;证明:∵四边形ABCD 是正方形,四边形CEFG 是正方形,∴BC=CD ,CE=CG ,∠BCD=∠ECG=90°,∴∠BCD+∠DCG=∠ECG+∠DCG ,即∠BCG=∠DCE ,在△BCG 和△DCE 中,∴BC=CD ,∠BCG=∠DCE ,CG=CE ,∴△BCG ≌△DCE (SAS ),∴BG=DE ,∠CBG=∠CDE ,∵∠CBG+∠BHC=90°,∠BHC=∠DHO (对顶角相等),∴∠CDE+∠DHO=90°,在△DHO 中,∠DOH=180°-(∠CDE+∠DHO )=180°-90°=90°,∴BG ⊥DE.。
浙教版八年级下册第五章特殊平行四边形测试题(附答案)

浙教版八年级下册第五章特殊平行四边形测试题(附答案)一、单选题(共12题;共36分)1.如图,四边形ABCD是正方形,直线L1、L2、L3,若L1与L2的距离为5,L2与L3的距离7,则正方形ABCD的面积等于()A. 70B. 74C. 144D. 1482.正方形具有而菱形不一定具有的性质是( ).A. 四条边都相等B. 对角线互相垂直且平分C. 对角线相等D. 对角线平分一组对角3.矩形的一内角平分线把矩形的一条边分成2和3两部分,则该矩形的周长是( ).A. 12B. 14C. 16D. 14或164.如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于( )A. 110°B. 115°C. 120°D. 125°5.关于平行四边形ABCD的叙述,正确的是( )A. 若AB⊥BC,则平行四边形ABCD是菱形B. 若AC⊥BD,则平行四边形ABCD是正方形C. 若AC=BD,则平行四边形ABCD是矩形D. 若AB=AD,则平行四边形ABCD是正方形6.已知ABCD,对角线AC,BD相较于点O,要使ABCD为矩形,需添加下列的一个条件是( )A. B. C. D.7.矩形的边长是,一条对角线的长是,则矩形的面积是()A. B. C. . D.8.如图,在平行四边形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使平行四边形ABCD成为菱形的是()A. AO=BOB. AC=ADC. AB=BCD. OD=AC9.如图,要使平行四边形ABCD是矩形,可添加的条件是()A. OA=OC OB=ODB. AC=BDC. AB=BCD. AC⊥BD10.在四边形ABCD中,对角线AC、BD相交于点O,给出下列条件:①AB∥CD;②AB=CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD.则下列各组组合中,不能推出四边形ABCD为菱形的是()A. ①②④B. ③④⑤C. ①②⑤D. ①②⑥11.能判定一个四边形是菱形的条件是()A. 对角线相等且互相垂直B. 对角线相等且互相平分C. 对角线互相垂直D. 对角线互相垂直平分12.四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形二、填空题(共9题;共27分)13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为__△________cm.14.如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF=________°.15.菱形的面积为24,一条对角线长为6,则它的周长是________.16.如图,ABCD是对角线互相垂直的四边形,且0B=OD,请你添加一个适当的条件: ________使ABCD成为菱形.(只需添加一个即可)17.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=1,则AC的长是________.18.已知菱形的一条对角线的长为12cm,另一条对角线的长为5cm,则这菱形的面积为________cm2.19.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于________.20.如图,在菱形ABCD中,对角线AC=6,AB=5,则菱形ABCD的面积为________.21.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=________.三、作图题(共1题;共12分)22.图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,A,C两点都在格点上,连结AC,请完成下列作图:(1)以AC为对角线在图1中作一个正方形,且正方形各顶点均在格点上(2)以AC为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上(3)以AC为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上四、综合题(共2题;共25分)23.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.24.如图1,在正方形中,是上一点,是延长线上一点,且.(1)试说明:;(2)在图1中,若在上,且,则成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下题:如图2,在直角梯形ABCD中,BC∥AD(BC>AD),∠B=90°,AB=BC=6,E 是AB 的中点,且∠DCE=45°,求DE的长.答案一、单选题1. B2. C3. D4. A5. C6. A7. C8. C9.B 10. A 11.D 12.C二、填空题13. 9 14. 75 15. 20 16. 答案不唯一,如或或或等17.2 18.30 19. 3 20. 24 21.三、作图题22. (1)解:正方形ABCD为所求作的正方形(2)解:矩形ABCD为所求作的矩形(3)解:平行四边形ABCD为所求作的平行四边形.(画出下列一种即可)四、综合题23. (1)证明:在▱ABCD中,∵AD∥BC,AD=BC,∴∠EBC=∠ADF,由题意知,BE=DF,在△BEC与DFA中,,∴△BEC≌△DFA中(SAS),∴CE=AF,同理:AE=CF,∴四边形AECF为平行四边形.(2)解:如下图,由矩形的性质知OE=OF,OA=OC,由(1)知,要使四边形AECF为矩形即∠EAF是直角即可,这时只需OE=OF=OA=AC=4 cm,则∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠EAF=90°,此时BE=DF=(BD-EF)=×(12-8)=2 cm或BE=DF=12-2=10 cm.即t=2或t=10时,四边形AECF为矩形.24. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDA=90°,∴∠CDF=90°. 在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴CE=CF.(2)若G在AD上,且∠GCE=45°,则GE=BE+GD成立,理由如下:由(1)△BCE≌△DCF知∠BCE=∠DCF,CE=CF.∵∠GCE=45°,∴∠GCF=∠GCD+∠DCF=∠GCD+∠BCE=90°-45°=45°,∴∠GCF=∠GCE,在△GCE和△GCF中,,∴△GCE≌△GCF(SAS),∴GE=GF,即:GE=DF+GD=BE+GD.(3)如下图:过点C作CG⊥AD交AD的延长线于点G,由第(2)问及题设知,四边形ABCG是正方形,且DE=BE+DG,设DG=x,则AD=6-x,DE=BE+x,AE=6-BE,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,即:(6-x)2+(6-BE)2=(BE+x)2,解得:x=,∴DE=BE+DG=BE+=.。
浙教版八年级(下)数学期末特殊平行四边形压轴题专项汇编(3)(含详解)

浙教版八年级(下)数学期末特殊平行四边形压轴题专项汇编(3)(含详解)1.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.2.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.3.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF 是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=2MN,求AB2、BC2、CD2、AD2之间的关系.4.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.5.已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.(1)若点G在点B的右边.试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.(2)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数.6.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.7.已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD 的边AB、BC、DA上.(1)如图1,四边形EFGH 为正方形,AE =2,求GC 的长.(2)如图2,四边形EFGH 为菱形,设BF =x ,△GFC 的面积为S ,且S 与x 满足函数关系S =621x .在自变量x 的取值范围内,是否存在x ,使菱形EFGH 的面积最大?若存在,求x 的值,若不存在,请说明理由.8.如图,正方形ABCD 的对角线相交于点O ,∠CAB 的平分线分别交BD 、BC 于E 、F ,作BH ⊥AF 于点H ,分别交AC 、CD 于点G 、P ,连接GE 、GF . (1)求证:△OAE ≌△OBG .(2)试问:四边形BFGE 是否为菱形?若是,请证明;若不是,请说明理由.9.已知,如图,O 为正方形对角线的交点,BE 平分∠DBC ,交DC 于点E ,延长BC 到点F ,使CF =CE ,连接DF ,交BE 的延长线于点G ,连接OG . (1)求证:△BCE ≌△DCF .(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8﹣42,求正方形ABCD的面积?10.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过A作AN⊥MB交MB的延长线于点N,请求出线段CM与BN的数量关系.参考答案与解析1.(1)证明:取AB的中点H,连接EH;如图1所示∵四边形ABCD是正方形,AE⊥EF;∴∠1+∠AEB =90°,∠2+∠AEB =90° ∴∠1=∠2,∵BH =BE ,∠BHE =45°,且∠FCG =45°, ∴∠AHE =∠ECF =135°,AH =CE , 在△AHE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ECF AHE CEAH 21, ∴△AHE ≌△ECF (ASA ), ∴AE =EF ;(2)解:AE =EF 成立,理由如下:如图2,延长BA 到M ,使AM =CE , ∵∠AEF =90°, ∴∠FEG +∠AEB =90°. ∵∠BAE +∠AEB =90°, ∴∠BAE =∠FEG , ∴∠MAE =∠CEF . ∵AB =BC , ∴AB +AM =BC +CE , 即BM =BE . ∴∠M =45°, ∴∠M =∠FCE . 在△AME 与△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ECF M CEAM CEF MAE , ∴△AME ≌△ECF (ASA ), ∴AE =EF .2.(1)证明:能.理由如下:在△DFC 中,∠DFC =90°,∠C =30°,DC =4t , ∴DF =2t , 又∵AE =2t , ∴AE =DF ,∵AB ⊥BC ,DF ⊥BC , ∴AE ∥DF , 又∵AE =DF ,∴四边形AEFD 为平行四边形, 当AE =AD 时,四边形AEFD 为菱形,即60﹣4t =2t ,解得t =10.∴当t =10秒时,四边形AEFD 为菱形.(2)①当∠DEF =90°时,由(1)知四边形AEFD 为平行四边形, ∴EF ∥AD ,∴∠ADE =∠DEF =90°, ∵∠A =60°, ∴∠AED =30°, ∴AD=21AE =t , 又AD =60﹣4t ,即60﹣4t =t ,解得t =12;②当∠EDF =90°时,四边形EBFD 为矩形,在Rt △AED 中∠A =60°,则∠ADE =30°, ∴AD =2AE ,即60﹣4t =4t ,解得t=215. ③若∠EFD =90°,则E 与B 重合,D 与A 重合,此种情况不存在. 综上所述,当t=215或12秒时,△DEF 为直角三角形.3.(1)证明:∵四边形ABCD 是正方形, ∴AB =BC ∠A =∠ABC =90°, ∴∠EAF +∠EBC =90°, ∵BE ⊥CF ,∴∠EBC +∠BCF =90°, ∴∠EBF =∠BCF , ∴△ABE ≌△BCF , ∴BE =CF ,∴四边形BCEF 是准矩形;(2)解:连接AN 、DN ,过点C 作CE ∥BD ,过点B 作BE ∥DC , 则四边形BECD 为平行四边形,连接DE ,则D 、N 、E 三点共线,过点B 作BF ⊥CE 于F ,过点D 作DG ⊥EC 交EC 延长线于点G ,如图2所示: ∵四边形BECD 为平行四边形, ∴BE =DC ,BE ∥DC ,ED =2DN , ∴∠BEF =∠DCG , 在△BEF 和△DCG 中,⎪⎩=DC BE ∴△BEF ≌△DCG (AAS ), ∴BF =DG ,EF =CG ,在Rt △BFC 中,BC 2=BF 2+FC 2=BF 2+(EC ﹣EF )2,在Rt △DEG 中,DE 2=DG 2+EG 2=DG 2+(EC +CG )2=BF 2+(EC +EF )2, ∴BC 2+DE 2=2BF 2+2EC 2+2EF 2=2(BF 2+EF 2)+2EC 2=2BE 2+2EC 2=2BD 2+2CD 2, ∴BC 2+4DN 2=2BD 2+2CD 2,∴DN 2=41(2BD 2+2CD 2﹣BC 2) 同理:AN 2=41(2AB 2+2AC 2﹣BC 2),MN 2=41(2AN 2+2DN 2﹣AD 2)=41(BD 2+CD 221-BC 2+AB 2+AC 221-BC 2﹣AD 2)=41(AC 2+CD 221-BC 2+AB 2+AC 221-BC 2﹣AD 2)21=AC 2+41(AB 2+CD 2﹣BC 2﹣AD 2),∵AC 2=MN ,∴MN 221=AC 2, ∴MN 2=MN 2+41(AB 2+CD 2﹣BC 2﹣AD 2),即:41(AB 2+CD 2﹣BC 2﹣AD 2)=0,∴AB 2+CD 2=BC 2+AD 2.4.(1)证明:∵四边形ABDI 、四边形BCFE 、四边形ACHG 都是正方形, ∴AC =AG ,AB =BD ,BC =BE ,∠GAC =∠EBC =∠DBA =90°. ∴∠ABC =∠EBD (同为∠EBA 的余角). 在△BDE 和△BAC 中,⎪BE⎩=BC∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,=AB.∴AD2又∵四边形ACHG是正方形,∴AC=AG,=AB.∴AC2=AB时,四边形ADEG是正方形.∴当∠BAC=135°且AC25.解:(1)EH﹣BG的值是定值,∵EH⊥AB,∴∠GHE=90°,∴∠GEH+∠EGH=90°,又∠AGD+∠EGH=90°,∴∠GEH=∠AGD,∵四边形ABCD与四边形DGEF都是正方形,∴∠DAG=90°,DG=GE,∴∠DAG=∠GHE,在△DAG和△GHE中,⎪DG⎩=GE∴△DAG≌△GHE(AAS);∴AG=EH,又AG=AB+BG,AB=4,∴EH=AB+BG,∴EH﹣BG=AB=4;(2)(I)当点G在点B的左侧时,如图1,同(1)可证得:△DAG≌△GHE,∴GH=DA=AB,EH=AG,∴BH=AG=EH,又∠GHE=90°,∴△BHE是等腰直角三角形,∴∠EBH=45°;(II)如图2,当点G在点B的右侧时,由△DAG≌△GHE.∴GH=DA=AB,EH=AG,∴AG=BH,又EH=AG,∴EH=HB,又∠GHE=90°,∴△BHE是等腰直角三角形,∴∠EBH=45°;(III)当点G与点B重合时,如图3,同理△DAG≌△GHE,∴GH=DA=AB,EH=AG=AB,∴△GHE(即△BHE)是等腰直角三角形,∴∠EBH=45°综上,在G点的整个运动(点G与点A重合除外)过程中,∠EBH都等于45°.6.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,∴四边形AECF 是平行四边形,由(1)可知,FO =CO ,∴AO =CO =EO =FO ,∴AO +CO =EO +FO ,即AC =EF ,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.∵由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,∵MN ∥BC ,∴∠AOE =∠ACB∵∠ACB =90°,∴∠AOE =90°,∴AC ⊥EF ,∴四边形AECF 是正方形.7.解:(1)如图1,过点G 作GM ⊥BC ,垂足为M .由矩形ABCD 可知:∠A =∠B =90°,由正方形EFGH 可知:∠HEF =90°,EH =EF ,∴∠1+∠2=90°,又∠1+∠3=90°,∴∠3=∠2,∴△AEH ≌△BFE .∴BF =AE =2,同理可证:△MGF ≌△BFE ,∴GM =BF =2,FM =BE =8﹣2=6,∴CM =BC ﹣BF ﹣FM =12﹣2﹣6=4,在Rt △CMG 中,由勾股定理得:CG=524222=+;(2)如图2,过点G 作GM ⊥BC ,垂足为M ,连接HF ,由矩形ABCD 得:AD ∥BC ,∴∠AHF =∠HFM ,由菱形EFGH 得:EH ∥FG ,EH =FG ,∴∠EHF =∠HFM ,∴∠AHE =∠GFM ,又∠A =∠M =90°,EH =FG ,∴△MGF ≌△AEH ,∴GM =AE ,又 BF =x ,∴S △GFC 21=FC•GM 21=(12﹣x )•GM =621-x , ∴GM =1,∴AE =GM =1,BE =8﹣1=7,∵H 在边AD 上,∴菱形边长EH 的最大值14511222=+=,即EH =EF 145=, 此时BF =x ()6496181452==--=, ∴0≤x ≤64,∵EH =EF ,由勾股定理得:AH 2222248171x x EH +=-+=-=,∴S 菱形EFGH =BM •AB ﹣2⨯⨯217x ﹣2248121x +⨯⨯⨯=8(x +FM )﹣7x ﹣FM =x +7248x +, ∴当x 最大时,菱形EFGH 的面积最大,即当x =64时,菱形EFGH 的面积最大.8.(1)证明:∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°.∵BH ⊥AF ,∴∠AHG =∠AHB =90°,∴∠GAH +∠AGH =90°=∠OBG +∠AGH ,∴∠GAH =∠OBG ,即∠OAE =∠OBG .在△OAE 与△OBG 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BOG AOE OBOA OBG OAE , ∴△OAE ≌△OBG (ASA );(2)解:四边形BFGE 为菱形;理由如下:在△AHG 与△AHB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠AHB AHG AHAH BAH GAH , ∴△AHG ≌△AHB (ASA ),∴GH =BH ,∴AF 是线段BG 的垂直平分线,∴EG =EB ,FG =FB .∵∠BEF =∠BAE +∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°, ∴∠BEF =∠BFE ,∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BFGE 是菱形;9.(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90°,在△BCE 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠=CF CE DCF BCE DC BC ,∴△BCE ≌△DCF (SAS );(2)OG ∥BF 且OG=21BF , 理由:如图,∵BD 是正方形ABCD 的对角线,∴∠CDB =∠CBD =45°,∵BE 平分∠DBC ,∴∠2=∠3=21∠CBD =22.5°, 由(1)知,△BCE ≌△DCF ,∴∠CDF =∠3=22.5°,∴∠BDF =∠CDB +∠CDF =67.5°,∴∠F =180°﹣∠CBD ﹣∠BDF =67.5°=∠BDF ,∴BD =BF ,而BE 是∠CBD 的平分线,∴DG =GF ,∵O 为正方形ABCD 的中心,∴DO =OB ,∴OG 是△DBF 的中位线,∴OG ∥BF 且OG=21BF ; (3)设BC =x ,则DC =x ,BD=2x ,由(2)知△BGD ≌△BGF , ∴BF =BD ,∴CF =(2-1)x ,∵DF 2=DC 2+CF 2,∴x 2+[(2-1)x ]2=8﹣42,解得x 2=2,∴正方形ABCD 的面积是2.10.解:(1)AG =EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB =BE ,∠ABG =90°,AB =BC ,∠ABC =90°,在△ABG 和△BEC 中,⎪⎩⎪⎨⎧=∠=∠=BC BA EBC ABC BE BG ,∴△ABG ≌△BEC (SAS ),∴CE =AG ,∠BCE =∠BAG ,延长CE 交AG 于点M ,∴∠BEC =∠AEM ,∴∠ABC =∠AME =90°,∴AG =EC ,AG ⊥EC ;(2)∠EMB 的度数不发生变化,∠EMB 的度数为45°理由为: 过B 作BP ⊥EC ,BH ⊥AM ,在△ABG 和△CEB 中,⎪⎩⎪⎨⎧=∠=∠=EB BG EBC ABG BC AB ,∴△ABG ≌△CEB (SAS ),∴S △ABG =S △EBC ,AG =EC ,∴21EC •BP=21AG •BH , ∴BP =BH ,∴MB 为∠EMG 的平分线,∵∠AMC =∠ABC =90°,∴∠EMB=21∠EMG=21×90°=45°;(3)CM=2BN ,理由为:在NA 上截取NQ =NB ,连接BQ , ∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN =45°,∠N =90°,∴△AMN 为等腰直角三角形,即AN =MN ,∴MN ﹣BN =AN ﹣NQ ,即AQ =BM ,∵∠MBC +∠ABN =90°,∠BAN +∠ABN =90°,∴∠MBC =∠BAN ,在△ABQ 和△BCM 中,⎪⎩⎪⎨⎧=∠=∠=BCAB MBC BAN BMAQ ,∴△ABQ ≌△BCM (SAS ),∴CM =BQ ,则CM=2BN .故答案为:CM=2BN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习五 特殊平行四边形
复习目标
要求 知识与方法
了解 矩形、菱形、正方形的概念
理解 矩形、菱形、正方形的判定与性质
运用 用矩形、菱形、正方形的判定与性质解决简单几何问题
必备知识与防范点
一、必备知识:
1. 已知:线段AB,BC,∠ABC=90°. 求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:①以点C为圆心,AB长为半径画弧;
②以点A为圆心,BC长为半径画弧;
③两弧在BC上方交于点D,连结AD,CD,四边形ABCD即为所求(如图1).
乙:①连结AC,作线段AC的垂直平分线,交AC于点M;
②连结BM并延长,在延长线上取一点D,使MD=MB,连结AD,CD,四边形ABCD即为所求(如
图2).
对于两人的作业,下列说法正确的是( )
A. 甲正确,乙错误 B. 乙正确,甲错误
C. 甲、乙均正确 D. 甲、乙均错误
2. 如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为 cm2.
3. 如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,
CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为 .