八年级数学上学期第一次月考试卷(111112)_5

合集下载

八年级上第一次月考数学试卷(有答案)

八年级上第一次月考数学试卷(有答案)

八年级上第一次月考数学试卷(有答案)一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4,,0.121221222122221…(每两个12.(3分)A.8的算术平方根是()D.±B.±8C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4﹣1之值介于下列哪两个整数之间?()C.5,6D.6,7等于()D.﹣2某4.(3分)判断2A.3,4B.4,55.(3分)若某<0,则A.某B.2某C.06.(3分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CC.a2=c2﹣b2B.∠A:∠B:∠C=1:2:3D.a:b:c=3:4:67.(3分)和数轴上的点成一一对应关系的数是()A.自然数B.有理数C.无理数D.实数8.(3分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或379.(3分)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+第1页共15页10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=的面积为1,则它的周长为(),如果Rt△ABCA.B.+1C.+2D.+3二、填空题(每空3分,共24分)11.(3分)的相反数是,绝对值是,倒数是.12.(3分)如图,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处做装饰,则这条丝线的最小长度是.13.(3分)若一个正数的平方根是2a+1和﹣a+2,则a=,这个正数是.14.(3分)若+=0,则某=.15.(3分)已知一个Rt△的两边长分别为3和4,则第三边长是.16.4cm,3cm的木箱中,(3分)有一根7cm木棒,要放在长,宽,高分别为5cm,(填“能”或“不能”)放进去.17.(3分)要使代数式有意义,则某的取值范围是.18.(3分)如图所示,分别以直角三角形的三边为直径作三个半圆,S1=25,S2=144,则S3等于.第2页共15页三、解答题(共66分)19.(12分)计算题(1)(2)(3)(4)20.(8分)解方程(1)3(某﹣2)2﹣=0.(2)(2某﹣1)3﹣8=0.21.(8分)若+(b﹣3)2+|c﹣2|=0,求(a﹣b+c)3的值.,AD=1,且∠B=90°.试求:22.(10分)已知:如图,四边形ABCD中,AB=BC=1,CD=(1)∠BAD的度数.(2)四边形ABCD的面积.(结果保留根号)23.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,(1)求BF长度;(2)求CE的长度.24.(8分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,第3页共15页其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?25.(12分)阅读下面计算过程:1;.请解决下列问题(1)根据上面的规律,请直接写出(2)利用上面的解法,请化简:(3)你能根据上面的知识化简﹣﹣2=..吗?若能,请写出化简过程.第4页共15页八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,,,0.121221222122221…(每两个1之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4【解答】解:0是有理数,3.14是有理数,﹣π是无理数,π﹣|1﹣π|=π﹣(π﹣1)=1是有理数;=3是有理数;=2是有理数;0.121221222122221…是无理数.故选:B.2.(3分)A.8的算术平方根是()D.±=8,.B.±8C.【解答】解:∵∴的算术平方根是:故选:C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4【解答】解:(1)有理数包括整数、分数,原来的说法是错误的;(2)π是无理数,原来的说法是错误的;第5页共15页。

北师大新版八年级数学上册第一次月考试题(WORD版-含评分标准)

北师大新版八年级数学上册第一次月考试题(WORD版-含评分标准)

北师大新版八年级数学上册第一次月考试题 (测试范围:第一章至第三章第二节) 满分:120分 考试时间:90分钟 一、 选择题(每小题3分,共15分)1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A 、2,3,4B 、1,1,2C 、6,6,6D 、2、下列二次根式中,属于最简二次根式的是( )A 、25B 、6C 、16.0D 、3.03、下列各式中,正确的是( )A 、5)5(2-=-B 、552-=-C 、5)5(2±=±D 、552±=4、若ab <0,则点P(a ,b)在平面直角坐标系中位于( )A 、第一、二象限B 、第一、三象限C 、第二、四象限D 、第二、三象限5、若将直角三角形的三边长扩大到原来的2倍,所得到的三角形是( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、等腰三角形二、 填空题(每小题3分,共24分)6、直角三角形两直角边分别是3cm 、4cm ,则斜边上的高的长度是 .7、Rt △DEF 中,DE=6cm ,DF=8cm ,则EF 的长是 .8、在实数 1681、33-、733-、12-、39、21-、()022、3+π…(两个1之间依次多一个0)中,无理数共有 个.9、33-的倒数是 . 10、点A(-4,-3)到原点的距离是 .11、已知点P (2m ,m-1)在x 轴上,则m 的值是 .12、请写出一个位于第三象限的点的坐标 .13、如图所示的正方形网格中,每个小正方形的边长是1,建立直角坐标系.一个动点从点A 出发,第1次运动,从点A 移动到点B ;第2次运动,从点B 移动到点C ;第3次运动,从点C 移动到点D ;第4次运动,从点D 移动到点A ;第5次运动,从点A 移动到点B …按此规律重复移动;则当动点运动了2014次时,所走过的路线长是 .三、 解答题(共81分)14、(7分)计算:554-516420163---+-.15、(7分) 已知(6+5)的小数部分是a ,(6-5)的小数部分是b ,求ab 的值.16、(7分)已知(a -2)的平方根是±2,(2a +b +7)的立方根是3,求(a ²+b ²)的算术平方根.17、(7分)已知m+3与2m-9都是正数a 的平方根,求a 的值.18、(8分)(1)在图(1)中的数轴上作出13-对应的点P(必须保留作图痕迹);(2) 在图(2)所示的平面直角坐标系,描出下列各点:A(2,0) 、B(0,-2) 、C (2,-4) 、D(4,-2),并按顺序连接成四边形ABCD .19、(8分)如图,在Rt △ABC 中,∠C =90°,BC =12cm ,AB =20cm ,BD 平分∠ABC ,交AC 边于点D ,过D 作DE ⊥AB ,垂足为E ,求DE 的长.20、(8分)已知点Q(2m-4,m+1),分别根据下列条件,求出点Q 的坐标.(1) 若点P 的坐标是(3,4),PQ ∥x 轴;(2) 点Q 在第二、四象限的角平分线上.21、(8分)如图,四边形ABCD 中,DA ⊥AB ,DA =AB =2,BC =5,DC =1.则∠ADC 的度数是 ,说明理由.22、(10分)我们知道,()222=,(23+)(23-)=3²-()722=…如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式。

人教版八年级上册数学第一次月考测试卷及答案【完整版】

人教版八年级上册数学第一次月考测试卷及答案【完整版】

人教版八年级上册数学第一次月考测试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .39.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若m+1m =3,则m 2+21m=________. 4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F是边CD上一动点,连接BE、EF,则BE EF+的最小值是____________.6.如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的一元二次方程22240x x k++-=有两个不相等的实数根(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.4.如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、D6、A7、C8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、22()1y x =-+3、74156、3三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、1a b-+,-1 3、(1)k <52(2)24、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

八年级数学上册第一次月考试卷(含答案)

八年级数学上册第一次月考试卷(含答案)

八年级数学上册第一次月考试卷(含答案)数学不是规律的发现者,因为他不是归纳。

小编为大家准备了这篇八年级数学上册第一次月考试卷,接下来我们一起来练习。

八年级数学上册第一次月考试卷(含答案)一、选择题(本大题共有8 小题,每小题3 分,共24 分.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1 个B.2 个C.3 个D.4 个2.如图,a、b、c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是()A. B. C. D.3.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4 的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1 块B.第2 块C.第3 块D.第4 块5.到三角形三边的距离都相等的点是三角形的()A.三条角平分线的交点B.三条边的中线的交点C.三条高的交点D.三条边的垂直平分线的交点6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SASB.ASAC.AASD.SSS7.如图,∠MON 内有一点P,P 点关于OM 的轴对称点是G,P 点关于ON 的轴对称点是H,GH 分别交OM、ON 于A、B 点.若GH 的长为15cm,则△PAB 的周长为()A.5cmB.10cmC.20cmD.15cm8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A. B. C. D.二、填空题(每题4 分,共32 分)9.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.10.如图,已知方格纸中是4 个相同的正方形,则∠1+∠2+∠3=度.11.如图,∠C=90°,∠1=∠2,若BC=9,BD=5,则D 到AB 的距离为.12.如图,已知△ABC≌△ADE,D 是∠BAC 的平分线上一点,且∠BAC=70°,则∠CAE=度.13.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,若AB=6,CD=2,则△ABD 的面积是.14.如图,方格纸中△ABC 的3 个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有个(不含△ABC).15.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB,AC 边翻折180°形成的,若∠1:∠2:∠3=13:3:2,则∠α的度数为度.16.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E 从A 点出发以2 厘米/秒的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED=CB,当点E 运动秒时,△DEB 与△BCA 全等.三、解答题(共64 分)17.在下列的图形上补一个小正方形,使它成为一个轴对称图形.18.如图:某通信公司要修建一座信号发射塔,要求发射塔到两城镇P、Q 的距离相等,同时到两条高速公路l1、l2 的距离也相等.在图上画出发射塔的位置.19.如图,已知AB∥DC,AD∥BC,求证:AB=CD.20.如图,BC=20cm,DE 是线段AB 的垂直平分线,与BC 交于点E,AC=12cm,求△ACE 的周长.21.已知:如图,AC,BD 相交,且AC=DB,AB=DC.求证:∠ABD=∠DCA.历史使人聪明,诗歌使人机智,数学使人精细,哲学使人深邃,道德使人严肃,逻辑与修辞使人善辩。

人教版八年级上册数学第一次月考试题

人教版八年级上册数学第一次月考试题

A.带①去B.带②去C.带③去D.带①17.等腰三角形是轴对称图形,它的对称轴是和②去5.下面4个汽车标志图案中,不是轴对称图形的是()I L pj-J 声八年级上册数学第一次月考试题、选择题(3' X 10=30')1、下列命题中正确的是() A .全等三角形的高相等 B .全等三角形的中线相等C.全等三角形周长相等 D .全等三角形的角平分线相等 2、如图2,直线a 、b 、c 表示三条公路,现要建一个货物中 转站,要求它到三条公路的距离相等,则可供选择的地址有 A. 一处 B.两处 C.三处D.四处 3、如图 3, ZXABC 中,AB= AC ADLBC,点 E 、F 分别是 BR DC 的中点,则图中全等三角形共有( A. 3对 B. 4对 C. 5对 4、如图4,某同学把一块三角形的玻璃不小心打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法 (第8题)(第9题) 9、如图9,在△ ABC 中,AB= AC= 20cm, DE 垂直平分 AR 垂足为 E,AC 于D,若△ DBC 的周长为35cm,则BC 的长为( )A 、5cmB 、10cmC 、15cmD 、17.5cm10、在直角坐标系中,A (1, 2)点的纵坐标乘以一1,横坐标不变,得到B 点,则A 与B 的关系是()A 关于x 轴对称B 关于y 轴对称C 关于原点轴对称D 不确定 二.填空题(2' X 12=24')11、已知:△ABC^^A' B' C' ,/A=/A' ,/B=/B' , Z C=70 ° , AB=15cm ,则/ C' =, A ' B' =。

12等腰三角形的一个角是 80。

,则它的底角是 . 13.如图13所示,五角星的五个角都是顶角为36。

的等腰三角形,则 /AMB的度数为 A. 144°OC.14.如图14,已知AC=DB,要使△ABC^zXDCB,则需要 补充的条件为 (填一个即可)15、已知等腰三角形的两边长分别为2cm, 4cm 则其周长为A B 6.已知等腰三角形的一个外角等于 是( ). A 80 ° B 20 ° C 80 或 定 CD100° ,则它的顶角 20° D 不能确 7.小明从镜子中看到对面电子钟示数如图所示,这时的时刻 应是() A. 21: 10 C. 10: 51 B. 10: 21 D. 12: 01 8、如图(8) AB ±BC, D 为BC 的中点,以下结论正确的有 ()个。

八年级上册数学第一次月考试题及答案

八年级上册数学第一次月考试题及答案

秋第一次月考八年级数学试题一、填空题(每题3分,共24分)1.如图所示的各图形中,具有稳定性的是( )A B、 C、 D、2.一位同学用三根木棒拼成的图形如图所示,则其中符合三角形概念的是()A、 B、 C、 D、3.如图所示,在△ABC中,∠1=∠2,点G为AD的中点,连接BG并延长,交AC于点E,F 为AB上一点,且CF⊥AD于点H,下列判断中正确的个数有( )①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高.A、0个B、1个C、2个D、3个(第3题图)(第4题图)(第6题图)(第7题图)4.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且,则等于( )A、 B、 C、 D、5.对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.以上能断定两直角三角形全等的有( )A、1个B、2个C、3个D、4个6.如图,已知∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是( )A、AB=AD,AC=AEB、AB=AD,BC=DEC、AC=AE,BC=DED、以上都不对7.如图,已知BD⊥AC于点D,CE⊥AB于点E,BD=EC,则△ABD≌△ACE,其依据是( )A、ASAB、SASC、AASD、HLA、1个B、2个C、3个D、0个二、选择题(每题3分,共24分)9. 如图,在△ABC中,∠A=46°,CE是∠ACB的平分线,B,C,D在同一条直线上,FD∥EC,∠D=42°,则∠B=(第9题图)(第10题图)(第11题图)(第12题图)10.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=11.如图,在Rt△ABC中,∠ACB=90°,且AC=BC=4 m,已知△BCD≌△ACE,则四边形AECD的面积为12. 如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F处,若∠BAF=56°,则∠DAE=13如图,在△ABC中,AB+AC=20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则图中阴影部分的面积等于(第13题图)(第14题图)(第15题图)(第16题图)14. 如图,BD是∠ABC的平分线,DE⊥AB于点E,,AB=18 cm,BC=12 cm,则DE=15. 如图,已知P(3,3),点B、A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB= .16. 如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.三、解答题17.(8分)腰三角形的周长是16 cm. 若其中一边长为4 cm,求另外两边的长;.第1页共3页18(8分)如图,已知AE⊥BC,AD平分∠BAE,∠ADB=110°.求∠B的度数。

八年级上第一次月考试卷--数学(有答案)

第一学期10月月考八年级数学试卷考生须知:1. 全卷共4页,有三大题,23小题. 满分为120分.考试时间100分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.一、选择题(每小题3分,共30分)1.下列各组数(单位:厘米)可能是一个三角形的三边长的是(▲)A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,112.下列四个图形中,是轴对称图形的是(▲)A.B.C.D.3.作角平分线的依据(▲)A.SAS B.AAS C.ASA D.SSS4.如图,一副分别含有30º和45º角的两块直角三角板,拼成如上图形,其中∠C=90º,∠B=45º,∠E=30º,则∠BFD的度数是(▲)A.15º B.25º C.30º D.10º5.一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块以前一样的玻璃,你认为她带哪两块去玻璃店了(▲)A.带其中的任意两块B.带①,④或③,④就可以了C.带①,④或②,④就可以了D.带①,④或②,④或③,④均可6.若关于x的一元一次不等式组有解,则m的取值范围为(▲)A.23m≥B.m≤C.D.23m<7.如图,把△ABC纸片的∠A沿DE折叠,点A落在四边形CBDE外,则1∠、2∠与∠A的关系是(▲)A.A∠=∠+∠221B.122∠=∠-∠AC.A∠=∠-∠212D.2211∠=∠+∠ACE23(2)4(2)1213x x xx --≤⎧⎪+⎨>-⎪⎩8.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为(▲) A . 1 B . 1.5 C . 2 D . 2.59.如图,Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的高,角平分线AE 交CD 于H , EF ⊥AB 于F ,下列结论:①∠ACD=∠B ;②CH=CE=EF ;③AC=AF ;④CH=HD . 其中正确的结论为(▲)A . ①②④B . ①②③C . ②③D . ①③10、已知:四边形ABCD 是正方形,在平面内找一点P 满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形,这样的点P 有(▲)个。

八年级(上)数学第一次月考试卷(附答案)

(第6小题)(第3小题)CBA2020-2021学年度(上)八年级数学第一次月考试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1、下列各数是无理数的是( )A 、73 B 、4 C 、5 D 、••10.2 2、下列说法错误的是( )A 、1的平方根是1B 、-1的立方根是-1C 、2是2的算术平方根D 、0是0的平方根3、如图,在Rt △ABC 中,∠B=90°,以AC 为直径的圆恰好过点B .若AB=8,BC=6,则 阴影部分的面积是( ) A 、24-100πB 、48-100πC 、24-25πD 、48-25π4、如图,一圆柱高8㎝,底面半径2㎝,一只蚂蚁从A 点爬到点B 处 吃食,要爬行的最短路程(π取3)是( ) A 、20㎝ B 、10㎝ C 、14㎝ D 、无法确定5、已知实数086=-+-y x y x 满足、,那么以y x 、的值为两边长作直角三角形, 它的第三边长为( )A 、10B 、72C 、10或72D 、以上均不对 6、如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且相邻两平行线之间的距离均为1,则AC 的长是( )A 、5B 、6C 、3D 、10二、填空题(本大题共6小题,每小题3分,共18分) 7、6的相反数是 .8、81的平方根是 .9、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= . 10、若n 20是整数,则正整数n 的最小值为 .11、如图,数轴上有三点A 、B 、C,其中点A 表示的数是2-,点B 表示的数是1,且AB=BC,则点C表示的数是 .12、锐角等腰三角形的腰长为10㎝,一边上的高为8㎝,则这个锐角等腰三角形的底边长是㎝.三、(本大题共5小题,每小题6分,共30分)13、(1)计算: 331327+-(2)如图,已知Rt ∆ABC,∠ACB=90︒,AC=15和BC=20,求斜边上的高CD 的长.14、计算: 22832--15、计算 :()()()2323522-+--16、求等式 ()1612=-x 中x 的值.17、如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请按要求作三角形(要求三角形各顶点落在小正方形的顶点上): (1)在图1中作ABC Rt ∆,使三边长都为有理数;(第4小题)BAADCB0 B C-2 1 3 42•••2-A(2)在图2中作ABC ∆,使得三边边长分别是5、10、17.四、(本大题共3小题,每小题8分,共24分)18、若12+x 的平方根是±5,52-+y x 的立方根是3,求22y x +的平方根.19、已知10的整数部分是a,小数部分是b ,求31a ()310+b 的值.20、两张同样大小的长方形纸片,每张分成7个大小相同的小长方形,且每个小长方形的宽均为a(如图),如图放置,重合的顶点记作A ,顶点C 在另一张纸的其中一条分隔线DE 上,若 262=CD ,求AB 的长是多少?五、(本大题共2小题,每小题9分,共18分)21、如图,在长方形ABCD 中,AD =8,CD =6,将长方形ABCD 沿CE 折叠后,使点D 恰好落 在对角线AC 上的点F 处. (1)求EF 的长; (2)求梯形ABCE 的面积.22、观察下列一组式子的变形过程,然后回答问题:①()1212121212)12)(12()12(11212-=--=--=-+-⨯=+;②()()();2323232323)23)(23(23123122-=--=--=-+-⨯=+③()()()4545454545)45)(45(45145122-=--=--=-+-⨯=+.(1)561+= ;991001+= ;(2)请你用含n (n 为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的结论,求下列式子的值.99100198991341231121++++++++++六、(本大题共1小题,共12分)23.已知:如图,在Rt △ABC 中,∠C=90°,AB=5cm ,AC=3cm ,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值; (3)当△ABP 为等腰三角形时,求t 的值.图2DEa aa a a a a图12020-2021学年度(上)八年级数学第一次月考参考答案一.选择题1.C2.A3.C4.B5.C6.D 二.填空题7. 6- 8. 3± 9. 8 10. 5 11. 22+ 12. 12或 5413.(1) ………3分(2)解:,625201522222=+=+=∆BC AC AB ABC Rt 中,在25=∴AB CD CD AB BC AC SABC2521201521,2121⨯=⨯⨯⋅=⋅=∴∆即 )(12cm CD =∴ ………6分 14. 0………6分 15. 548-………6分16. 35-==x x 或 ………6分(写对1个得3分) 17.………3分………6分18. 解:由题意得32352,)5(12=+-±=+y x x4,12==∴y x………4分1044122222±=+±=+±∴y x ………8分19. 解:由题意得310,3-==b a………4分1910)310)(310(331)310(31=-=-+⨯=+∴b a………8分 20. 解:由题意得AD=6a,AC=7a26)6(7,22222=-=-∆a a CD AD AC ACD )即(中,在2=∴a 6分 277==∴a AB ………8分21. 解:设DE=x ,则AE=8-x ,由折叠性质得,EF=DE=x ,CF=CD=6,则AE=8-x 在Rt ACD ∆中,1006822222=+=+=CD AD AC 10=∴AC 4610=-=∴AF 在RT AEF ∆,222)8(4x x -=+ 533==∴=∴AE EF x ,………6分396)85(21=⨯+=∴ABCE S 梯形 ………9分22. (1)99100;56--………2分 (2)n n nn -+=++111………5分(3)99-10098-993-42-31-2+++++=解:原式1001-+= 9101-=+= ………9分23.(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC=4(cm );………3分(2)由题意知BP=tcm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP=BC=4cm ,即t=4s ; ②如图②,当∠BAP 为直角时,BP=tcm ,CP=(t-4)cm ,AC=3cm , 在Rt △ACP 、Rt △BAP 中,由勾股定理得AP 2=32+(t-4)2225-=t ,解得:t=425故当△ABP 为直角三角形时,t=4s 或t=s425………7分32图1B C A图2ABC(3)①如图③,当AB=BP时,t=5s;………8分②如图④,当AB=AP时,BP=2BC=8cm, t=8s;………9分③如图⑤,当BP=AP时,AP=BP=tcm,CP=(4-t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,即t2=32+(4-t)2,25解得:t=825………12分综上所述:当△ABP为等腰三角形时,t=5s或t=8s或t=s8。

人教版数学八年级上第一次月考卷(原卷版)

绝密★启用前八年级上学期第一次月考模拟试卷(二)注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题目)一、 选择题目 (本题共计 12 小题 ,每题 3 分 ,共计36分 , ) 1. 下列五个数中:227;√6;π2;√9,0.3⋅无理数的个数有( )A.4个B.3个C.2个D.1个2. 一个等腰三角形周长为13,其中一边长为5,那么这个三角形的腰长是( ) A.4B.5C.3或5D.4或53. 若点P(a −1, 2a)在第二象限,则a 的取值范围是( ) A.−1<a <0B.a >1C.a <0D.0<a <14. 如图,点O 是正五边形ABCDE 的中心,则∠AOB 的度数是( )A.65∘B.70∘C.72∘D.78∘5. 我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图B.扇形图C.折线图D.频数分布直方图6. 如图,点B 、E 在线段CD 上,若∠C =∠D ,则添加下列条件,不一定能使△ABC ≅△EFD 的是( )A.BC =FD ,AC =EDB.∠A =∠DEF ,AC =EDC.AC =ED ,AB =EFD.∠ABC =∠EFD ,BC =FD7. 如图,将△ABC 沿水平向右的方向平移,得到△EAF ,若AB =5,BC =3,AC =4,则平移的距离是( )A.3B.4C.5D.108. 如图,将三角板的直角顶点放在两条平行线上,如果∠1=40∘,则∠2的度数是( )A.30∘B.40∘C.45∘D.50∘9. 如图所示,在等边三角形ABC 中,高AD 、B E 相交于点F ,连接DE ,则∠FED 的度数是( )A.15∘B.20∘C.25∘D.30∘10. 在△ABC 中,AD 为BC 边的中线,若△ABD 与△ADC 的周长差为5,AC =7,则AB 的长为( ) A.2B.19C.2或19D.2或1211. 已知:如图,△ABC 中,∠ABC =45∘,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,F 是CD 边的中点,H 是BC 边的中点,连接DH 与BE 相交于点G ,则下列结论正确的有( )①BF =AC ;②BF =2CE ;③CE =BG ;④DG =GH . A.1个B.2个C.3个D.4个12. 如图,已知∠MON =30∘,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上.△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A.16B.32C.64D.128卷II (非选择题目)二、 填空题目 (本题共计 6 小题 ,每题 3 分 ,共计18分 , ) 13. 据数据显示,截至北京时间2020年6月3日6时30分,全球新冠肺炎累计确诊病例超过6340000例,将“6340000”这个数字用科学记数法表示为________.14. 在锐角△ABC 中,CD ,BE 分别是AB ,AC 边上的高,且CD ,BE 交于点P ,若∠A =50∘,则∠BPC 的度数是________度. 15. 如图,△ABC 为等边三角形,BD ⊥AB ,BD =AB ,则∠DCB =________.16. 若正n 边形的所有内角与其中一个外角的和为 1125∘ ,则 n =________.17. 在△ABC 中,AB =AC ,∠A =α<90∘,BD ,BE 分别为△ABC 的角平分线和高线,则∠DBE 的度数是________(用含α的代数式表示).18. 如图1是二环三角形,可得S =∠A 1+∠A 2+...+∠A 6=360∘,图2是二环四边形,可得S =∠A 1+∠A 2+...+∠A 7=720∘,图3是二环五边形,可得S =1080∘,…聪明的同学,请你根据以上规律直接写出二环n边形(n ≥3的整数)中,S =________.(用含n 的代数式表示最后结果)三、 解答题 (本题共计 8 小题 ,共计66分)19. (本题满分6分) 解不等式组{x−32+3≥x −1,1−3(x −1)<8−x,,并把解集在数轴上表示出来.20. (本题满分6分)先化简,再求值:(a +b)2+(a −b)(2a +b)−3a 2,其中a =−2−√3,b =√3−2.21. (本题满分8分)如图,在直角坐标系中, △ABC 的三个顶点的坐标分别为 A(1,5), B(1,−2), C(4,0).(1)请在图中画出 △ABC 关于y 轴对称的 △A ′B ′C ′,并求出A ′点的坐标; (2)求 △ABC 的面积;(3)在y 轴上画出点P ,使 PA +PC 的值最小,保留作图痕迹.22.(本题满分8分) 如图,在Rt △ABC 中,∠C =90∘,∠B =45∘,AD 平分∠BAC ,交BC 于点D ,DE ⊥AB 于点E .…………○…………外…………○…………装…………○…………订…………○…………线…………○………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○………(1)求证:AC =BD +DE ;(2)若AB =10cm ,求△BDE 的周长..23. (本题满分8分)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类 A B C D学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有________人,其中选择B 类型的有________人.(2)在扇形统计图中,求D 所对应的圆心角度数,并补全条形统计图. (3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有多少人?24. (本题满分10分)如图,AD 为△ABC 的中线,BE 为△ABD 中线. (1)∠ABE =15∘,∠BAD =35∘,求∠BED 的度数;(2)在△BED 中作BD 边上的高;(3)若△ABC 的面积为60,BD =5,则点E 到BC 边的距离为多少?25. (本题满分10分)9月份,某学校到商场购买A ,B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元;已知B 种品牌足球的单价比A 种品牌足球单价的2倍少20元. (1)求两种品牌足球的单价各多少元?(2)11月份,学校决定再次购进A ,B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球的单价比第一次购买时提高了5元,B 品牌足球按第一次购买时单价的8.5折出售.如果学校此次购买B 品牌足球的总价不低于A 品牌足球的总价的80%,且保证这次购买的B 种品牌足球不超过22个,学校第二次购买足球有哪几种方案?26. (本题满分10分)已知,△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.(1)如图1,设点P 的运动时间为t(s),那么t =________(s)时,△PBC 是直角三角形;(2)如图2,若另一动点Q 从点B 出发,沿线段BC 向点C 运动,如果动点P ,Q 都以1cm/s 的速度同时出发.设运动时间为t(s),那么t 为何值时,△PBQ 是直角三角形?(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动.连接PQ 交AC 于D .如果动点P ,Q 都以1cm/s 的速度同时出发.设运动时间为t(s),那么t 为何值时,△DCQ 是等腰三角形?(4)如图4,若另一动点Q 从点C 出发,沿射线BC 方向运动.连接PQ 交AC 于D ,连接PC .如果动点P ,Q 都以1cm/s 的速度同时出发.请你猜想:在点P ,Q 的运动过程中,△PCD 和△QCD 的面积有什么关系?并说明理由.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上学期第一次月考试卷(11.1-11.2)
(时间60分钟 总分100分)
班级 姓名 成绩
一.填空题(每空3分 共36分)

1. 函数12xxy中,自变量x的取值范围是__________.
2. 盛满10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y(千克)与时间t(时)之间的函数关
系式是____________,自变量t的取值范围是____________.
3. 若函数y=(m-1)x+2n+1是正比例函数,m=_________ n=__________
4. 已知正比例函数经过二,四象限,则函数中的y随x的增大而____________

5. 某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)经过(2,-4)点.请你写出一个

满足上述两个条件的函数解析式______________.
6. 直线y=-2x+6经过第__________象限,与x轴的交点坐标为___________,与y轴的交点坐标为
__________.图象与坐标轴所围成的三角形面积是 .
7. 已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析
式为__________.
二 选择题(每题4分, 共32分)
8. 在圆的周长RC2中,常量与变量分别是( )

A. 2是常量,C、R是变量 B. 2是常量,C、、R是变量
C. C、2是常量,R是变量 D. 2是常量,C、R是变量
9. 下列函数关系式:①xy;②xy1;③12xxy;④112xy。其中一 次
函数的个数是( )
A. 1个 B.2个 C.3个 D.4个
10.下列给出的四个点中,不在直线y=2x-3上的是 ( )
A.(1, -1) B.(0, -3) C.(2, 1) D.(-1,5)
11.已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )
(A)k>0,b>0 (B)k>0,b<0
(C)k<0,b>0 (D)k<0,b<0

12. 直线xy2,12xy,13xy共同具有的特征是( )

A. 经过原点 B. 与y轴交于负半轴
C. y随x增大而增大 D. y随x增大而减小
13.把直线y=-5x+6向下平移6个单位长度,得到的直线的解析式为( )
A.y=-x+6 B. y=-5x-12 C. y=-11x+6 D.y=-5x
14.已知直线y=-2x+1的图象上有两点M(x1,y1)、N(x2,y2)且满足x1 x2,那么下列结论正确的是( )
A.y1 y2 B.y1 =y2 C.y1 y2 D.不能确定
15.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,

y
x
o
B C D A
因怕耽误上课,他比修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图象,那
么符合这个同学行驶情况的图象大致是( ).

三. 综合题
16.(10分)已知一次函数的图象过点(3,5)与(5,9)求这个一次函数的解析式.
(1)求出该一次函数的关系式.(6分)
(2)当x=10时,y的值是多少?当y=13时,x的值是多少?(4分)
17.(10分)是某出租车单程收费y(元)与行驶路程x(千米)
之间的函数关系图象,根据图象回答下列问题:
(1)当行驶8千米时,收费应为 元;(2分)
(2)从图象上你能获得哪些信息?(请写出2条)(4分)
①___________________________________
②___________________________________
(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数
关系式.(4分)

18.(12分)对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在
着某种函数关系.从温度计的刻度上可以看出,摄氏温度x(℃)与华氏温度y(℉)有如下对应关系:
x
(℃) … -10 0 10 20 30 …

y
(℉) … 14 32 50 68 86 …

(1)试确定y与x之间的函数关系.(6分)
(2)某天,福州的最高气温是25℃,澳大利亚悉尼的最高气温是80℉,你知道这一天哪个地区的最高气温
高吗?(6分)

命题说明及考后反思
一.试卷范围、重难点
试卷知识范围是一次函数11.1~11.2(不包括用函数观点看方程与不等式)。考查的重点是一次函数的图象、
性质和解析式,次重点是函数图象和自变量的取值范围。解答题以待定系数法求函数解析式为主。
二.命题思路
由于学生是第一次接触函数,这部分的知识学生不易掌握,为了让他们对以后的函数学习能有足够的信心
和兴趣。这次有意降低考试的难度, 主要注重对函数的基本知识、基本技能、基本能力的考查,渗透数形结合
思想、建模思想,体会函数的本质特征。 难度系数8:1:1 争取有70%的学生可以及格,并且提高优秀率。
三.题目设计
题型 题号 知识点 考查目的 预计难度
填 空 题 1 自变量取值范围 考查自变量取值范围 0.85 2 一次函数解析式 考查实际问题中建立一次函数模型 0.75 3 正比例函数概念 考查正比例函数的概念 0.70 4 正比例函数的性质
考查正比例函数图象与单调性之间的转化,
数形结合的能力
0.65

5 正比例函数解析式 考查利用正比例函数图象性质、点的坐标求正比例函数解析式 0.70

6 一次函数的性质 考查一次函数解析式与图象位置之间的转化、与坐标轴的交点坐标、与坐标轴围成的三角形面积 0.7
7 一次函数解析式 考查利用两条平行线k相等的性质、点的坐标求一次函数解析式 0.7



8 变量、常量的概念 在具体的函数关系式中判断出常量、自变量,考查变量、常量的概念 0.90
9 一次函数的概念 考查一次函数概念 0.80
10 一次函数的性质 考查对点在直线的理解,函数图象与解析式的关系 0.90

11 一次函数的性质 考查一次函数图象与一次函数系数k、b之间的转化,考查数形结合能力 0.80
12 一次函数的性质 考查函数解析式与性质之间的转化 0.7
13 一次函数解析式 利用平移求一次函数的解析式 0.85

14 一次函数的性质 利用一次函数的增减性比较两点纵坐标y1、y2的大小 0.70
15 函数图象 考查学生的识图能力 0.6

综 合 题 16 一次函数解析式 利用两点坐标求一次函数解析式,求相应的y值,相应的x的值,考查待定系数法 0.65 17 分段函数 考查识图能力,待定系数法求一次函数解析
式,分段函数,数形结合思想、综合应用能

0.5

18 一次函数解析式 利用列表求一次函数解析式,体现两种解析式表示方式之间的转化 0.5
68.5
四.反思
1.年段平均分66.5分,及格率67%,优秀率32% ,基本上达到预期目的。
2.学生对1,3,11,12,17 这些题目的解答情况要比预期的要差。第一题学生只会死记硬背,而无法
从分式和根式的定义上去理解。第3,11说明学生对图象解析式和性质的认识只停留在数字层面,对系
数是字母的题目还不熟练,对图象的性质还不能灵活应用,第17题说明学生表达不强,对已知条件的挖
掘能力差。
福州三十四中初二集备组

相关文档
最新文档