桥梁midas分解学习资料
MIDAS 培训资料

MIDAS 培训资料第一章关于MIDAS/Civil1.1 midas软件/Civil简介MIDAS系列软件是以有限元为理论基础开发的分析和设计软件。
早在1989年韩国浦项集团成立CAD/CAE研发机构开始专门研发MIDAS系列软件,于2000年9月正式成立Information Technology Co., Ltd.(简称MIDAS IT)。
目前MIDAS系列软件包含建筑(Gen),桥梁(Civil),岩土隧道(GTS),机械(MEC),基础(SDS),有限元网格划分(FX+)等多种软件。
在计算机技术方面,MIDAS/Civil所使用的是客体指向性计算机语言Visual C++,因此可以充分地使32bit视窗环境的优点和特点得到发挥。
以用户为中心的输入输出功能使用的是精确而且直观的用户界面和尖端的电脑图形技术,从而为考虑施工阶段或者材料时间依存性的土木建筑物的建模和分析提供了很大的便利。
在结构设计方面,MIDAS/Civil全面强化了实际工作中结构分析所需要的分析功能。
通过在已有的有限元库中加入索单元、钩单元、间隙单元等非线性要素,结合施工阶段、时间依存性、几何非线性等最新结构分析理论,从而计算出更加准确的和切合实际的分析结果。
建模技术采用的是自行开发的新概念CAD形式的建模技术,可以更加提高建模效率。
特别是由于拥有如桥梁建模助手等高效自动化建模功能,所以只要输入截面形状、桥梁特点、预应力桥的钢束位置等基本数据,就可以自动建立桥梁模型以及施工阶段的各种数据。
悬索桥完成系模型为青潭大桥的抗震设计所进行的特征值分析栈桥模型墩柱静力分析1.2 MIDAS/Civil的适用领域MIDAS/Civil的适用领域如下。
所有形式的桥梁分析与设计钢筋混凝土桥、钢桥、联合梁桥、预应力桥、悬索桥、斜张桥 大体积混凝土的水化热分析桥台、桥墩、防波堤、地铁、其它基础建筑地下建筑的分析地铁、通信电缆管道、上下水处理设施、隧道发电站及工业设施结构设计发电站、铁塔、压力容器、水塔等其它国家基础建设结构设计飞机场、大坝、港湾等1.3 MIDAS/Civil的特点*提供菜单交互式、表格输入、导入CAD等灵活多样的建模功能。
MIDAS学习笔记

(1)定义建模环境(2)定义材料及截面(3)建立结构模型(4)定义组(5)定义边界条件(6)定义施工荷载(7)定义施工阶段(8)定义成桥阶段荷载(9)结果查看(1)建立截面时要注意截面的偏心,一般情况下,截面的偏心应选在中上部,这样在图形消隐时可以准确地显示模型的实际形状。
截面偏心的设置对分析结果有影响,主要在两方面:荷载和边界条件;荷载可以作用在单元质心或节点上,边界只能作用在节点上,而节点又正是我们定义的截面偏心点。
(2)模拟变截面连续梁桥需要用到Midas中变截面的功能,在建立变截面过程时程序要求变截面的I,J梁端截面需要有相同的控制点。
(3)变截面中的I→J端顺序是根据建立单元时结点选择的先后顺序确定的,例如,某单元两端的结点号为1、2,若建立单元时先点击2后点击1,则这个单元的I端截面为结点2所在的截面,J端截面为结点1所在的单元。
建立结构的模型时应结合施工段的划分来确定单元长度,并且保证结构控制截面如跨中应有节点以方便查找内力。
建立结构模型时,首先在原点建立一个节点,然后选择该节点,利用“单元拓展”→“节点”→“线单元”的功能”建立结构模型。
任意间距中间的分隔符一定是在英文状态下的逗号。
变截面组中应注意,左边跨对称轴应在变截面的I段,右边跨的对称轴在变截面的J段。
Midas模拟悬臂法施工是通过激活和钝化组来实现的,组共有结构组、荷载组、边界组和预应力束四个组别。
首先定义结构组,结构组的定义和施工段的划分是相关联的。
桥梁施工分为0#段浇筑、1#段挂篮施工、1#段混凝土施工(1#段浇筑)、1#段安装……9#段挂篮施工、9#段混凝土施工、9#段安装、边跨满堂支架施工、边跨合龙段挂篮施工、边跨合龙段混凝土浇筑、边跨合龙段安装、中跨合龙段挂篮施工、中跨合龙段混凝土浇筑、中跨合龙段混凝土安装及二期恒载施工。
每个施工阶段对应一个结构组。
有时,结构组不一定要分细,例如1#段挂篮施工和1#段混凝土施工两个施工阶段可以共用一个结构组。
Midas-城市桥梁抗震分析及验算资料讲解

• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
1. 荷载工况
完成反应谱分析后,需要定义混凝土的荷载工况,一般点击自动生成。规范选择城市桥梁抗震设 计规范。
Midas 抗震分析后处理
2. 后处理验算
点击设计-RC设计
①RC设计参数
这里的规范同前,也需要选 择城市桥梁抗震设计规范。
Midas 抗震分析前处理
模型特征值分析
在进行反应谱分析之前要计算模型的振型:首先c在结构类型中将模型定义为3D的,勾选将自重 转化为质量,同时还要将外荷载转化为质量(自重不必要转化)。
Midas 抗震分析前处理
采用多重Ritz向量法进行特征值分析,水平向 各取40阶振型,保证振型参与质量达到90% 以上。
(b)结构振动引起的破坏 例如:地震强度过大,或者强度延性不足,结构的布置或者构造不合 理。
延性设计理念
3. 延性设计
桥梁结构体系中设置延性构件,桥梁在E2地震作用下,延性构件进入塑 性状态进行耗能,同时可以减小结构刚度,增大结构周期,达到减小地 震动响应的目的。
类型 Ⅰ
类型 Ⅱ
延性设计理念
规范中延性设计理念的体现
Midas 抗震分析前处理
2. 反应谱分析
A类规则桥梁 ,E1和E2地震 均选择MM法
Midas 抗震分析前处理
地震反应谱的确定
根 据 设 计 参 数 , 选 择 E1 地 震 动反应谱参数。
Midas 抗震分析前处理
E1地震作用下反应谱设计参数
Midas 抗震分析前处理
E2地震作用下反应谱设计参数
运行后可在结果-振型中查看周期 与振型。 同时点击自振模态可以输出周期 与振型的数据表格。
迈达斯学习要点

在学习的过程中有不懂的地方可以按F1帮助查找需要的内容,应该经常使用这种工具,使得自己更快的提高。
一建立T型桥墩的体会1学会利用单元扩展功能,利用节点扩展为线单元,平面单元扩展成实体单元,注意扩展的方式,移动还是删除,后者会删除平面单元,而前者则是移动平面单元的位置,如果既不选‘删除’又不选‘移动’那么该组平面就不会移到别的位置上或者被删除,而是留在原位置上。
2学会定义结构组,先选择单元和节点,然后利用拖放即可。
在结构组定义后,容易整体选择他们,例如平面结构组被选择后可以进行单元扩展,要注意在扩展之后结构组的单元组成可能会有变化,例如一个大的结构组中有一个小的结构组,在小的结构组扩展单元后被删除了,哪么大的结构组中包含的小结构组中的单元会被删除;如果大的结构组利用移动方式进行单元扩展,那么该组中包含的小的结构组也会发生变化,随着大的结构组一起移动。
3节点复制和单元复制4利用节点和单元的属性来选择节点和单元。
利用平面选择。
学会利用激活等命令。
5建立好结构模型之后,应该合并或删除多余的单元和节点,例如建立实体单元的时候用到的平面单元来扩展成实体单元,那么最后应该删除平面单元6学会利用选择最新建立的单元7学会利用分割节点间距,和分割单元来建立新的节点和单元。
8学会利用投影的功能来建立新的单元。
9迈达斯的画面与竖直方向即Z方向平行。
10利用建模助手中的板来建立单元,应该注意输入编辑及插入一起连续进行,否则会出错。
同时应该注意板面是平行于Z轴的,所以要是板面垂直于Z轴那么就要旋转相应的角度。
11在输入荷载前需先定义荷载工况,自重系数一般Z方向为-1.先定义自重荷载工况,然后在“菜单”下的“静力荷载”下点击自重来输入相应的自重系数以及其他内容后点击添加。
以及利用‘菜单’的‘节点荷载’或其他项目来具体的设定施加的荷载的类型及大小和方向和位置,位置由自己来选择。
注意,删除荷载的方法,先选择,再删除。
对梁单元施加荷载的时候,例如时间活荷载梁单元荷载,在选择荷载两端点后荷载就自动添加了,在模型上可以看到,此时不用再点击适用以免又加载了一次。
迈达斯教程

桥梁电算课程讲义编者:张宇辉目录第一章绪论1.1 课程与职业的关系(重要性)1.2 课程的特点(难点)1.3 学习目的1.4 学习内容1.5 学习要求第二章常用桥梁结构分析软件概述2.1 结构力学计算器SM-SOLVER2.2 桥梁博士Dr.bridge2.3 迈达斯Midas Civil2.4 Ansys2.5 其它2.6 工程实例演示第三章桥梁数值计算分析3.1 建模3.2 桥梁荷载介绍3.3 桥梁计算分析3.4 桥梁作用效应组合3.5 桥梁正常使用极限状态验算(自学)3.6桥梁承载能力极限状态验算(自学)第四章上机实践4.1 简支梁桥建模4.2 拱桥建模加载4.3 预应力混凝土梁桥施工阶段分析第一章 绪论1.1 课程与职业的关系(重要性)1.2 课程的特点(难点)1.3 学习目的1.4 学习内容1.5 学习要求1.1 课程与职业的关系(重要性)1 直接相关:本课程将直接应用于以后的生产实践。
(读研、就业)2 针对性:不同的专业,使用的软件不同,对结构设计的要求不同。
3 广泛性:无论以后从事何种职业,都或多或少都会用到本门课程的相关知识。
(科研、设计、施工)1.2课程的特点(难点)1 深厚的理论知识⎪⎪⎭⎪⎪⎬⎫计算机桥梁力学数学 2 实践性强只有通过实践解决实际问题,才能学会。
1.3学习目的掌握桥梁结构分析的基本理论了解桥梁结构分析的一般流程初步了解计算分析软件Midas1.4 学习内容常用桥梁计算软件概述Midas 初级功能桥梁平面杆系模型的建立掌握桥梁荷载效应影响线、恒载内力、活载内力计算荷载效应组合结构强度验算和正常使用性能验算参考教材:《公路钢筋混凝土及预应力混凝土桥涵设计规范》 MIDAS2006使用说明书1.5 学习要求独立完成常规桥梁的计算分析考核要求:理论课成绩=70%随堂测验+30%平时考勤上机课成绩=70%上机考核+30%平时考勤第二章常用桥梁结构分析软件概述2.1 桥梁结构分析的杆系有限单元法2.2 结构力学计算器SM-SOLVER2.3 桥梁博士Dr.bridge2.4 迈达斯Midas Civil2.5 Ansys2.6 其它2.7 工程实例演示2.1 桥梁结构分析的杆系有限单元法桥梁结构分析,可分为总体分析和局部分析两大部分。
MIDAS 软件学习资料

二、后处理阶段
后处理一般用来查看和处理分析计算的结果数据的,以及根据所得结果进行工 程设计。
1、 在本题中需要查看处理的数据为抗震设计规范中规定的一些影响建筑设计安 全的因素。主要包括以下内容:荷载组合、反力及内力、位移、各种工况组合下的 内力及应力图、构件内部细部分析、振型及周期,并进行稳定验算(刚重比)、层间位 移、层位移、层剪重比、剪力比、倾覆弯矩、侧向不规则、扭转不规则及薄弱层等 指标的验算。
基本数据如下:1、轴网尺寸:见平面图 2、柱: 500x500 主梁: 250x450,250x500 次梁:250x400 连梁:
250x1000 3、混凝土: C30 剪力墙: 250 4、层高:一层4.5m ,二~六层3m 5、设防烈度:7°(0.10g) 场地:Ⅱ类
一、前处理阶段
1、设定操作环境及定义材料和截面 设定操作环境包括:建立项目,设定单位体系 定义材料:材料号:1 名称:C30 规范:GB(RC) 混凝土:C30 材料类型:各向同性
3、定义并构建结构群
复制楼层:复制次数:5 距离:3 添加 在模型窗口中选择要复制的单元
生成层数据:点击生成层数据:考虑5%偶然偏心 考虑刚性楼板:若为弹性楼板选择不考虑 地面高度:点击 ,若勾选使用地面高度,则程序认定此标高 以下为地下室,勾选各构件承担的层间剪力
自动生成墙号:避免设计时不同位置的墙单元编号相同,特别是在利用扩展单 元功能时,一次生成多个墙单元时,这些墙单元的墙号相同, 若这些墙单元不在直线上,X向、Y向都有时,程序则认为没有 直线墙不给配筋设计。
注:此功能可以用于指定斜向构件,例如斜柱、斜梁等。
2) 钢筋混凝土构件设计参数 定义抗震等级及梁端弯矩调幅系数 编辑混凝土材料特性:定义主筋,箍筋设计强度及混凝土强度等级 定义设计用钢筋直径:选择梁、柱、墙钢凝土构件设计
迈达斯学习总结

一.定义材料属性及构件截面二.建立轴网及布置构件(1)梁(弧形梁,选中线-建立曲线并分割单元)(2)柱(选中节点-扩展)(3)墙(选中线-扩展,墙开洞-分割单元)三.复制或定义层数据四.定义荷载:(1)静力工况荷载(2)定义楼面荷载类型将荷载转换为质量(3)楼面荷载分配(4)梁单元荷载(5)风荷载(两个方向,迈达斯中迎风面取楼层上下各半层)(6)添加反应谱数据(7)自重 将自重转换为质量五.结构边界条件柱低:约束所有方向嵌固层:约束X 、Y 方向平动和Z 方向转动恒载 DEAD 活载 LIVE 风载 WX 风载 WY一.定义材料属性及构件截面二.建立轴网及布置构件(1)弧形梁,选中线-建立曲线并分割单元次梁采用复制单元和移动, 或者拖放功能(2)柱:选中柱节点—单元扩展(3)墙(选中线-扩展,墙开洞-分割单元)墙开洞口用分割:三.复制或定义层数据四.定义荷载(1)静力工况荷载(2)定义楼面荷载类型(5)风荷载(6)添加反应谱数据(7)自重五.结构边界条件柱低:约束所有方向嵌固层:约束嵌固层周边X、Y方向平动和Z方向转动关于计算结果的对比问题:1.表格结果中层间位移角双向地震找不到按照公式通过单向地震计算2.表格结果中层间偶然偏心的位移角与PKPM相差较大3.设计计算书中位移比是哪个工况的,与表格结果对不起来4.表格结果中位移比偶然偏心与PKPM相差较大5.表格结果中位移比Y方向位移比与PKPM相差较大6.为什么表格结果中位移比、位移角有位移X和位移Y,并且每项下面又分了EX和EY工况7.荷载工况中定义了偶然偏心,设计计算书中仍然无偶然偏心的结果8.EX=EQ1=ECCX(RS)9.计算书中侧向刚度比是EX和EY工况的?10.表格结果中还是分了X和Y,并且每项下面又分了EX和EY工况11.定义虚面单元选A。
MIDAS-桥梁梁格

1.纵梁抗弯刚度【强制移轴(上部结构中性轴)法】一、剪力-柔性梁格理论a.各纵梁中性轴与上部结构中性轴基本重合b.强制移轴,使各纵梁中性轴与上部结构中性轴基本重合,等效纵梁抗弯刚度MIDAS-桥梁梁格2.横向梁格抗弯刚度3.纵梁、横梁抗扭刚度4.虚拟边构件及横向构件刚度此处d’为顶板厚度。
此处d为顶板厚度。
二、单梁、梁格模型多支座反力与实体模型结果比较比较结果:与实体模型结果相比较,可得出在自重荷载作用下,单梁模型计算的多支座反力结果失真,而梁格模型结果较合理。
多支座单梁模型50010001500梁格模型(kN)梁格模型(kN)050010001500实体模型(kN)实体模型(kN)050010001500支座1支座2支座3支座4支座5支座6单梁模型(kN)单梁模型(kN)多支座梁格模型多支座实体模型1.前言采用梁格建模助手生成梁格模型宽梁桥、斜交桥、曲线桥的单梁模型无法正确计算横向支座的反力、荷载的横向分布、斜交桥钝角处的反力以及内力集中效应,利用梁格法模型可以非常方便的解决以上问题。
梁格法建模的关键在于采用合理的梁格划分方式和正确的等效梁格刚度。
用等效梁格代替桥梁上部结构,将分散在板、梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格内。
理想的刚度等效原则是:当原型实际结构和对应的等效梁格承受相同的荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。
由于实际结构和梁格体系在结构特性上的差异,这种等效只是近似的,但对一般的设计,梁格法的计算精度是足够的。
梁格法作为桥梁空间分析的一种简化方法,虽然较比板壳、实体有限元方法建模简单、求解方便,但是前期的截面特性计算量大,且对于新手来讲容易出错,非常耗时。
midas Civil的梁格法建模助手功能可以帮助用户轻松实现上述功能。
梁格法建模助手,对于单箱多室箱梁桥、斜交桥、曲线梁桥可自动生成梁格模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单线铁路下承式栓焊支钢桁梁桥空间分析计算目录第一章计算资料 (1)第一节基本资料 (1)第二节计算内容 (1)第二章桁架梁桥空间模型 (2)第一节调整后的构件截面尺寸 (2)第二节空间模型 (3)第三章恒载和活载作用下竖向变形 (3)第一节恒载作用下的竖向变形 (4)第二节活载作用下的竖向变形 (4)第四章主力和各项附力单独作用下的受力 (5)第一节主力单独作用下的受力 (5)第二节横风荷载单独作用下的受力 (8)第三节制动力单独作用下的受力 (12)第五章主力和各项附力组合作用下的受力...........................................................13第一节主力和横向附力组合作用下的受力 (13)第二节主力和纵向附力组合作用下的受力 (17)第六章自振特性计算.............................................................................................19第一节一阶振型计算 (19)第二节二阶振型计算 (20)第三节三阶振型计算 (20)第四节四阶振型计算 (21)第五节五阶振型计算........................................................................................22第七章总结...........................................................................................................22第一章计算资料第一节基本资料1、设计规范:铁路桥涵设计基本规范(TB10002D1-2005),铁路桥梁钢结构设计规范(TB10002D2-2005)。
2、结构轮廓尺寸:计算跨度 L= 106.5m,钢梁分10个节间,节间长度d=L/10=10.65 m,主桁高度 H=11d/8= 14.64 m,主桁中心距 B=5.75 m,纵梁中心距 b= 2.0m,纵联计算宽度 B0= 5.30 m,采用明桥面,双侧人行道。
3、材料:主桁杆件材料 Q345q,板厚≤40mm,高强度螺栓采用 40B,精致螺栓采用 BL3,支座铸件采用 ZG35Ⅱ,辊轴采用 35 号锻钢。
4、活载等级:中—活荷载。
5、恒载:结构自重根据实际计算,明桥面恒载、横向力、纵向力均按照《铁路桥涵设计基本规范(TB10002D1-2005)》6、连接:工厂采用焊接,工地采用高强度螺栓连接,人行道托架采用精致螺栓,栓径均为 22mm,孔径均为 23mm.高强度螺栓设计预拉力 P=200KN,抗滑移系数μ0=0.45。
第二节计算内容1、全桥建模,汇总各杆件调整后的截面。
2、计算恒载、活载作用下竖向变形(图示和数值说明)。
3、计算主力、各项附加力单独作用的构件轴力、弯矩、轴向应力、弯曲应力、组合应力、支座反力(图示和数值说明)。
4、根据规范要求计算主力和各项附加力组合作用下的构件轴力、弯矩、轴向应力、弯曲应力、组合应力、支座反力(图示和数值说明)。
5、计算结构前 5 阶自振模态。
第二章桁架梁桥空间模型第一节调整后的构件截面尺寸采用如下构件截面建立桁架梁桥空间模型。
表 2-1 桁架梁桥构件截面特征值表(单位 m)杆名类截面形 H Btw TftB2tf2c下弦1 E0E2 用 H型截 0.010.0120.460.460.460.0120.460.024 0.460.460.018 E2E4 0.024下弦用2 H型截0.460.024用 H型截3 0.460.0240.46下弦 E4E5 0.0240.460.460.4640.0240.018 A1A3 上弦用0.024 H型截0.46上弦 A3A5 用 0.036H型截 0.460.4650.0360.0240.6H型截 0.460.01860.60.024 用0.024 E0A1 斜0.010.4670.46型截用 0.016H斜 A1E2 0.460.0160.460.0120.46 E2A3 0.02斜0.020.46用 8H型截0.460.0160.460.460.01型截9用0.016斜 A3E4 H0.0110用0.460.0160.46 0.460.016 H E4A5 斜型截0.010.0120.260.26 0.46 竖0.01211型截用 H0.24 横用H0.024型截 0.0121.290.240.024120.240.0161.290.24纵 0.01型截用13 0.016H0.01下平纵联斜用14 0.012H型截* 0.2130.180.180.012制动撑 0.012用 0.01H型截0.0120.18* 150.2130.18用槽桥门架楣0.10.01160.01 0.250.010.10.1 17 横联上横撑(端0.25) 用户槽钢 0.01 0.01 0.01 0.118 横联上横撑(中 ) 用户0.01 0.01 0.18 0.01H 型截面 0.25 0.1819 横联楣杆 0.01 用户双角钢截面 0.01 0.08 0.125 0.010.18 0.01 上平纵联斜杆20 用户 0.01 H 型截面 0.25 0.18 0.01* 21 用户0.01 0.1 0.1 0.01 角钢纵联间水平斜杆 22纵联间横向连接 0.010.090.010.09角钢用户 *第二节空间模型建立后的空间模型如下图所示:提取研究的主桁杆件编号如下图所示:主桁杆件各构件特征值如下图所示:主桁杆件各构件特征值如下图所示:第三章恒载和活载作用下竖向变形第一节恒载作用下的竖向变形恒载作用下的变形形状如下图所示,最大竖向位移在跨中处,为37.5mm。
支座处竖向位移最小,为零。
活载作用下的竖向变形第二节,活载作用下,桁梁的竖向变形如下图所示。
最大值也发生在跨中,为92mm TB10002D1-2005据《铁路桥涵设计基本规范》规定可知,简支钢桁梁在列车静,故本钢桁梁桥满足容许挠度L/900=109.9mm活载作用下的竖向容许挠度值为要求。
第四章主力和各项附力单独作用下的受力第一节主力单独作用下的受力由《铁路桥涵基本规范TB10002D1-2005》可知,主力包括桥梁恒载、列车静活载和横向摇摆力,横向附力主要是横向风力,纵向附力主要是制动力(牵引力)。
4.1.1主力作用下的轴力活载加载系数未考虑活载均衡发展系数,主力作用作用下主桁杆件的最大和最小轴力如下图由此可知,主桁杆件最大轴力为E4E5杆4170KN,最小轴力为A3'A5'杆-5121KN。
4.1.2 主力作用下的轴向应力主力作用下主桁杆件的最大和最小轴向应力如下图:由图可知,主力作用下主桁的最大轴向应力为E2‘E4'杆 214MPa,最小轴向应力为A3A5杆 -120MPa。
4.1.3 主力作用下的弯矩主力作用下的最大和最小弯矩如图所示:由此可知,主桁杆件最大弯矩为 A1'A3'杆 45KN·m,最小轴力为A1'A3'杆-45 KN·m。
4.1.4 主力作用下的弯曲应力主力作用下主桁杆件的最大和最小弯曲应力如下图:由图可知,主力作用下主桁的最大轴向应力 E0'E2'杆 69MPa,最小轴向应力。
-69MPa杆 '0E2' E为4.1.5 主力作用下的组合应力主力作用下主桁杆件的最大和最小组合应力如下图:由图可知,主力作用下主桁的最大组合应力 E2E4 杆260MPa,最小轴向应力为 A1A3杆-155MPa。
4.1.6 主力作用下的支座反力主力作用下支座的最大和最小反力如下图(单位:KN):由图可知,在主力作用下,支座竖向反力最大为 3189KN,最小为 672KN。
由《铁路桥梁钢结构设计规范 TB10002D2-2005》,钢材 Q345q 的轴向应力容许值为 200MPa,弯曲应力容许值为 210MPa,以上应力均满足规范要求。
第二节横风荷载单独作用下的受力4.2.1 横风荷载作用下的轴力考虑横风荷载时,要区分桥上有车情况和无车情况。
当桥上有车通过时,横向风力作用面积大,对结构受力的影响也就更大。
因此,根据规范,分别计算无车横风荷载和有车横风荷载作用下的结构受力。
无车横风荷载作用下的轴力如下图所示,最大轴力为 E0E2 杆371KN,最小轴力为E4'E5'杆-300KN。
有车横风荷载作用下的轴力如下图所示,最大轴力为 E0E2 杆430KN,最小轴力为 E4'E5'杆—394KN。
4.2.2 横风荷载作用下的弯矩无车横风荷载作用下的轴力如下图所示,最大弯矩为 E0A1杆 124KN·m,最小弯矩为 E0A1杆-89KN·m。
有车横风荷载作用下的轴力如下图所示,最大弯矩为 E0A1 杆 103KN·m,最小弯矩为 E0A1杆-105KN·m。
4.2.3 横风荷载作用下的轴向应力无车横风荷载作用下的轴向应力如下图所示,最大轴向应力为 E0E2 杆24MPa,最小轴向应力为 E2'E4'杆-18MPa。
有车横风荷载作用下的轴向应力如下图所示,最大轴向应力为 E0E2 杆28MPa,最小轴向应力为 E2'E42 杆-25MPa。
4.2.4 横风荷载作用下的弯曲应力无车横风荷载作用下的弯曲应力如下图所示,最大弯曲应力为 E0A1 杆19MPa,最小弯曲应力为 E0A1杆-20MPa。
有车横风荷载作用下的弯曲应力如下图所示,最大弯曲应力为 E0A1 杆16MPa,最小弯曲应力为 E0A1杆-16MPa。
4.2.5 横风荷载作用下的组合应力无车横风荷载作用下的组合应力如下图所示,最大组合应力为 E0E2 杆43MPa,最小组合应力为E1A0 杆-42MPa。
有车横风荷载作用下的组合应力如下图所示,最大组合应力为 E0E2 杆44MPa,最小组合应力为 E1A1 杆-34MPa。
4.2.6 横风荷载作用下的支座反力无车横风荷载作用下的支座反力如下图所示(单位:KN)有车横风荷载作用下的支座反力如下图所示(单位:KN)4.2.7 横风荷载作用下的桥门架效应上平纵联所受的横向力是经由两端的桥门架传至下弦节点,使端斜杆和下弦杆产生附加内力,端斜杆受弯变形如图所示。
(此图为无车横风荷载作用)第三节制动力单独作用下的受力4.3.1 制动力作用下的轴力制动力作用下的轴力如下图所示,最大轴力为 E0E2杆 188KN,最小轴力为E0A1杆-4KN。